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Bridge function B(r) for liquid Na is calculated in the referense hyper-
netted chain approximation from the pair distribution function obtained by
means of MD simulations. A comparison with the bridge function obtained
in a Mori-Hoshino-Watabe scheme is made. The influence of the cut-off
radius and the MD sample size on the structure factor is investigated.
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1. Introduction

It has been proven in the recent years that the reference hypernetted chain ap-
proximation (RHNC) is the most successful approach among various liquid-state
theories to the study of the structure and thermodynamics of liquids. It is based on
the universality hypothesis of a bridge-functional [1] and has led to very satisfac-
tory results for a large variety of liquid systems such as a one-component plasma
[2] and Lennard-Jones liquids [3]. This technique was also applied in calculations
of the structure factor of liquid alkali and polyvalent metals [4–7]. Recently, the
RHNC theory has been generalized for the study of the partial structure factors
of liquid binary alloys [8,9].

Following Rosenfeld and Ashcroft [10], the exact bridge function B(r) in the
closure of the Ornstein-Zernike (OZ) relation is replaced by the bridge function of
a suitably chosen reference system. Usually, a hard-sphere system in the Percus-
Yevic approximation is used as such a reference system. The effective hard-sphere
diameter, which is the only parameter characterizing the hard-sphere system, is
determined either from a thermodynamic self-consistency criterion [10] or from
the Lado criterion derived from the extremum condition of free energy [2].

Another way to construct the bridge function was proposed by Mori-Hoshino-
Watabe (MHW) [9]. It consists in choosing a system interacting via the repulsive
part of the interatomic potential as a reference system. The bridge function of
such a system obtained in the Percus-Yevic (PY) approximation is assumed to be
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nearly equal to the actual B(r). This scheme is useful for practical calculations,
since it contains no adjustable parameters.

In the recent years an approach based on a combination of computer simulation
and integral equation techniques has been developed and applied to the descrip-
tion of the equilibrium properties of liquid systems [11,12]. The pair distribution
function (PDF) obtained in molecular dynamics simulation with a relatively small
number of particles, is extended to large r by means of integral equations. It is
then possible to extract an ‘exact’ bridge function and to compare it with various
model results.

In the present paper, the structure factor of liquid Na is calculated by means
of a combined use of the RHNC theory and MD simulations. This system may be
considered in the nearly-free-electron approximation and, therefore, the pseudopo-
tential perturbation theory can be applied. This fact has stimulated an apprecia-
ble amount of theoretical work on liquid Na with diverse forms of the interacting
potential: the Ashcroft [13] and Hasegawa [14] empty-core pseudopotentials, the
potential implemented by Price, Singwi and Tosi [15]. Some first-principle calcula-
tions have also been carried out for this system [17]. Recently, the static structure
in good agreement with the experimental data has been obtained in the RHNC
theory for liquid Na interacting via an effective pair potential derived by means of
the neutral-pseudoatom method [16].

The aim of this paper is to study in detail the behaviour of the bridge function
extracted from MD simulations for metallic systems like liquid Na. The obtained
bridge function was compared with the MHW model. The next section gives a
brief summary of the theory. In section 3 we discuss the most significant results of
the calculations.

2. The basic theory

In the integral equation theory the pair correlation function g(r) can be ob-
tained by solving the Ornstein-Zernike relation

h(r) = c(r) + ρ
∫

c(|~r − ~r ′|)h(r′)d~r ′, (1)

where ρ is a number density of the liquid, h(r) = g(r) − 1 is a total correlation
function and c(r) – a direct correlation function. Equation (1) is supplemented by
a closure between h(r) and c(r):

g(r) = exp (γ(r)− βU(r) + B(r)). (2)

Here β = 1/kBT is inverse temperature , U(r) is an interacting potential, γ(r) =
h(r) − c(r) and B(r) is a bridge function. The detailed knowledge of the bridge
function is necessary to solve this integral equation for a given potential. In order
to extract the bridge function from the PDF calculated by MD simulation we
extended gMD(r) beyond the simulated box following the procedure proposed by
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Figure 1. The interacting potential for liquid Na and the potential for the MHW
reference system.

Galam and Hansen [18] which reduces to solving (1) coupled with the MSA closure:

c(r) =

{

gMD(r)− 1− γ(r), r < Rc

−βUm(r), r > Rc

, (3)

where gMD(r) is the simulated pair distribution function, Rc is a cut-off distance
and Um(R) is a cut potential used in the simulation. The cut-off radius Rc in fact
is limited to half a simulation box length L/2. The bridge function can now be
extracted from g(r) and γ(r) via the following relation:

B(r) = γ(r)− lng(r)− βU(r). (4)

For completeness we also solved equations (1)–(2) by using the bridge function
derived from the Mori-Hoshino-Watabe scheme. In the MHW approximation the
system interacting via the repulsive part of the interatomic potential U(r) is only
chosen as a reference system:

U rs(r) =

{

U(r)− U(rm), r < rm
0, r > rm

, (5)

where rm is the first minimum of U(r).The bridge function of such a system is cal-
culated in the PY approximation which is known to give good results for repulsive
potentials. Obtained in this way B(r) is assumed to be nearly equal to the real
one [9].
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Figure 2. The sample II MD pair distribution function g(r) for liquid Na together
with the PDFs from the RHNC equation with two bridge functions: extracted
from the MD data (RHNC-MD), and from the MHW reference system (RHNC-
MHW)

3. Results

We have investigated liquid Na at the numerical density ρ = 0.024217 Å−3

and temperature T=373 K. The interatomic potential was calculated from the
local Ashcroft empty-core pseudopotential. Although nowadays more sophisticated
methods exist to construct effective interatomic potential in liquids, we stick to
this rather simple model potential as it is able to produce excellent results for
the static structure of liquid metals (for an overview see Hafner [20]). The only
parameter of the potential is the core-radius rc, which is chosen to be 1.78 a.u.,
that guarantees a zero-pressure condition for the solid state at T=0 K and gives
good agreement with an experiment for the static structure factor over a large
temperature range [13]. A dielectric screening function is used with the local-field
correction proposed by Ishimaru and Utsumi. The function βU(r) for liquid Na,
together with that used for the MHW reference system, is plotted in figure 1. The
molecular dynamics simulations were performed in the usual (NV E) ensemble for
two different system sizes. Sample I contains 864 particles and sample II has 2048
particles. Integration of the equations of motion was done by a 4th-order predictor-
corrector Gear algorithm with the time step 4×10−14 s. The initial configuration of
particles was a face-centred cubic lattice, and their initial velocities were randomly
put into a Maxwellian distribution. In the first stage of the simulations the system
was molten at 900 K to break the lattice. In the second run temperature was
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Figure 3. The extracted from MD simulations bridge functions at different cut-off
radii and B(r) of the MHW reference system. Sample I consists of 864 particles
and sample II – of 2048 particles.

lowered by a slow cooling process down to 373 K and another 2000 steps were
taken to equilibrate the system at the new temperature. The productional run
in the equilibrium state was of 100 000 time steps for system I and 50 000 for
system II. The total energy was conserved during the MD runs within 0.05% and
may be regarded constant. Every tenth configuration was taken into account in
the computation of the static equilibrium averages.

The pair distribution function obtained in MD simulations was used to generate
the bridge function following the procedure described in section 2. The integral
equations (1)–(3) were solved numerically by means of a Newton-Raphson method
[21] with the accuracy of 1.0 × 10−6. In figure 2, we show the pair correlation
functions obtained with the bridge function extracted from the MD data (RHNC-
MD) and that calculated by using the MHW scheme (RHNC-MHW). We also
depict the pair distribution function obtained directly from MD simulation for
a larger system. An agreement between the RHNC-MD and the simulation is
excellent even beyond Rc, whereas the RHNC-MHW shows some discrepancies in
the magnitude of the first and second peaks. Some further suggestions as to these
discrepancies will be made later.

In order to assess the cut-off radius dependence in the MD-data extension
procedure we used several values of Rc. The bridge functions for the two sample
sizes calculated with the smallest (Rc = 7.7 Å) and the largest (equal to half the
cell length) PDF cut-off radii are presented in figure 3 together with the bridge
function from the MHW approximation. The rest of B(r) fall between these two
extreme cases. The results for B(r) at large values of r are plotted in the inset of
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Figure 4. A structure factor for liquid Na calculated from the RHNC equation
with different bridge functions for sample II.

figure 3. One readily sees that all the curves exhibit the same qualitative behaviour.
For short distances, which correspond to the first and second coordination shells,
the cut-off and sample size dependencies of the MD bridge functions are almost
negligible and all B(r) are remarkably close to each other. At larger values of r
the influence of the sample size becomes more noticeable. It is clearly seen that
the bridge function for sample II reaches a plateau near 13−14 Å which smoothly
tends to zero at r = Rc. It is difficult to find such a plateau for sample I because
the simulation cell is too small. A similar plateau is reported in [22], where MD
simulations were performed for 4000- and 32000-particle systems. It is found there
that this plateau only results from statistical errors in PDF, and its amplitude is
almost inversely proportional to the square root of the number of samples used in
evaluating the PDF. The plateau can be reduced to zero by increasing either the
number of particles or the number of PDF samplings.

The MHW bridge function exhibits a correct behaviour at short distances where
it reproduces the positions of maxima and minima of the “experimental” bridge
function. At larger r, it merges with the MD B(r) of the smallest cut-off radius.
The magnitudes of these two functions, however, are rather different. In purely
metallic systems, where the interatomic potential has a long-range oscillatory char-
acter, one cannot safely neglect the potential’s attractive tail without having grave
consequences in B(r) and, as a result, in g(r) as shown in figure 2.

Finally, we investigated the cut-off and sample size dependence of the static
structure factor S(k). In figure 4 we plotted the structure factors calculated by
using various sets of bridge functions for sample II. We found that S(k) practically
does not depend on the sample size. The small-k behaviour of the structure factors
is shown in the inset of figure 4. For comparison we also depicted the experimental
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x-ray data of Waseda [23]. The value of S(k) at k = 0 was calculated from the
compressibility data. It should be noted that all structure factors with the MD
bridge functions are hardly distinguishable from each other and merge into one
curve. In a small-k region all S(k) calculated with Rc up to the plateau coincide.
For those cut-off radii belonging to the plateau (Rc=17.5 and 20.15) the statistical
errors become large enough to distort the shape of the structure factor at k → 0.
The static structure factor calculated with the MHW bridge function reproduces
the MD results quite accurately, with small discrepancies in the magnitudes of the
main and second peaks.

Two conclusions can be drawn concerning the investigation of the bridge func-
tion for liquid metals considered here. Firstly, the bridge function and the static
structure factor slightly depend on the cut-off radii and practically do not depend
on the sample size. As a result, the combined use of MD simulations for a relatively
small number of particles with the RHNC-type integral equations provides a pow-
erful tool for the description of the microscopic structure of liquid metals. Such a
combination is especially useful in ab initio calculations that deal with small sam-
ple sizes. Secondly, the reference system proposed by Mori, Hoshino and Watabe,
described by the repulsive part of the pair potential and involving no adjustable
parameters, gives a good account of the static structure of liquid metals.
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Елементарні діаграми для рідкого Na
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Отримано 26 грудня 1997 р.

Елементарні діаграми B(r) для рідкого Na розраховані в базисному

гіперланцюговому наближенні з парних функцій розподілу отриманих

методом МД. Проведено порівняння з B(r) в наближенні Морі-Хоші-

но-Ватабе. Досліджено залежність статичного структурного фактора

від радіуса обрізання базисної парної функції розподілу.

Ключові слова: статичний структурний фактор, елементарні

діаграми, інтегральні рівняння

PACS: 61.25.Mv, 65.50.+m, 61.20.Gy

88


