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УДК 519.95 

NEW APPROACHES TO REGRESSION IN FINANCIAL 
MATHEMATICS AND LIFE SCIENCES BY GENERALIZED  

ADDITIVE MODELS 

P. TAYLAN,  G.-W. WEBER 

This paper introduces into and improves the theoretical research done by the authors 
in the last two years in the applied area of GAMs (generalized additive models) 
which belong to the modern statistical learning, important in many areas of predic-
tion, e.g., in financial mathematics and life sciences, e.g., computational biology and 
ecology. These models have the form ∑ =

+= m
j jj xfx 10 )()( βψ , whereψ  are 

functions of the predictors, and they are fitted through local scoring algorithm using 
a scatterplot smoother as building blocks proposed by Hastie and Tibshirani (1987). 
Aerts, Claeskens and Wand (2002) studied penalized spline generalized additive 
models to derive some approximations. We present a mathematical modeling by 
splines based on a new clustering approach for the input data x, their density, and the 
variation of the output data y. We bounding (penalizing) second order terms (curva-
ture) of the splines, we include a regularization of the inverse problem, contributing 
to a more robust approximation. In a first step, we present a refined modification and 
investigation of the backfitting algorithm previously applied to additive models. 
Then, by using the language of optimization theory, we initiate future research on 
solution methods with mathematical programming.  

1. INTRODUCTION 

1.1. Learning and Models 

In the last decades, learning from data has become very important in every field 
of science, economy and technology, for problems concerning the public and the 
private life as well. Modern learning challenges can for example be found in the 
fields of computational biology and medicine, and in the financial sector. Learn-
ing enables for doing estimation and prediction. There are regression, mainly 
based on the idea of least squares or maximum likelihood estimation, and classifi-
cation. In statistical learning, we are beginning with deterministic models and, 
then, we turn to the more general case of stochastic models where uncertainties, 
noise or measurement errors are taken into account. For a closer information we 
refer to the book Hastie, Tibshirani, Friedman [10]. In classical models, the ap-
proach to explain the recorded data y consists of one unknown function only; the 
introduction of additive models (Buja, Hastie, Tibshirani 1989 [4]) allowed an 
“ansatz” with a sum of functions which have separated input variables. In our pa-
per, we figure out clusters of input data points x  (or entire data points ),( yx ), 
and assign an own function that additively contributes to the understanding and 
learning from the measured data. These functions over domains (e.g., intervals) 
depending on the cluster knots are mostly assumed to be splines. We will intro-
duce an index useful for deciding about the spline degrees by density and varia-
tion properties of the corresponding data in x and y components, respectively. In a 
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further step of refinement, aspects of stability and complexity of the problem are 
implied by keeping the curvatures of the model functions under some chosen 
bounds. The corresponding constrained least squares problem can, e.g., be treated 
as a penalized unconstrained minimization problem. In this paper, for the general-
ized (penalized) problem, we specify (modify) the backfitting algorithm which 
was investigated and applied for additive models. Our new investigation of gen-
eralized additive models is introduced in the stochastic case and closer presented 
in the deterministic case.  

This paper contributes to both the m-dimensional case of input data sepa-
rated by the model functions and, as our new alternative, to 1-dimensional input 
data clustered. Dimensional generalizations of the second interpretation and a 
combination of both interpretations are possible and indicated. Applicability for 
data classification is noted. We point out advantages and disadvantages of the 
concept of backfitting algorithm. By all of this, we initiate future research with a 
strong employing of optimization theory. 

This paper is related with our research as initiated the papers [16, 17, 19, 20]. 

1.2. A Motivation of Regression 

This paper has been motivated by the approximation of finanical data points 
),( yx , e.g., coming from the stock market. Here, x represents the input constella-

tion, while y stands for the observed data. The discount function, denoted by 
( )xδ , is the current price of a risk free, zero coupon bond paying unit of money at 

time x. We use ( )xy  to denote the zero-coupon yield curve and to ( )xf  to denote 
the instantaneous forward rate curve. These are related to the discount function by 
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The term interest rate curve can be used to refer to any one of these three re-
lated curves.  

In a world with complete markets and no taxes or transaction, absence of ar-
bitrage implies that the price of any coupon bond can be computed from an inter-
est rate curve. In particular, if the principal and interest payment of a bond is jc  
units of money at time jx  ( mj ,...,1= ), the pricing equation for the bond is 
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The interest rate curve can be estimated if given a set of bond prices. For this 
reason, let NiiB ,...,1)( =  comprise the bonds, mXXX <<< ...21  be the set of dates 
at which principal and interest payments occur, let ijc  be the principal and inter-
est payment of the ith  bond on date jX , and iP  be the observed price of the ith  
bond. The pricing equation is 

 ˆ
i i iP P ε= + ,  (1.3) 
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where iP̂  is defined by ( )j

m

j
iji XcP δ∑

=

=
1

ˆ  [18]. The curves of discount ( )xδ , yield 

( )xy  and forward rate ( )xf  can be extracted via linear regression, regression 
with splines, smoothing splines, etc., using prices of coupon bond. For example, 
assuming ( )TNPP ,...,: 1=P  and )(: ijc=C , Ni ,,1= , mj ,,1…=  to be known, 
denoting the vector of errors or residuals (i.e., noise, inaccuracies and data un-
certainties) by ( )TNεεε ,,: 1 …=  and writing ( )TmXXX )(),...,()(: 1 δδδβ == , 
then the pricing equation looks as follows: 

 εβ +=CP .  (1.4) 

Thus, the equation (1.4) can be seen as linear model with the unknown pa-
rameter vector ( ) βδδ =T

mXX )(),...,( 1 . If we use linear regression methods or 
maximum likelihood estimation and, in many important cases, just least squares 
estimation, then we can extract ( )Xδ . For introductory and closer information 
about these methods from the viewpoints of statistical learning or the theory of 
inverse problems, we refer to the books of Hastie, Tibshirani, Friedman [10] and 
Aster, Borchers, Thurber [2], respectively. 

While the papers [16, 17] refer to the financial sector, the works [19, 20] ad-
dress the areas of computational biology, environmental protection and the inter-
faces between both. Actually, finance — the world of prosperity, and develop-
ment are related with the gene-environment networks.  

1.3. Regression 

1.3.1. Linear Regression 
Provided an input vector ( )TmXXX ,...,1=  of (random) variables and an output 
variable Y, our linear regression model has the form 

 εββε ++=+= ∑
=

m

j
jjm XXXYEY

1
01 ),...,( .  (1.5) 

The linear model either assumes that the regression function )|( XYE  is lin-
ear or that linearity means a reasonable approximation. Here, jβ  are unknown 
parameters or coefficients, the error ε  is a Gaussian random variable with expec-
tation zero and variance 2σ , written ),0( 2σε N∼ , and the variables jX  can be 
from different sources. Typically we have a set of training data 
( ) ( )NN yxyx ,,...,, 11  from which we estimate the parameters jβ . Here, each 

T
imiii xxxx ),...,,( 21=  is a vector of feature measurements for the ith case. The 

most popular estimation method is “least squares” which determines the cofficient 
vector ( )Tmββββ ,...,, 10=  to minimize the residual sum of squares 
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:RSS ββ   or  ( ) ( ) ( )XβYXβYβ −−= TRSS .  (1.6) 
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Here, X  is the )1( +× mN  matrix with each row being an input vector (with 
a 1 in the first position), and Y  is the N  vector of outputs in the training set. The 
second equation in (1.6) is a quadratic function in 1+m  unknown parameters. If 

1+≥mN  and X  has full rank, then vector β  which mimimizes RSS  is 

( ) yXXX TT 1ˆ −
=β . The predicted values at an input vector 0x  are given by 

)(ˆ
0xf ; the fitted values at the training inputs are ( ) yXXXXXy TT 1ˆˆ

−
== β , 

where )(ˆˆ ixfy = . 

1.3.2. Regression with Splines 

In the above regression problems, sometimes ),...,()( 1 mXXYEXf =  can be 
nonlinear and nonadditive. Since, however, a linear model is easy to interpret, we 
want to represent )(Xf  by a linear model. Thus, an approximation by a first-
order Taylor approximation to )(Xf  can be used and sometimes even needs to be 
done. In fact, if N  is small or m  large, a linear model might be all we are able to 
use for data fitting without overfitting. As in classification, a linear, Bayes-
optimal, decision boundary [10] implies that some monotone transformation of 

)1(Pr XY =  is linear in X . 

Regression with splines is a very popular method as for moving beyond line-
arity [10]. Here, we expand or replace the vector of inputs X  with additional 
variables, which are transformations of X  and, then, we use linear models in this 
new space of derived input features. Let X  vector of inputs and IRIRh m

j →:  

be the j-th transformation of X  or basis function ( Mj ,,2,1 …= ). Then, )(Xf  is 

modelled by ∑
=

=
M

j
jj XhβXf

1
)()( , a linear basis expansion in X . Herewith, the 

model has become linear in these new variables and the fitting proceeds 
as in the case of a linear model. In fact, the estimation of β  is =β̂  

( ) ( )( ) ( )YxHxHxH TT 1−
= , where 1,..., ;

1,...,
( ) ( ( ))j i i m

j M
H x h x =

=
=  is the matrix of basis 

functions evaluated at the input data. Hence, f  becomes estimated by 

.ˆ)()(ˆ βXhXf T=  For the special case jj XXh =)(  ( Mj ,,2,1 …= ) the linear 

model is recovered. Generally, in one dimension ( 1=m ), an order M spline with 
knots κξ  ( K,,2,1 …=κ ) is piecewise polynomial of degree 1−M , and has con-
tinuous derivatives up to order 2−M . A cubic spline has 4=M . Any piecewise 
constant function is an order 1 spline, while the continuous piecewise linear func-
tion is an order 2 spline. Likewise the general form for the truncated-power basis 
set would be ),...,2,1()( 1 MjXXh j

j == −  and ),,...,2,1( Kl =  where +•)(  stands 

for the positive part of a value [10]. 
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1.4. Additive Models 

1.4.1. Classical Additive Models  
We stated that regression models, especially, linear ones, are very important in 
many applied areas. However, the traditional linear models often fail in real life, 
since many effects are generally nonlinear. Therefore, flexible statistical methods 
have to be used to characterize nonlinear regression effects; among these methods 
is non-parametric regression [6]. By using the common assumption of linearity, it 
gives information to explore the data more flexibly, uncovering structure in the 
data that might otherwise be missed. Many nonparametric methods do not per-
form well when there is a large number of independent variables in the model. 
The sparseness of data in this setting inflates the variance of the estimates. The 
problem of rapidly increasing variance for increasing dimensionality is sometimes 
referred to as the “curse of dimensionality”. Interpretability is another problem 
with nonparametric regression based on kernel and smoothing spline esti-
mates [11]. To overcome these difficulties [15] proposed additive models. These 
models estimate an additive approximation of the multivariate regression func-
tion. Here, the estimation of the individual terms explains how the dependent 
variable changes with the corresponding independent variables. We refer to 
Hastie and Tibshirani (1986) [8] for basic elements of the theory of additive 
models. 

If we have data consisting of N  realizations of random variable Y  at m  
design values, then the additive model takes the from 

 ( ) ( )∑
=

+=
m

j
ijjmiii xfxxYE

1
01,... β .  (1.7) 

Here, the functions jf  are estimated by a smoothing on a single coordinate, 
and standard convention is to assume at the knots ijx : ( )( ) 0=ijj xfE  [9] (we shall 
give a justification below). Additive models have a strong motivation as a useful 
data analytic tool. Each variable is represented separately in (1.7) and the model 
has an important interpretation feature of some “linear model”: Each of the vari-
ables separately effects the response surface and that effect does not depend on 
the other variables. For this reason, if once an additive model can be fit to data, 
we can plot the m coordinate functions separately to examine the roles of the vari-
ables in predicting the response. Each function is estimated by an algorithm pro-
posed by Friedman and Stuetzle (1981) [7] and called backfitting algorithm. As 
the estimator for 0β̂ , the arithmetic mean (average) of the output data is used: 

 .)1(:),...,1|(ave 1∑ =
== N

i ii yNNiy   
This procedure depends on the partial residual against ijx : 

 ( )ikjk kiij xfyr ∑ ≠
−−= ˆ

0β   (1.8) 

and consists of estimating each smooth function by holding all the other ones 
fixed. In a framework of cycling from one to the next iteration, this means the fol-
lowing [9]: 

initialization   ),...,1|(ˆ
0 Niyave i ==β ,   jixf ijj ,,0)(ˆ ∀≡ ; 
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cycle    ,...,1,,...,1,,...,1 mmj =  

( ) Nixfyr
m

jk
ikkiij ,...,1,ˆˆ

0 =−−= ∑
≠

β , 

jf̂  is updated by smoothing the partials residuals, 

( ) Nixfyr
m

jk
ikkiij ,...,1,ˆˆ

0 =−−= ∑
≠

β , against ijx ; 

until  the functions almost do not change. 
The backfitting procedure is also called Gauss-Seidel algorithm. To prove its 

convergence [4] reduced the problem to the solution of a corresponding homoge-
neous system, analyzed by a linear fixed point equation of the form f = fT̂ . In 
fact, to represent the effect on the homogeneous equations of updating the jth 
component under Gauss-Seidel algorithm, the authors introduced the linear trans-
formation 

 NmNm
j IRIRT →:ˆ ,  ( )( )TT

mjk k
T
j

T ffSff …… ∑ ≠
−1 . 

A full cycle of this algorithm is determined by 11
ˆˆˆˆ TTTT mm …−= ; then, lT̂  

correspond l  full cycles. If all smoothing splines jS  are symmetric and have 
eigenvalues in [ ]1,0 , then the backfitting algorithm always converges. In Subsec-
tion 2.6, we will come back closer to the algorithm and the denotation used here.  

1.4.2. Additive Models Revisited  

In our paper, we allow a different and new motivation: In addition to the approach 
given by a separation of the variables jx  done by the functions jf , now we per-
form a clustering of the input data of the variable x by a partitioning of the do-
main into cubes jQ  or, in the 1-dimensional case: intervals jI , and a determina-
tion of jf  with reference to the knots lying in jQ  (or jI ), respectively. In any 
such a case, a cube or interval is taking the place of a dimension or coordinate 
axis. We will mostly refer to the case of one dimension; the higher dimensional 
case can then be treated by a combination of separation and clustering. That clus-
tering can incorporate any kind of periods of seasons assumed, any comparability 
or correspondence of successive time intervals, etc. Herewith, the functions jf  
are more considered as allocated to sets jI  (or jQ ) rather than depending on 
some special, sometimes arbitrary elements of those sets (input data) or output 
values associated. This new interpretation and usuage of additive models (or gen-
eralized ones, introduced next) is a key step of this paper. 

2. GENERALIZED ADDITIVE MODELS 

To extend the additive model to a wide range of distribution families, Hastie and 
Tibshirani (1990) [11] proposed generalized additive models (GAM) which are 
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among the most practically used modern statistical techniques. These models en-
able the mean of the dependent variable to be an additive predictor through a link 
function. Many widely used statistical models belong to this general class; they 
include additive models for Gaussian data, nonparametric logistic models for bi-
nary data, and nonparametric log-linear models for Poisson data.  

2.1. Definition of a Generalized Additive Model 
If we have mXX ,...,1 , being m  covariates comprised by the m -tuple 

( )TmXXX ,...,1= , then, in our regression setting, a generalized additive model 
has the form 

 ( )∑
=

+==
m

j
jj XfβX)XG(

1
0)()( ψµ .  (2.1) 

Here, the function jf  are unspecified (“nonparametric”) and ( …,, 10 fβθ =  

)Tmf,…  is the unknown parameter to be estimated; G is the link function. The 
incorporation 0β  as some average outcome allows us to assume ( )( ) 0=ijj xfE  
( mj ,,1…= ). Often, the unknown functions jf  are elements of a finite dimen-
sional space consisting, e.g., of splines and these functions depending on the clus-
ter knots are mostly assumed to be splines; the spline orders (or degrees) are 
suitably choosen depending on the density and variation properties of the corre-
sponding data in x and y components, respectively. Then, our problem of specify-
ing θ  becomes a finite-dimensional parameter estimation problem.  

2.2. Clustering of Input Data 
2.2.1. Introduction 
Clustering is the process of organizing objects into mII ,...,1  groups or, higher 
dimensionally: mQQ ,...,1 , whose elements are similar in some way. A cluster is 
therefore a collection of objects which are “similar” between them and are “dis-
similar” to the objects belonging to other clusters. For example, we can easily 
identify some cluster out of a finite number of clusters into which the data can be 
divided with respect to the similarity criterion distance. We put two or more ob-
jects belonging to the same cluster if they are “close” according to a given dis-
tance (in this case, geometrical distance).  

Differently from usual clustering, in this paper, we understand clustering al-
ways as being accompanied by a partitioning of the (input) space, including space 
coverage. In other words, it will mean a classification in the absense of different 
labels or categories. Especially, the clusters shall not be overlapping, and the par-
titions containing the clusters shall also be pairwise disjoint, except at the bounda-
ries. Instead of a general introduction into cluster and classification methods, we 
give the following information only.  

2.2.2. Clustering for Generalized Additive Models 

Financial markets have different kinds of trading activities. These activities work 
with considerably long horizons, ranging from days and weeks to months and 



P. Taylan, G.-W. Weber 

ISSN 1681–6048 System Research & Information Technologies, 2008, № 3 108

years. For this reason, we may have any kind of data. These data can sometimes 
be problematic for being used at the models, for example, given a longer horizon 
with sometimes less frequent data recorded, but to other times highly frequent 
measurements. In those cases, by the differences in data density and, possibly, 
data variation, the underlying reality and the following model will be too unstable 
or inhomogeneous. The process may be depending on unpredictable market be-
haviour or external events like naturally calamity. Sometimes, the structure of 
data is has particular properties. These may be a larger variability or a handful of 
outliers. Sometimes we do not have any meaningful data. For instance, share price 
changes will not be available when stock markets are closed at weekends or holi-
days. 

The following three parts of fig. 1 are showing some important cases of 
input data distribution and clustering: the equidistant case (fig. 1,a)) where all 
points can be put into one cluster (or interval) 1I , the equidistant case with regu-
lar breaks (weekends, holidays, etc.; (fig. 1,b) where the regularly neighbouring 
points and the free days could be put in separate cluster intervals jI , and the gen-
eral case (cf. (fig. 1,c) ) where there are many interval jI  of different interval 
lengths and densities. We remark that we could also include properties of the out-
put data y into this clustering; for the ease of exposition, however, we disregard 
this aspect. 

In the following, we will take into account the data variation; to get and im-
pression of this, please have a look at fig. 2. 

I1
a b

I1 I2 I3 I4
a b

I5 I6 I7 I8

I2 I4I3 I5 I6I1
a b

a

b

c

Fig. 1. Three important cases of input data distribution and its clustering: a — equidis-
tance, b — equidistance with breaks, and c — general case 
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For the sake of simplicity, we assume from now on that the number jN  of 
input data points ijx  in each cluster jI  is the same, say, ),...,1( mjNN j =≡ . 
Otherwise there will be no approximation need at data points missing and the re-
siduals of our approximation were 0 there. Furthermore, given the output data ijy  
we denote the aggregated value over the all the ith output values of the clusters by  

 ).,...,1(:
1

Niyy
m

j
iji ==∑

=

 

In the example of case (fig. 1,b), this data summation refers to all the days i 
from monday to friday. Herewith, the cluster can also have a chronolocial mean-
ing. By definition, up to the division by m , the values iy  are averages of the out-
put values ijy . 

Before we come to a closer understanding of data density and variation, we 
proceed with our introduction of splines. In fact, the selection of the splines or-
ders, degrees and classes will essentially be influenced by indices based on densi-
ties and variations (Subsection 2.5).  

2.3. Splines 

Let jNjj xxx ,...,, 21  be N  distinct knots of [ ]ba, , where …<<≤ jj xxa 21  
bx jN ≤<… . The function )(xfk  on the interval [ ]ba,  (or in R ) is a spline of 

some degree k relative to the knots ijx  if  

 [ ] kxxk IPf
jiij
∈

+1,  (polynomial of degree k≤ ; 11,..., −= Ni ),  (2.2) 

 [ ]baCf k
k ,1−∈ .  (2.3) 

To characterize a spline of degree k, [ ]jiij xxkik ff
1,, :
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=  can be represented by 
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l
ijliik xxxxxgxf 1
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, ,)()( +

=

∈−=∑ . 

For a closer information about spline we refer to [5, 12]. 

a b

.
.

.. ...... ..
.
... . .......

..

Fig. 2. Example of  a data (scatterplot); here, we refer to case (fig. 1,c) 



P. Taylan, G.-W. Weber 

ISSN 1681–6048 System Research & Information Technologies, 2008, № 3 110

2.4. Variation and Density 

Density is a measure of mass per unit of volume. The higher an object’s density, 
the higher its mass per volume. Let us assume that we have mII ,...,1  intervals; 
then, the density of the input data ijx  in the j-th interval jI  is defined by =:jD  

jjij IIx  oflength )in  point  of(number . This definition can be directly gener-
alized to the higher dimensional case of cubes jQ  rather than intervals jI , by 
referring to the cubes’ volumes. Variation is a quantifiable difference between 
individual measurements. Every repeatable process exhibits variation. If over the 
interval jI  we have the data ),( ,,),( 11 NjNjjj yxyx … , then the variation of these 

data refers to the output dimension y and it is defined as ∑
−

=
+ −=

1

1
1 : 

N

i
jijij yyV . If 

this value is big, at many data points the rate of change of the angle between any 
approximating curve and its tangent would be big, i.e., its curvature could be big. 
Otherwise, the curvature could be expected to be small. In this sense, high curva-
ture over an interval can mean a highly oscillating behaviour. The occurrence of 
outliers ijy  may contribute to this very much and mean instability of the model. 

2.5. Index of Data Variation 

Still we assume that pII ,...,1  (or mQQ ,...,1 ) are the intervals (or cubes) ac-

cording to the data grouped. For each interval jI  (cube jQ ), we define the 

associated index of data variation by VDInd j =:  or, more generally, =:jInd  

)()(: jjjj VvDd= , where jd , jv  are some positive, strongly monotonically in-
creasing functions selected by the modeller. In fact, from both the viewpoints of 
data fitting and complexity (or stability), cases with a high variation distributed 
over a very long intervall are very much less problematic than cases with a high 
variation over a short intervall. The multiplication of variation terms with density 
terms due to each interval found by clustering is representing this difference. 

We determine the degree of the splines jf  with the help of the numbers 

jInd . If such an index is low, then we can choose the spline degree (or order) to 
be small. In this case, the spline may have a few coefficients to be determined and 
we can find these coefficients easily using any appropriate solution method for 
the corresponding spline equations. If the number jInd  is big, then we must 
choose a high degree of the spline. In this case, the spline may have a more com-
plex structure and many coefficients have to be determined; i.e., we may have 
many system equations or a high dimensional vector of unknows; to solve this 
could become very difficult. Also, a high degree of splines mfff ,...,, 21 , respec-
tively, causes high curvatures or oscillations, i.e., there is a high “energy” im-
plied; this means a higher (co)variance or instability under data perturbations. As 
the extremal case of high curvature we consider nonsmoothness meaning an in-
stantaneous movement at a point which does not obey to any tangent. 
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The previous words introduced a model-free element into our explanations. 
Indeed, as indicated in Subsection 2.4, the concrete determining of the spline de-
gree can be done adaptively by the implementer who writes the code. From a 
close mathematical perspective we propose to introduce discrete thresholds νγ  
and to assign to all the intervals of indices ),[ 1+∈ νν γγInd  the same specific 
spline degrees. This determination and allocation has to base on the above reflec-
tions and data (or residuals) given. 

For the above reasons, we want to impose some control on the oscillation. 
To make the oscillation smaller, the curvature of each spline must be bounded by 
the penalty parameter. We introduce a penalty parameter into the criterion of 
minimizing RSS, called penalized sum or squares PRSS now: 
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The first term measures the goodness of data fitting, while the second term is 
a penalty term and defined by means of the functions’ curvatures. Here, the inter-
val ],[ ba  is the union of all the intervals jI . In the case of separation of vari-

ables, the interval bounds may also depend on j , i.e., they are ],[ jj ba . For the 

sake of simplicity, we sometimes just write ∫ and refer to the interval limits 

given by the context. There are also further refined curvature measures, espe-
cially, one with the input knot distribution implied by Gaussian bell-shaped den-
sity functions; these appear as additional factors in the integrals and have a cut-
ting-off effect. For the sake of simplicity, we shall focus on the given standard 
one now and turn to the sophisticated model in a later study.  

In (2.4), 0≥jµ  are tuning or smoothing parameters and they represent a 
tradeoff between first and second term. Large values of jµ  yield smoother 
curves, smaller values result in more fluctuation. It can be shown that the mini-
mizer of PRSS is an additive spline model: Each of the functions jf  is a spline in 
the component jX , with knots at ijx  ( Ni ,,1…= ). However, without further re-

strictions on the model, the solution is not unique. The constant 0β  is not identi-
fiable since we can add or substract any constants to each of the functions jf , and 

adjust 0β  accordingly. For example, one standard convention is to assume that 

∑
=

=
m

j
ijj xf

1
0)(  i∀ , the function average being zero over the corresponding data 

(e.g., of mondays, tuesdays, ... , fridays, respectively). This can be achieved by 

means of a bias (intercept) 0β  in front of the sum ∑
=

m

j
ijj xf

1
)(  in the additive 

approach. In this case, ),1,2,.=|(aveˆ
0 Niyi …=β , as can be seen easily. 
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We firstly want to have 0)(
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1 1
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j
ijji xfy β  and, secondly, 

[ ] 0)(
1

2'' ≈∑∫
=

m

j
jjj dttf  or being sufficiently small, at least bounded. In the back-

fitting algorithm, these approximations, considered as equations, will give rise to 
expected or update formulas. For these requests, let us introduce 
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where ( )Tmffff ,...,, 21= . The terms )( fg j  can be interpreted as curvature in-
tegral values minus some prescribed upper bounds 0>jM . Now, the combined 
standard form of our regression problem subject to the constrained curvature con-
dition takes the following form:  

 ).,...,1(0)(  subject to),(    Minimize 0 mjfgfF j =≤β   (2.5) 

Now, PRSS can be interpreted in Lagrangian form as follows: 
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where T
m ),...,(: 1 µµµ = . Here, 0≥jµ  are auxilary penalty parameters intro-

duced in [3]. In the light of our optimization problem, they can now be seen as 
Lagrange multipliers associated with the constraints 0≤jg . The Lagrangian 
dual problem takes the form 

 ( )µ
µ

),,(minmax
),(0 0

fβL
fβ≥

.  (2.7) 

The solution of this optimization problem (2.7) will help us for determining 
the smoothing parameters jµ  and, in particular, the functions jf  will be found, 

likewise their bounded curvatures [ ] jjj dttf
2'' )(∫ . Herewith, a lot of future re-

search is initialized which can become an alternative to the backfitting algorithm 
concept. In this paper, we go on with refining and discussing the backfitting con-
cept for the generalized additive model. 

2.6. Modified Backfitting Algorithm for Generalized Additive Model 

2.6.1. Generalized Additive Model Revisited 

For the generalized additive model (cf. Section 2.1), we will modify the backfit-
ting algorithm used before for fitting additive model (cf. Subsection 1.3). For this 
reason, we will use the following theoretical setting in term of conditional expec-
tation (Buja, Hastie and Tibshirani (1989) [4]), where mj ,,1…= : 
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Here, )(⋅jP  denote the conditional expectation value ( )jXE ⋅ . Now, to 
find )( jj Xf  in our generalized addive model, let us add the term 

( )[ ] kkk

m

k
k dttf

2''

1
∫∑

=
− µ  to equation (2.8). In this case, (2.8) will become the update 

formula 
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where ( )[ ] jkkk

m

jk
k cdttf =∫∑

≠

2''µ  (constant, i.e., not depending on the knots); the 

functions jf̂  are unknown and to be determined in the considered iteration. There-
fore, we can write equation (2.9) as  

 ( )[ ] ←+ ∫ j
2

j
''
jjjj dttfXf µ)(  
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If we denote ( )[ ] kk
''

kkkkkk dttfXfXZ
2

)()( ∫+= µ  (the same for j ), then 

we get the update formula 
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j

jk
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For random variables ( )XY , , the conditional expectation ( ) =xf  

( )xXYE ==  minimizes ( )( )2XfYE −  over all 2L  functions f  [4]. If this idea 

is applied to our generalized additive model, then the minimizer of ( )2)(Xψ-YE  
will give the closest additive approximation to ( )XYE . Equivalently, the follow-
ing system of normal equations is necessary and sufficient for =Z  
( )TmZZZ ,...,, 21= to minimize ( )2)(Xψ−YE  (for the formula without intercept 

0β , we refer to [4]): 
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where e  is the N -vector or entries 1; or, in short, ( )0βY −= QPZ . Here, P  
and Q  represent the matrix and vector of operators, respectively. If we want to 
apply normal equation to any given discrete experimental data, we must 
change the variables ),( XY  in the (2.11) by their realizations ),( iiy x , =ix  

T
imii xxx ),...,,( 21= , and the conditional expectations ( )jj XEP ⋅=  by smoothers 

jS  on jx , 
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In estimation notation (2.12) equation can be written ( ) 10
ˆ:ˆˆˆ yβ Q-yQP ==z . 

Here, 
Nj
Niijlj xhS

,...,1
,...,1))((

=
==  are smoothing matrices of type NN × , jz  are 

N -vectors representing the spline function ( )[ ] jjjjj dttff
2''ˆˆ ∫+ µ  in a canonical 

form, i.e., ∑
=

N

l
jljl Xh

1
)(θ  (with the number of unknown equal to the number of 

conditions). In this notation, without loss of generality we already changed from 
lower spline degrees jd  to a maximal one d , and to the order N . Furthermore, 
(2.12) is an ( NmNm× )-system of normal equations. The solutions to (2.12) sat-
isfy )( jSℜ∈jz , where )( jSℜ  is the range of the linear mapping jS , since we 

update by ( ).βS jkj ∑ ≠
−−← kj zz ey 0

ˆ  In case we want to emphasize 0β̂  among 

the unknowns, i.e., ( ) ,,...,,ˆ
10

TT
m

TTβ zz  again equation (2.12) can equivalently be 
written for this situation. 

There is a variety of efficient methods for solving the system (2.12), which 
depend on both the number and typs of smoother used. If the smoother matrix jS  

is a NN ×  nonsingular matrix, then the matrix P̂  will be a nonsingular 
( NmNm× )-matrix; in this case, the system 1

ˆˆ yQP =z  has a unique solution. If the 
smoother matrices jS  are not guaranteed to be invertible (nonsingular) symmet-

ric, but just arbitrary ( NN × )-matrices, we can use a generalized inverses −
jS  
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)i.e.,( jjjj SSSS =−  and −P̂ . For closer information about generalized solution 

and matrix calculus we refer to [12]. 

2.6.2. Modified Backfitting Algorithm 

Gauss-Seidel method, applied to blocks consisting of vectorial component 
mzzz ,...,, 21 , exploits the special structure of (2.12). It coincides with the backfit-

ting algorithm. If in the algorithm we write ( )[ ] jjjjjj dttffz
2''ˆˆˆ ∫+= µ  (in fact, 

the functions jf̂  are unknowns), then, the lth iteration in the backfitting or Gauss-
Seidel includes the additional penalized curvature term. Not forgetting the step-
wise update of the penalty parameter jµ  but not mentioning it explicitely, then 
the framework of the procedure looks as follows: 

1. initialize  0ˆ   ,1ˆ
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This iteration is done until the individual functions do not change: Here, in 
each iterate, jẑ  is by the spline function related with the knots ijx  and found by 

the values ( ) ),...,2,1(ˆˆ
0 Nixzy jk ikki =−− ∑ ≠

β . In the other words, by the 

other functions kẑ  and, finally, by the functions kf̂  and the penalty (smoothing) 

parameter kµ . Actually, since by definition it holds ( )[ ] jjjjjj dttffz
2''ˆˆˆ ∫+= µ , 

throughout the algorithm we must have a book keeping about both jf̂  and the 

curvature effect ( )[ ] jjj dttf
2

j
''ˆ∫µ  controlled by the penalty parameter jµ  which 

we can update from step to step. This book keeping is guaranteed since jf̂  and the 

curvature ( )[ ] jjj dttf
2''ˆ∫  can be determined via jẑ . Since the value of 

( )[ ] jjjj dttf
2''ˆ∫µ  is constant, the second order derivative of jẑ  is =)(ˆ ''

jj tz  

)(ˆ ''
jj tf= ; this yields [ ] [ ] jjjjj

2
jjj tdtzdttf ∫∫ =

2'''' )(ˆ:)(ˆ µµ  and, herewith, 

( )[ ] jjjjjj dttfzf
2''ˆˆ:ˆ ∫−= µ . 

2.6.3. Discussion about Modified Backfitting Algorithm 

If we consider our optimization problem on (2.4) (see also (2.7)) as fixed with 
respect to jµ , then we can carry over the convergence theory about additive 
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models (see Section 1.3) to the present generalized additive model, replacing the 
functions jf̂  by jẑ . However, at least approximatively, we have to guarantee fea-
sibility also, i.e., 

 [ ] jjjj Mdttf ≤∫
2'' )(ˆ )1,...,( mj = . 

If [ ] jjjj Mdttf ≤∫
2'' )(ˆ , then we preserve the value of jµ  for 1+← ll ; oth-

erwise, we increase jµ . But this update changes the values of jẑ  and, herewith, 
the convergence behaviour of the algorithm. What is more, the modified backfit-
ting algorithm bases on both terms in the objective function to be approximated 
by 0; too large an increase of jµ  can shift too far away from 0 the corresponding 
penalized curvature value in the second term. The iteration stops if the functions 

jf  become stationary, i.e., not changing very much and, if we request it, if 
2

1 1
0 )(∑ ∑

= = ⎪⎭

⎪
⎬
⎫
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⎪
⎨
⎧

−−
N

i

m

j
ijji xfy β becomes sufficiently small, i.e., lying under some 

error threshold ε , and, in particular, [ ] jjjj Mdttf ≤∫
2'' )(ˆ  ( mj ,,2,1 …= ). 

2.7. On a Numerical Example 

Numerical applications arise in many areas of science, technology, social life and 
economy with, in general, very huge and firstly unstructured data sets; in particu-
lar, they may base on data from financial mathematics. These data can be got, 
e.g., from Bank of Canada (http://www.bankofcanada.ca/en/rates/interest-
look.html) as daily, weekly and monthly; they can be regularly partioned, which 
leads to a partitioning (clustering) of the (input) space, and indices of data varia-
tion can be assigned accordingly. Then, we decide about the degrees of the spline 
depending of the location of the indices between thresholds νγ . In this entire 
process, the practitioner has to study the structure of the data. In particular, the 
choice on the cluster approach at all, or of the approach on separation of vari-
ables, or of a combination of both, has to be made at an early stage and in close 
collaboration between the financial analyst, the optimizer and the computer engi-
neer. At Institute of Applied Mathematics of METU, we are in exchange with the 
experts of its Department of Financial Mathematics, and this application is initi-
ated. Using the splines which we determine by the modified backfitting algorithm, 
an approximation for the unknown functions of the additive model can be itera-
tively found. There is one adaptive element remaining in this iterative process: the 
update the penalty parameter, in connection with the observation of the conver-
gence behaviour. Here, we propose the use and implementation of our algorithm 
and, to overcome its structural frontiers given by the choice of the penalty pa-
rameter in the course of the program, a use of conic quadratic programming with 
interior point algorithm applied. A comparison and possible combination of these 
two algorithmic strategies is what we recommend in this pioneering paper. 
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3. CONCLUDING 

This basic and more theoretical paper has given a contribution to the discrete ap-
proximation or regression of data in 1- and multivariate cases. Generalized addi-
tive models have been investigated, input data grouped by clustering, its density 
measured, data variation quantified, spline classes selected by indices and their 
curvatures bounded with the help of penalization. Then, the backfitting algorithm 
which is also applicable for data classification has become modified and the fur-
ther utilization of modern optimization recommended [14]. By this we have con-
tributed to a better understanding of data from the financial world and life sci-
ences, to a more refined instrument of prediction. In the paper [23], we extended 
our approach by spline from discrete or Gaussian approximation to the continuous 
type of Chebychev approximation, by this representing the occurence of errors 
and uncertainy in modern technology, decision making and negotiations. In the 
work, we made a connection to CO2 emission control, visualizing dynamics and 
simulations also. There is a lot of work waiting in future research and application, 
and we cordially invite to this. 
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