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In this paper we suggest a consistent approach to derivation of generalized Fokker-Planck equation (GFPE)
for Gaussian non-Markovian processes with stationary increments. This approach allows us to construct the
probability density function (PDF) without a need to solve the GFPE. We employ our method to obtain the
GFPE and PDFs for free generalized Brownian motion and the one in harmonic potential for the case of
power-law correlation function of the noise. We prove the fact that the considered systems may be described
with Einstein-Smoluchowski equation at high viscosity levels and long times. We also compare the results with
those obtained by other authors. At last, we calculate PDF of thermodynamical work in the stochastic system
which consists of a particle embedded in a harmonic potential moving with constant velocity, and check the
work fluctuation theorem for such a system.
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1. Introduction

The theory of Markovian Brownian motion is successfully used in describing a great variety of
experiments and observations |1-4]. However, it remains an inapplicable model for the majority
of natural systems where a characteristic time of thermal fluctuations is comparable to that of a
Brownian particle (Gaussian non-Markovian systems), or where the processes are strongly non-
Gaussian (either Markovian or non-Markovian), all of which results in the fact that the long-time
mean squared displacement does not grow linearly in time any more, <ac2(t)> o< t#. This phe-
nomenon is called anomalous diffusion, namely, when p < 1, the system is said to be subdiffusive,
and when g > 1, it is superdiffusive. Evidently, when p = 1 we have an ordinary Brownian motion.

There are two paradigmatic models describing anomalous diffusion: continuous time random
walk (CTRW) and fractional Brownian motion (FBM). The CTRW approach was developed by
Montroll and Weiss in 1965 |5] for a description of the electric charge transport in a disordered
medium (amorphous semiconductor) [6]. This model considers the independent identically dis-
tributed couples of random space-time steps whose PDFs belong to the domain of attraction of
Lévy stable laws.

Recently, the Markovian Lévy processes in external fields were studied by means of Langevin
and fractional kinetics technique [749].

The second model (FBM) was introduced by Kolmogorov in 1940 |10] and later studied by
Yaglom [11]. The name “fractional Brownian motion” belongs to Mandelbrot and van Ness who
suggested a stochastic integral representation of this process [12]. FBM is a continuous centered
non-Markovian Gaussian process X () (¢) with covariance function

<X<H>(t)X<H>(t’)> = D (27 4421 - P | (1.1)

or, at large times,
<X<H>(t)2> — 2Dt2H (1.2)
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where H is Hurst index, 0 < H < 1, and D is the generalized diffusion coefficient of the dimen-
sion [D] = cm?/sec®®. Previously, the problem of particle escape from the potential well in the
framework of this model was considered in paper [13] by using the method of numerical simulation
of Langevin equation with fractional Gaussian noise Y (#)(¢). The latter is a non-Markovian sta-
tionary random process which is defined as the time derivative of FBM and whose autocorrelation
function exhibits a slow decay at infinity as (Y (t)Y )(0)) ~ 2DH (2H —1)t*" =2 in contrast to
white Gaussian noise, where (Y (1/2)(¢)Y (1/2)(¢')) = 2D§(t — t'). Power spectral density for white
noise does not depend on frequency, otherwise the noise is called a coloured noise.

The pioneer work of deriving a differential equation (in essence a Fokker-Planck equation, FPE)
describing ordinary Brownian motion (OBM) was done by Lord Rayleigh [14], within the approach
of an absence of external potential and an overdamped discrete motion of a heavy Brownian
particle. A more consistent method was developed by Fokker, Smoluchowski and Planck (a detailed
historical sketch may be found in [4]). However, when dealing with the coloured noise case, the
above-mentioned approaches are no longer valid.

The most common example of derivation of one-dimensional Fokker-Planck equation for colou-
red noise may be found in paper [4]; for one-dimensional case it was done in [15]; for a particular
case of a linear oscillator it was obtained and studied in [16]. The multi-dimensional case was
considered in |17].

The theory of generalized Brownian motion (GBM) finds its applications in many problems
of modern physics, biophysics and astronomy. Indeed, polymers [18-20)], elastic chains and mem-
branes |19, [21-24] and rough surfaces [25-27] can be described by a continuum elastic model which
accounts for their general stochastic behavior; it was recently shown that the probe particle in such
systems performs FBM [28; 129]. The fluctuations of magnetic field in the turbulent plasma of the
Earth’s magnetospheric tail turn out to have colour: in the range of frequencies w < 1072 Hz they
have the properties of flicker-noise (their power spectrum is proportional to 1/w). When w is about
10~! Hz, they are a brown noise with the tendency of “blackening” at lower frequencies, see, e.g.,
the paper [30] and works cited therein. Moreover, a similar situation is known from experiments
in laboratory plasmas: it was found that the power spectra of the saturation current, electrostatic
potential fluctuations, and the turbulence-induced flux measured in various plasma devices [31]
have power-law dependencies. At high frequencies, an asymptotic power fall-off of the fluctuation
spectra with characteristic decay indices close to 2 was denoted; at intermediate frequencies, the
decay indices were about 1, gaining a weak frequency dependence at the lowest frequencies.

Another important application comes from single-molecule dynamics. In paper [32] it is shown,
that the experimental data of the distance fluctuations between the two components of fluorescein-
tyrosine complex can be described within the framework of the Langevin equation with harmonic
potential and coloured source possessing correlation function (CF), which decays as ¢ ~0-51%0-07,

Below we present a consistent method of derivation of a multi-dimensional generalized Fokker-
Planck equation for linear stochastic systems driven by coloured Gaussian noise paying special
attention to the case of coloured Gaussian noise with power-law correlation function.

2. Basics of the method

We use the approach to obtaining an ordinary Fokker-Planck equation for linear systems with
delta-correlated noise described in monograph [33] as the basis of the suggested method for deriva-
tion of the generalized Fokker-Planck equation. The paper continues and extends the previous
studies [34] where we considered the GFPE for exponential and power-law correlation function
restricting ourselves only to space-homogeneous case. Here we study a more general problem for
the power-law correlation function. For the integrity and clarity of presentation, we give a full
description of the method, as well.

First, let us write Langevin equations in multi-dimensional form:

§i=—ain, +Y; (t) + K. (2.1)

Here &; is the generalized coordinate, a;x is the coefficient matrix, Y; is the external noise, K; is
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the regular constant force; the dot above &; stands for time derivative. Let the initial conditions
be & (t = 0) = & (0). Then, the formal solution of (21 is

¢
& (E0) = (), & O+ [ar (7)) 4 K), (22)

0
where a = ||aix|| is matrix composed from the elements of a;;, . The probability density function

(PDF) of the value &; in the moment of time ¢ with the fixed & (0) is evidently a multi-dimensional
Dirac delta-function:

F(&648(0)) =0(§—&(4£(0) = H5 (& — & (£,£(0))). (2.3)

In case we do not know the exact £ (0), but their initial PDF f (£ (0),0), the PDF at an arbitrary
moment of time ¢ will be of the shape:

f(& 1) =/d€ (0) £(£(0),0) (0 (& = £(£,£(0), (2.4)

where (...) stands for [drpy (7)... and py (7) is the PDF of noise. By using the n-dimensional
delta-function representation 4 (£) = (27)" " [ dgexp (ig€) and taking into account ([2.2)), we have:

61¢ - €(6.£0)) = (2m) " [ daG (g thexp fia (¢ - e ()], (25)

where .
G(q,t) = <exp{iq/d7e_“(t_7) Y (r)+ K)}> . (2.6)

0

Here we should remark that we use a matrix notation and the hat indicates that the value is a
Fourier image.
Expanding the PDF into Fourier integral

Flet) = n [ dgef(q.1), 2.7
we get from (Z4) and (Z3):

Fan=6anf() q0). (2.8)

where (e=9%)" is a matrix transposed to e~4¢.
Hereinafter we assume the random process Y; (t) to be a stationary Gaussian process, so that
the following relations are true:

<}/i1 (tl) v Y;2n+1 (t2n+1)> = 0,
(Yi, (1) .. Yiy, (t2n)) = ) Giris (f1 = t2) - Gin_yin, (t2n—1 — tam), (2.9)
where the summation is executed by all possible pair compositions of i1 ,t1 ;42 ,t2;...;92p ,ton -
The number of such pairs is (2n — 1)!! = 2n!/nl2". g;;, (t1 — t2) is a certain function of time

difference.
Using the exponential function series expansion for ([2.6]) and keeping in mind (Z.9]) we have:

e’} ( .)27’7, (2 )' ¢ ¢ "
N —1 n): —a —a
Glg,t) = Z @)l nl2n /dtl/dtQQi (e tl)ij m (€7), 951 (1 —t2)
n=0 S 0 0
¢
X exp fiqi/dT (e*‘”)ij K;|. (2.10)
0
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Here and below for simplicity we write g;; (t1 — t2) instead of gj,1, (t1 — t2).
Introducing the value

t t

/dtl/dtg (™), (e72) it (t1 — t2), (2.11)

0 0

mim (t) =

N =

we get for G (g,t):

K| . (2.12)

ij

t
é (Qa t) = €xp 7(11(1mm2m (t) - IQZ /dT (eiaT)
0

2.1. Fokker-Planck equation

It may be easily proven that the value G (g, t) obeys the following relation:

oG oG . R
— +qiair5— +iK:¢:G = —iqmDim (¢ 1), 2.1
or T Giang i 4G = —qiqgmDim (t) G (¢, 1) (2.13)
where
Dim (t) = 1 + @i Mem (t) + Qe Mk (t) (2.14)

On the other hand, due to an obvious equality

i/ ()" 0.0) = ~aagir ()" 0.0) (2.15)

and (28] we can conclude that the function f (g,t) obeys the same equation as (ZI3]) which after
the inverse Fourier transform yields:

of (€,1) of(&t) 0
o N T T ag

O*f (&,1)
[@im&Em f (§;1)] + Dim (t) DE0E,, (2.16)

actually being the generalized Fokker-Planck equation (GFPE).
Now, let us simplify the expressions ([ZI4]). Noticing that

0

Ak (e_at)kj = 5 (e_at)ij ’
dgji (t — t2) _ 99 (t1 —t2)
atl atQ
and
dm 1 / 1 /
dtlm = 3 /dt1 (e_“tl)ij (e_“t)ml gji (t1 —t) + 3 /dtz (e_“t)ij (e_'m)ml gji (t —t2),
0 0
we arrive at the expression
) t
Dim (1) = 3 /dt1 [(e‘a“)zj gim ([t1]) + (7). 9is (|t1|)} : (2.17)
0
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2.2. Probability density function

The advantage of the described method is that there is no need in solving the Fokker-Planck
equation to obtain the probability density function since we have constructed it implicitly at the
stage of the GFPE derivation. Indeed, according to (2.8)), knowing the Fourier image of the initial
PDF f(q, 0) =F{f(£0)} we can easily get the PDF for an arbitrary moment of time:

ren = 5 {f@n}
- g*l{é(q,t)f((e*“t)Tq,())}, (2.18)

where G (g,t) is given with (ZI2).

However, the expressions (2.II)) may be rather complicated for direct calculations regarding,
e.g., a power-law correlation function g (¢; — t2). By means of integration variables change we get
a much more usable expression, because now the internal integral does not contain the correlation
function:

t t—T1

My, (1) = %/dngl () / dr { (e’“(T”))ij (€™ )+ (efaT)z‘j (ea(TJrT))mz} '
0 0

3. Generalized Brownian motion

Let us now apply the derived formulae to the specific stochastic system: the generalization of
the classical Brownian motion with the external random force is a stationary Gaussian noise with
long memory effects.

3.1. Free generalized Brownian motion. Spatially homogenous case
First, we investigate a simple system described with the following Langevin equations:

dx
dt
dv
dt

= ’U7

—yv+Y (1), (3.1)

where z(t) is particles coordinate, « is friction constant, Y (¢) is Gaussian external noise with
Y)Y (') = g(t — t'). The coefficient matrix a;,, is

o —1
a_()'y’

and g;; (t1 — t2) = ;20,29 (t1 — t2) . The solution of the homogenous system (B.1)) yields:

1—e ™
x(t) = my+ ——up,

Y

v(t) = wvoe M. (3.2)
Comparing these expressions with (22) we get
1—e ™

R 33
e = "y . ( * )

0 e

In what follows we restrict ourselves to the power-law noise correlation function of the form

c

g(t) = ma (3.4)
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with 0 < 8 < 1, which is actually the asymptotics of the CF for fractional Gaussian noise. Note,
that at 8 — 1, we get the delta-function limit g(7) — ¢d(7) |35].
Now, we can write out the exact values for the coefficients ©;; and 9;; , see equations (ZI7)

and ([ZI9), respectively:

Du(t) = 0, (3.5)
Oualt) = Darlt) = e (L4 (1 Es(t)] - Sy 3.9)
12 = 21(t) = T2 —B) gty 567 .
1-p
_ po1_ ct"Eg(ty)
c(l—e t)i=F ct?>=h8 1 5y
) = — _ -
) FIE-p) ' yre-B 27
e (=727 + 2071 ) M(L — 8,2 — B, 7)1 P cEg(ty)tt P (3.8)
29°T(2— ) 29°T(1— )’ |
c(l—e )i  c(—e 27 4 e ¥) t1=AM(1 - 3,2 — B, ¢
M) — COoe LT el JL MUZB2200) (g
272T(2 — ) 27?2 - B)
1 ct'BEg(ty)  ce PV TAM(1 - 3,2 — B, t)
_ B—2 _ sy _ ’ , Uy 1
Mal) = 3 - ) 2T F) | (3.10)
Here Eg(t) is an integral exponential function
(o)
e”tP
Eg(t) = /dpp—ﬁ
1
and M(a, b, t) is Kummer’s confluent hypergeometric function:
RO
-\ tu, a—1 o b—a—1
M(a,b,t) = (b= a) /due u* (1 —u) ,
0
(see, e.g. [36]).
The generalized Fokker-Planck equation [2.I6) for this case yields:
Of(v,t) 0 02 f(v,t)
= — t Dog(t) ————. A1
at a,u [’Y'Uf('l), )] + 22( ) 8’1}2 (3 )
When ~t > 1, the latter expression takes the form
of(v,t) 0 c( 5 e PN 92 f(v,1)
- Z — . 12
5 5y vl (0, 0] + S\ o) "o (3.12)

According to the procedure described in section 22} the PDF f(v,t) with the initial condition
f(v,0) = nd(v — vg) reads

flo,t) = M] : (3.13)

n
2\/mo eXP l_ 4o

where . _
y_ Lpae ' Bs(ty) e IANM(L - 5.2 B 1)
2 29T'(1 - B) 2912 - B)

. (3.14)
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3.2. Free generalized Brownian motion. Spatially inhomogenous case

Now we examine the same system but with inhomogenous initial condition f(z,v,0) = né(x —
x0)d(v — vg). All the values for ©;;(¢) and 9;;(t) clearly, remain the same as in the previous
section, but the GFPE and the PDF do change:

of of | _0o(vf) *f >’f
L =L 2 —_— 1
ot Yoz 7 Ov 2012 0x0v D22 Ov? (3.15)
Again we construct the solution with the procedure explained in section
n 1 93?12(75) —ty 2 p2
f(z,v,tjw =0) e exp l 4093111@) (pi)ﬁu(t) voe "V + v qu(t) , (3.16)
where v
p= 70 (1—e™)—z+ao (3.17)
and
g = Wll(t)i)ﬁgg(t) - 93?12(15)2. (318)

3.3. Generalized Brownian motion of linear oscillator

Here we study the most general system, though restricting ourselves to the case of a harmonic
potential U () = w?x?/2 . The pair of Langevin equations now have the following form:
dz
dt
dv
dt
where x(t) is particles coordinate, v is friction constant, w is frequency of the linear oscillator, Y (¢)
is the external noise. The coefficient matrix introduced in equation (1)) is

[0 -1
ai w2 ’y .

Again, g;; (t1 — t2) = ;2029 (t1 — t2) . The solution of the homogenous system (B.19) yields

= ’U7

= —w-w+Y (1)), (3.19)

v(t) = Ape V22 L Ajem 20 U/2,
1 ..
z(t) = ——[®)+y0 ()]
1
= —55 [A1e_7t/2€m/2 (v+ Q)+ AgeV/2e=2/2 (v — Q)} ) (3.20)

where A; and As are constants depending on the initial conditions and here we introduce the value
Q = ++/7? — 4w?. Assigning z (0) =z and v (0) = vy, we get

B 2wz + v (v — Q)

A =
1 2Q )
2
A 2wz +21£ (v+9Q) . (3.21)

Now, substituting the latter expressions into equations (320) and comparing the result with
the formal solution ([2.2) without the integral term (since we are looking for the solution of the
homogenous system), we find

Qt Qt 2 Qt
cosh (—) + x sinh <—> — sinh (—)
0t — ot/ 2 Q 2 0 2

2t NCANETEAN B
QSIH 9 COS 9 QSID B
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The final step before proceeding to the GFPE and the PDF evaluation is to obtain the exact
expressions for M;; (t) and the generalized diffusion coefficients ®;; (¢) (¢, = 1,2) for our power-
law correlation function (B.4).

A straightforward integration of equation (2I9) with (34) gives

CeiQaPt (am7 - 2etﬂw2) M(l - ﬂa 2 - ﬂ’ a‘pt)t175
2yw2Q2T(2 — )

M) = —

ce™ Y (apetQ'Y — 2w2) M(l - 83,28, amt)tl_ﬂ
29w? Q2T (2 — B)

amcEg(apt)t? =% aycEg(amt)tt—F N (aZaf), —aba?))c
29w2QT (1 — B) 29w2QI(1 — B) 200 yw?3S

(3.23)

Ce_t(2a1> +’Y)

Telt) = “a0me )

tl—ﬂ |: (GQGPt — et’y) M(l — 67 2— 6; apt)

+ (e%t - et(7+29)) M(1— 8,2 — 4, amt)}, (3.24)

apce™ 2%t (4 — 2ap,e" ) M(1 — 8,2 — B, apt)t* =7

Tald) = - 2Y02T(2 - B)

ameet$1290) (e — 2q,) M(1 — 3,2 — BB, amt)t* ="
29Q2T(2 — 5)

_ apBy(apt )t =7 amcBg(ant)t' P (aj —aj)c
29QT(1 — B) 29QT(1 — B) 29Q

(3.25)

where Q = /72 —4w?, ap, = (v+Q)/2, am = (v — Q) /2.
According to equation (ZI6]), the GFPE for such a system reads

of (v, 0 0
% = g mvf@ o)+ o [(@e + ) f(e,v,)]
2 2 2
gx]; +(©12+@21)ﬁ+© s

+n Ox0v 292

(3.26)
where

9, = 0O, (3.27)

amapc [Eglapt) — Eg(amt)] =7 clap, (v +Q) —ap(y — Q)]

Dz = D= 2w2Q0(1 — B) 4020 ’

(3.28)

c [amEB(amt) —apEp (%t)] t=r e (ag — afn)

Dz = Or(1-5) T

(3.29)

At this stage we may compare these diffusion coefficients to that obtained in the paper by
Wang and Masoliver |16]. We consider only the case of the external driving noise (see section 3.2
of the mentioned paper). To establish a connection with our GFPE and equation (W29) (here
the letter “W” indicates the reference to the equation from the paper [16]), let us substitute equa-
tions (W54), (W55) and (W14) into (W35). Now we see, that ¢(t) = 2D12(t), ¢(t) = Daa(t), i.e.
we get a complete coincidence between our GFPE ([8:26) and Wang’s GFPE (W29).
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The PDF is evaluated directly through relations (2.18) and [2I2) with K; = 0:

n et

N Tl P e <492 (01 (22 — D 0)

2
X {imn(t) [e”t/QUQ — v cosh (Q/2) Q + (2zow® + vg7y) sinh (Qt/Q)}

2
+ Maa(t) {fevt/Q:rQ + xg cosh (Qt/2) Q + (2v9 + x07y) sinh (Qt/Q)]

+ 290t12(%) [e”t/QvQ — v cosh (2t/2) Q + (2zow? + voy) sinh (Qt/2)}
X {—e’vt/QIQ + g cosh (2t/2) Q + (2vg + x¢7y) sinh (Qt/?)} }) , (3.30)
where 9;; are given with equations (B:23H3.2H).

4. Transition to Einstein-Smoluchowski equation

Now let us prove that the system considered in section [B.3] may be described with Einstein-
Smoluchowski equation at high viscosity levels and at long times.
When w/vy < 1, we can neglect the time derivative of velocity and, therefore, the pair of
Langevin equations (8:I9) transforms into a single overdamped Langevin equation:
dz w? 1
— = ——2ux(t) + =Y (¢). 4.1
= a0+ oY) (11)
The GFPE for such a system, according to equations [@I]) and (ZI0) has the following form:

x w? 2f(x
el 2 (L) + 2050 (@2)
with ( )
cwb=2 ' (1-p,tw?/y

Executing the same calculations as in the previous section, for the PDF we unfold:

b N2
(:c — xpe” /7)

n
plz,t) = W exp | — 1) ; (4.4)
where
1-8 2 —2tw?/ 2
m(t) = 30775w2574 — 27%(175) EB <t%> + %M (1 - 672 - 6; t%>‘| . (45)

Similar results were obtained by M. Céaceres in [15] for a stationary case [see equations (2.14)
with (2.17) of the mentioned paper].

Expanding the coefficient (£3) into a series at large (vt)’s and substituting it to the PDF (4]
yield:

/2028 BBy —2B 1w /7
plz,t) =~

V2me INQRENG)
B A—28  p—BA2B 4—4Bo—tw? /Y B A—28o—tw? /v
X exp —z? T T ° + Troy @ ¢ . (4.6)
2¢ cI'(1—-0) c
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Now we return to the PDF for the most general case (830) and also expand it into a series at
w/y <1<t

f(z,v,t) ~ Aexp|—v? —rﬂ,yQ_Me_Wth + e Tt 2 + 0P8
v P I'(1—B) I(1—B) 2
e _t—256—m,yﬂw4—45 N t—5725w4—4ﬂe—w2t/'y N wi—28 (76 _ ,nywQB)
cl'(1— )2 (1 - 5) 2¢
—w (w27_ﬁe_w2t/7(vo +z0y) er_tw’72_5>
c c

o <“Oe_w7ﬂ_1w4‘2ﬂ P w2 Y (g + x07)>
C C

o2 7572w4725672w2t/w efty7672w4726
0 2c c

2 <76w42662w2t/w em,yﬁzw@zﬁ)
— 20 _

2c c
671w4725672w2t/7 e—trB—1,,4-28
— Voo <7 - i ) (4-7)
c c
w2 B 2881 Be—w t/Y o=t (4,)) 28
4 N 2w ] t~Pe e (tw) (4.8)
4dre I'(1-p) (1 - pB)2

Then, integrating it by v in the range of (—oo; 00) and neglecting the terms of the higher magnitude
of smallness than exp {—th/'y} we get:

. l 2<75w4—2ﬂ t—ﬂ,y2ﬂw4—4ﬁe—w2t/v> zworyPut—2Be—te /v
—X

F(@,t) ocexp 2c + cl'(1-7) c

] L )
which fully corresponds to the PDF (&), and, therefore, proves the fact that the considered system
at large times and strong friction may be described with Einstein-Smoluchowski equation.

5. GFPE for overdamped harmonic oscillator with constant drift

As a final application example of the presented technique, let us study the PDF of the thermo-
dynamical work w in the stochastic system which consists of a particle inside a harmonic potential
moving with constant velocity v, , U = (k/2)[z — X ()], X(t) = v.t, @ (t) is the particle’s coordi-
nate. Our aim is to get the transient fluctuation relation for such a system, which will demonstrate
large-deviation symmetry properties in the PDF, and compare it to the classical case.

The work w is defined as follows:

t t

- aU o /dX aU _ ! !

w(t) = /anX = [ dt WX kv*/dt (x — v, t"). (5.1)
0 0

Introducing y () = x(t) — v.t, for the overdamped Langevin equation and the equation for the
thermodynamical work w (t) we have:

dy 1

— = ——yt)+Y () —v.,

[ R OB

dw

— = —kuy((t), .2
= 0.y (1) (52)
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where 7 = m~y/k. Alternatively, if we consider the plane (y,w), the coefficient matrix a of the

system will be
1/ 0
a= [ ko, 0 } . (5.3)

Since y (t) = yo exp(—t/7), yo = x¢ is the initial position of the particle,
w (t) = wo + yokvaT (e*t/T - 1) ,
Then the evolution matrix

“at e t/T 0
¢ = [ kvt (e’t/T — 1) 1 ] ' (5-4)

For the diffusion coefficients ©;; (t) we have:

D11(t) = ey?rtP <1 - %) , (5.5)
chvy?t0 (4/71(8 = DEg (t/7) 1]+ T2 = 8) (¢/7)")
Dio(t) = T2 ) : (5.6)
Doo(t) = 0. (5.7)
The generalized Fokker-Planck equation in this case will have the form:
87 (v w,t) (’gtw’t) = (£+w) 3—5 + kv*yg—i + @11% + 2915 (1) az% . (5.8)

Now, considering an initial condition f (y,w,0) = nd (y — yo) § (w — wyp), when yo = 0, wyg = 0
we get for the PDF:

B n R (e 1) )
f(w7t) - 2\/%1/93122(15) eXp{ 493122(15) ) (59)
where
ma = S i
ot/ (9 _ otiT _ga_g 1t
et (2 et )M[Q 8.3 5,T]}, (5.10)

which fully corresponds to the results obtained in [37].
After the relaxation stage has passed, at t > 7 we find for the transient fluctuation relation:

f(w,t) L3 - Buwt’!

T —exp| ———| .
f(=w,t) emey

Thus, the fluctuation relation for the system subjected to a coloured noise with the slowly decaying

power-law correlation function differs from that for ordinary Brownian motion. As we stated above,
the classical case limit is revealed at 8 — 1.

(5.11)

6. Conclusions

In this paper we suggested a consistent method for derivation of the generalized Fokker-Planck
equation for linear multidimensional Gaussian non-Markovian systems. Taking the case of the
Gaussian systems with slowly decaying power-law correlations, we obtained the following results:
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e Firstly, we constructed the solution of generalized Fokker-Planck equation, the probability
density function, without solving it directly.

e We derived generalized Fokker-Planck equation for free motion and constructed the proba-
bility density function for spatially homogeneous and inhomogeneous cases.

e For the case of the motion in a harmonic potential, the generalized Fokker-Planck equation
and the probability density function were also obtained, and the results were compared to
those of the other authors.

e We show the equivalence in description of generalized Brownian motion in a harmonic poten-
tial with generalized Fokker-Planck equation and generalized Einstein-Smoluchowski equation
at high viscosity levels and at long times.

e Finally, we investigated the probability density function for thermodynamical work in the
stochastic system which consists of a particle inside a uniformly moving harmonic potential
underlining strong differences in transient fluctuation relations for the generalized Brownian
motion and the ordinary Brownian motion cases.
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O.Yu. Sliusarenko

Y3aranbHeHe piBHAHHA Pokepa-lnaHka Ta Moro po3B’'A30K AN
niHiiHMX HeMmapkiBcbkux 'aycoBux cuctem

0.10. CniocapeHko
IHCTUTYT TeopeTuyHoi di3ukn im. O.1. Axiezepa HHLL XTI, YkpaiHa, 61108 Xapkis, Byn. AkagemidnHa, 1

Y uin po6oTi MM NPOMNOHYEMO MOCNIAOBHUIA NiAXia, 4O BUBOAY y3arafibHEHOro piBHAHHA Pokepa-MnaHka
(YP®I) ansa M'aycoBmx HemapKisCbkMx NPOLLECIB i3 CTaLioHapHUMK npupolieHHamu. Liel niaxig gossonae
nobyaysatu ¢dyHkuito po3nogainy (PP) npouecy 6e3 notpedbu 6e3nocepenHbo po3e’asysat YPDI. Mu
3aCTOCOBYEMO L MeTof st 3HaxomxeHHs YPDI ta ®P gns BinbHOro ysaranbHeHOro 6poyHiBCbKOro
pyxy Ta y3arasibHEHOro GPOYHIBCLKOro pyxy B MOTEHLiani AJig BUNaaKy CTENeHeBOi KOPensuiinHoi dyHK-
uii wymy. My [oBOAMMO, WO POIMSHYTI CUCTEMU MOXYTb ONMUCYBATUCS Y PaMKax PiBHAHHSA ENMHLWITENHA-
CMONYyXOBCbKOrO 3a YMOB CUJIbHOI B'A3KOCTI Ta BENIMKMX YaCIiB. TakoX MU MOPIBHIOEMO pe3ynbTaTth i3 oTpu-
MaHUMWU iHLWIMK aBTopamu. HapeLwuTi, Mu o64ncnioemo P TepMoamHamiyHOT poboTH y CTOXaCTUYHIl cuc-
TeMi, WO CKIaJaETbCA 3 YACTUHKM Y FaPMOHIYHOMY MOTEHLiani, SKUA PyXaeTbCs 3 MOCTINHO LUBUAKICTIO,
Ta nepeBipseMo GpykTyaLiinHy TeopeMy asisa poboTn y Takili cucTemi.

Kniouyosi cnog.a: pisHsHHS dokepa-naHka, Faycosa cuctema, HeMapkiscbka cucrema,
TepmMoanHamMiyHa poboTa, nepexigHe gaykTyauiviHe CriBBigHOLLIEHHS
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