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Fluctuational dynamics and
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Within the investigated model of a one-dimensional bi- and tri-molecular
chemically reacted crystal, the asymptotic behaviour of the amplitude of
a two-particle static structure factor (as a function of the crystal length)
has been discovered. The nonlinear fluctuational scenario leads us to the
conclusion as to the possibility of existence of an asymptotic metastable
cluster fragmentation within initially homogeneous 1D systems. A connec-
tion between some possible effects and the properties of the fluctuations
in reacting systems and reactive dynamics in a partially filled lattice is also
shown.
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1. Introduction

One-dimensional models are known to be an effective tool for solving a variety
of problems in statistical mechanics. In the past decades much attention in such
areas as chemical reactions, random walks and aggregation problems has been paid
to the role of dimensionality [1]. In particular, work carried out in Brussels by
Nicolis, Provata, Prakash, Tretyakov and Turner has showed that restricting space
to low dimension can cause deviations from the mean field behaviour, depending on
the type of the nonlinearity involved. For instance, while the bimolecular reaction
A+X ←→ 2X shows the mean field behaviour on a 1D completely filled lattice, the
trimolecular reaction A+2X ←→ 3X stabilizes in such a lattice in a nonequilibrium
locally frozen asymptotic state in which the ratio of the average number A to X
particles is a constant quite different from the mean-field value.

The work carried out within the framework of the IUAP project during our
stay in Brussels focused on two topics: the properties of the fluctuations in the
reacting systems and the study of reactive dynamics in a partially filled lattice. A
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manuscript summarizing the results is currently being prepared for publication in
Europhysics Letters. We hereafter summarize the prinsipal steps and conclusions.

2. Fluctuations in a completely filled 1D lattice

Consider the bimolecular reaction 2X ←→ A + X on an ideal totally filled
1D lattice of M sites, bearing in mind that a given species can only react with
its nearest neighbours and that particles cannot overlap. We adopt as an initial
condition a uniform configuration containing only X particles. Since at equilibrium
all the positive configurations of A of X particles, except the one of a lattice filled
completely by A, can be generated from this initial condition, the probability
distribution gM (NA) is given by

gM (NA) =

(

M

NA

)

/ M−1
∑

NA=0

(

M

NA

)

= 21−M

(

M
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)

(1)

with NA +NX = M.
From (1) one recovers asymptotically (M →∞) the previous result of Nicolis

et al. r = 〈NA〉 / 〈NX〉 = 1. Furthermore, one can compute a covariant matrix of
the fluctuations around the mean particle numbers
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etc.
Coming now to the trimolecular model and adopting the same initial condition,

one can easily see that because of the geometric constrains involved, for each given
NA, at least NA − 1 sites cannot be occupied by A particles. The probability
distribution replacing (1) is thus
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(3)
Again, the expression reproduces the value 〈NA〉 / 〈NX〉 ≈ 0.38 obtained pre-

viously by Nicolis et al. However, one is now also in the position to compute the
properties of the fluctuations. For instance, one finds
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3. Partially filled lattice

Next we allow for vacancies in the lattice, starting with an initial configuration
in which NX particles (NX < M) are distributed randomly among the M sites
available. We also introduce three auxiliary variables:

– the number of nearest neighbours pairs occupied simultaneously by X par-
ticles – NXX ,

– the number of nearest neighbours pairs of which only one is occupied by X
particles – N0X ,

– the number of nearest neighbours pairs both of which are empty – N00.

The following relations between these variables are easily established

2NXX +N0X = 2NX ,

2N00 +N0X = 2 (M −NX) , (5)

showing that of these three variables only one can be chosen independently, say
NXX . The number of different configurations of X particles with only NXX pairs
is then

GM (NX , NXX) =

(

NX

NX −NXX

)(

M −NX

NX −NXX

)

. (6)

Since A particles can only be generated from the configurations involving contin-
uous X particles, the conditional probability to find NA particles in the system is
(

NXX

NA

)

(up to factor), and the equilibrium distribution of the lattice is, for the

bimolecular model,

gM (NA, NX) =
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∑
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This expression can be reduced to a form exhibiting a confluent hypergeometric
function and used to calculate the fluctuations of the number of particles. The
principal result of this analysis is that now the fluctuations behave anomalously

〈δNAδNX〉 ≈ λ2M2, (8)

where λ = N
(0)
X /M is an initial filling fraction.

4. Structure factor

To get an idea of the type of spatial inhomogeneities locally created in the
lattice we evaluated the structure factor of the system, a quantity the additional
interest of which is in its experimental accessibility.
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Let g be a wave number associated with the inhomogeneities. The structure
factor is then

SAX (g) =
∞
∑

l=−∞

∞
∑

l′=−∞

eig(l−l′)

〈

∑
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∑
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〉

, (9)

where l and l′ denote the lattice sites. Performing the summations over l and l′ we
obtain

SAX (g) =
1

2 (1− cos g)

〈(

1− eigNA

) (

1− eigNX

)〉

. (10)

In the long wavelength (“hydrodynamic”) limit g → 0 this expression reduces
to

SAX (g) ∼ 〈δNAδNX〉 − Γg2. (11)

The g-dependence of this function reflects the existence of a spatial variability.
However, since the extremum of SAX is at g = 0, no preferred length scale emerges.
The situation is likely to change in the trimolecular model which is currently under
investigation.
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Флуктуаційна динаміка та структурний фактор

нелінійної системи з реакціями на одновимірній

гратці

Герасимов О.І., Худинцев М.М.
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Отримано 16 вересня 1998 р.

Запропонована модель одновимірного кристалу з дво- та тримоле-

кулярними хімічними реакціями, для якої досліджена асимптотич-

на поведінка амплітуди двочастинкового статичного структурного

фактору (як функції довжини кристала). Аналіз нелінійного характе-

ру флуктуацій свідчить про принципову можливість існування асим-

птотичних метастабільних станів у модельному одновимірному кри-

сталі з однорідними початковими умовами. Також досліджено зв’я-

зок між флуктуаційними властивостями та динамікою систем, що ре-

агують, та деякими ефектами, що можуть виникати на цілком запов-

нених гратках.

Ключові слова: хімічні реакції, структурний фактор, одновимірна

гратка.
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