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Kinetic equations for the dielectric properties of CsH2PO4-type ferroelec-
trics are derived within the nonequilibrium statistical operator method pro-
posed by D.N.Zubarev. These equations are solved with two different ap-
proaches. In the first approach the closure relation in the spirit of a two-site
cluster approximation is used. In the second approach the exact relation
between the static correlation functions is extrapolated to a dynamic case
and used as a closure relation. The both approaches give similar results.
The obtained dynamic characteristics are close to those of the Glauber
model and are shown to describe the dynamic dielectric permittivity of
CsH2PO4 and CsD2PO4 crystals.
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1. Introduction

The Ising model (IM) appears to be very effective for the formulation and solu-
tion of problems in the theories for electrically or magnetically ordered compounds,
binary alloys, etc. [1–8]. In the case of low-dimensional structures, the model al-
lows an accurate calculation of the thermodynamic quantities (order parameters,
static susceptibility, specific heat) and the spin correlation functions [7–9]. Accu-
rate solutions of the two-dimensional IM [2,9] and the one-dimensional Kac model
make a substantial contribution to the understanding of the nature of the second
order phase transitions.

Great interest is given to the dynamics of the IM. The study of Ising systems’
kinetics was initiated by Glauber’s paper [10], where a one-dimensional (1D) model
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was treated. The papers [11–13] extend Glauber’s approach to 2D and 3D Ising
lattices. As in these cases the problem becomes rather intractable, the mean field
approximation [11] and the cluster approximation [12,13] had to be used. Paper [13]
differs from the preceding work [12] due to the account of a long-range interaction.
Glauber’s idea also inspired studies of the model with several modifications [14,15].

Within Glauber’s approach one can derive [32] a chain of coupled equations for
time-dependent distribution functions (DF). Their solution can be found only for
1D model. For pseudo 1D model Zumer [20] suggested the simplest decoupling of
the chain, which leads to some interpolative equation for one-site DF that yields
the generally known exact result for static susceptibility. But Zinenko [30] dis-
covered that approximations of papers [21,22] lead to incorrect results in the low-
temperature region. Paper [32] suggests a detailed analysis of the coupled equations
for time-dependent DF obtained from the Glauber master equation. Several de-
coupling schemes are suggested. One of them yields thermodynamic and dynamic
quantities of the model similar to those obtained within a cluster approach devel-
oped in papers [28,29]. These theoretical results were extensively used for the dis-
cussion and analysis of experimental data on ferroelectric of CsH2PO4 type [16–32].

The crystal structure of CsH2PO4 can be described as “PO4 tetrahedrons con-
nected by hydrogen bonds of two types”. The shorter H-bonds connect PO4 groups
forming zig-zag chains along the b-axis. In the paraelectric phase the protons of
these bonds are distributed symmetrically with respect to the centre of an H-bond,
whereas in the ferroelectric phase there appears a spontaneous asymmetry. The
protons of the longer H-bonds are ordered in both phases. Deuteration signifi-
cantly changes the temperature of the phase transition, the dielectric and thermal
properties of CsH2PO4 crystal [16–29]. It is the evidence of the important role of
H-bonds in the ferroelectricity of these crystals.

Ferroelectric crystals PbHPO4 contain only short H-bonds connecting PO4

groups along the c-axis [17,18,19,33,34,35]. The H-bonds in these crystals are al-
most parallel to the direction of the spontaneous polarization. The phase transition
in these crystals is also closely connected with the proton ordering. However, the
effects of deuteration in PbHPO4 crystals are much less pronounced in comparison
with CsH2PO4 crystals.

It is nowadays commonly accepted that the ordering of protons (deuterons) in
the ferroelectrics of CsH2PO4 type is of a quasi-one-dimensional nature implying
strong intrachain and weak interchain interactions. This results in some specific
properties of such compounds which should be explained on a microscopic level.

Papers [16–27] are focused on the discussion of the selected experiment and
the suggested model parameters which provide the best fit to those data. Such a
one-sided approach sometimes leads to incorrect conclusions. Thus, the authors
of papers [22–25], comparing predictions of the model with such parameters with
other measured quantities, found a marked disagreement and concluded that the
model cannot describe the compounds under investigation. However, papers [28,29,
32] show that the theory [28,32] which allows for short- and long-range interactions,
describes thermodynamics and dynamics of these compounds with a satisfactory
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accuracy.
Glauber’s approach, however, has several deficiencies. This is, first of all, lack of

substantiation for the master equation, which contains phenomenologically chosen
spin-flip probabilities and unknown kinetic parameters that should be provided
by a separate ab-initio theory. Such drawbacks are not intrinsic to the kinetic
equations method [33–43]. There exists a number of approaches in this field. In this
paper we shall use a nonequilibrium statistical operator (NSO) method suggested
by D.N.Zubarev. In the presence of a small parameter, the NSO method allows
one to obtain kinetic equations for the model [41–43]. We intend to use the method
in order to describe the dynamics of quasi-1D ferroelectrics with hydrogen bonds.
In section 2 a kinetic equation is derived. It is solved in section 3 within a two-site
cluster approximation. In section 4 a chain of coupled equations for time-dependent
DFs is derived and a decoupling scheme is proposed, which supports the results of
the cluster approximation. If the kinetic parameters are independent of frequency,
the NSO method yields the results that coincide with those [28,32] obtained within
the Glauber master equation approach.

2. Nonequilibrium statistical operator. Kinetic equation

In this section we shall consider relaxation phenomena in systems with the
Hamiltonian

H = H0 + V ; V̂ = Ĥ ′(s, t), (2.1)

where
H0 = H1(s) +H2(t). (2.2)

Here Ĥ1(s) denotes the Hamiltonian of the quasispin subsystem, Ĥ2(t) is a Hamil-
tonian of the dissipative subsystem, H ′(s, t) describes their interaction. Non-spin
degrees of freedom constitute a heat bath, i.e. their heat capacity is so large that
any perturbation caused by the quasispin subsystem cannot push the heat bath
out of the equilibrium. The nonequilibrium statistical operator of the entire system
satisfies the Liouville equation

∂

∂t
ρ̂(t) + iL̂ρ̂(t) = 0, (2.3)

where iL is a Liouville operator defined by

iL̂Â = −
1

ih̄
[Â, Ĥ]. (2.4)

In order to calculate NSO for the system with a small parameter, the following
form of (2.3) is convenient [43]:

∂

∂t
ln ρ̂(t) + iL̂ ln ρ̂(t) = 0. (2.5)

Solution of the Liouville equation (2.5) (or (2.3)) requires boundary conditions.
Following the Zubarev NSO method [40] we shall look for such solutions of (2.5)
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which depend on time only via several observable variables. These variables of
a reduced description set the nonequilibrium state of the system. The desired
solutions can be selected, including an infinitely small source in the right–hand
side of equation (2.5) [40]:

∂

∂t
ln ρ̂(t) + iL̂ ln ρ̂(t) = −ε[ln ρ̂(t)− ln ρ̂q(t)]. (2.6)

Here ρ̂q(t) is a quasiequilibrium statistical operator that has to minimize the en-
tropy of the system at fixed variables of a reduced description and the normal-
ization Spρ̂q(t) = 1. The source in the right-hand side of (2.6) violates the time-
reversal symmetry of the equation and selects retarded solutions corresponding to
a reduced description. After the thermodynamic limit one has to set ε = 0 and to
obtain the solution of the equation (2.5).

The described above approach is based on Bogolubov’s idea that the nonequi-
librium dynamics of the macroscopic physical system is characterized by a hierar-
chy of relaxation times [33]: parts of the system reach the equilibrium long before
the entire system does. Therefore, these parts can be described by a small number
of quasiintegrals of motion which slowly change under the action of weaker interac-
tions that equilibrate all the subsystems. Thus, for times that are longer than some
relaxation times, the nonequilibrium dynamics of the system can be described by
a small number of parameters. In such a way a reduced description becomes suffi-
cient [33]. Let P̂m be a set of reduced description variables. The quasiequilibrium
statistical operator takes the form [40]:

ρ̂q(t) = exp{−Φ(t)−
∑

m

Fm(t)P̂m}, (2.7)

where
Φ(t) = ln Sp exp{−

∑

m

Fm(t)P̂m} (2.8)

ensures the normalization of ρ̂q(t), Fm(t) being the corresponding Lagrange pa-
rameters that have to be found from self-consistency conditions

〈P̂m〉 = 〈P̂m〉q, (2.9)

where
〈· · ·〉 = Sp(ρ̂(t) · · ·); 〈· · ·〉q = Sp(ρ̂q(t) · · ·). (2.10)

These conditions lead to

δΦ(t)

δFm(t)
= −〈P̂m〉q = −〈P̂m〉. (2.11)

It means that Fm(t) are conjugated to 〈P̂m〉. An expression for entropy clarifies
the physical meaning of the parameters Fm(t):

S(t) = −〈ln ρq(t)〉q = Φ(t) +
∑

m

Fm(t)〈P̂m〉. (2.12)
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This leads to the thermodynamic relations

δS(t)

δ〈P̂m〉
= Fm(t). (2.13)

Equation (2.6) can be written in terms of ∆ ln ρ̂(t) = ln ρ̂(t)− ln ρ̂q(t):
{

∂

∂t
+ iL̂+ ε

}

∆ ln ρ̂(t) = −

(

∂

∂t
+ iL̂

)

ln ρ̂q(t). (2.14)

The formal solution of equation (2.14) is of the form:

∆ ln ρ̂(t) = −

0
∫

−∞

eετeiL̂τ
( ∂

∂t
+ iL̂

)

ln ρ̂q(t+ τ)dτ (2.15)

or

ln ρ̂(t) = ln ρ̂q(t)−

0
∫

−∞

eετeiL̂τ
( ∂

∂t
+ iL̂

)

ln ρ̂q(t+ τ)dτ. (2.16)

If we introduce the entropy operator

S(t) = Φ(t) +
∑

m

Fm(t) P̂m = − ln ρq(t) (2.17)

and use the identity
Ŝ(t) = Φ(t) +

∑

m

Fm(t) P̂m, (2.18)

then integral equation (2.16) takes the form:

ρ̂(t) = exp

{

− Ŝ(t)

+

0
∫

−∞

eετeiL̂τ
1
∫

0

ρ̂(λ)q (t+ τ)
( ∂

∂τ
+ iL̂

)

Ŝ(t+ τ)ρ̂(1−λ)
q (t+ τ)dλdτ

}

= exp

{

− Φ(t)−
∑

m

Fm(t)P̂m (2.19)

+

0
∫

−∞

eετeiL̂τ
1
∫

0

ρ̂(λ)q (t+ τ)
{

∂

∂τ
+
∑

m

∂

∂τ
Fm(t+ τ)P̂m

+
∑

m

Fm(t+ τ)
˙̂
Pm

}

ρ̂(1−λ)
q (t+ τ)dλdτ

}

,

where
˙̂
Pm = iL̂P̂m.

This expression for NSO coincides with that obtained by Pokrovskii [41], if the
following relation is taken into account:

eiL̂τ P̂m = P̂m(τ) = eiĤτ/hP̂me
−iĤτ/h. (2.20)
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Using NSO (2.19) one can get general expressions for the average values of interest

d

dt
〈P̂m〉 = 〈

˙̂
Pm〉. (2.21)

The evolution of the free system is determined by quantities aml

[Ĥ0, P̂m] =
∑

l

aml P̂l . (2.22)

Transfer equations can be written using these parameters:

d

dt
〈P̂m〉 = −

1

ih̄

∑

l

aml〈P̂l〉+
1

ih̄
〈[P̂m, V̂ ]〉. (2.23)

If one calculates the last term in (2.23) using a linear in interaction V̂ approxima-
tion for NSO (for the details of that calculation the reader is referred to [41]), the
following kinetic equations for 〈P̂m〉 are obtained (to the second order approxima-
tion with respect to V̂ ):

d

dt
〈P̂m〉 = L̂(0)

m + L̂(1)
m + L̂(2)

m , (2.24)

where

L̂(0)
m = −

1

ih̄

∑

l

aml〈P̂l〉q, (2.25)

L̂(1)
m = −

1

ih̄
〈[V̂ , P̂m]〉q,

L̂
′(2)
m + L̂

′′(2)
m = −

1

h̄2

0
∫

−∞

dτeετ 〈[V̂ (τ), [V̂ , P̂m] + ih̄
∑

l

P̂l
δL(1)

m

δ〈P̂l〉q
]〉q. (2.26)

The kinetic equation (2.24) can be rewritten in the form:

d

dt
〈P̂m〉 = −i〈[P̂m, Ĥ1(s) + Ĥ ′(s, f)]〉q +R1(P̂m) + R2(P̂m), (2.27)

R1(P̂m) =

0
∫

−∞

dt1e
εt1〈[Ĥ ′(t1), [P̂m,

ˆ̄H ′]]〉q,

R2(P̂m) =

0
∫

−∞

dt1e
εt1〈[ ˆ̄H ′(t1), Pk

∂〈[P̂m,
ˆ̄H ′]〉q

∂〈Pk〉
]〉q. (2.28)

Now we must be more explicit and write the quasispin-heat bath interaction term
H ′(s, t) of the Hamiltonian. Let us consider only one-particle interactions

Ĥ ′(s, f) =
∑

j

∑

α

uα
j (f)V̂

α
j , (2.29)
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where Uα
j (f) are operators related to the heat bath, and 〈Uα

j (f)〉 = 0, V 0
j =

Sz
j , V ±1

j = S±
j = Sx

j ± iSy
j . Let us introduce (the equilibrium) statistical operator

of the heat bath

ρf =
e−βĤ2(f)

Sp e−βĤ2(f)
(2.30)

and operator ˆ̄H
′
(s, f) defined by

ˆ̄H(s, f) = Ĥ ′(s, f)− 〈Ĥ ′(s, f)〉f , (2.31)

〈Ĥ ′(s, f)〉f = Spf Ĥ ′ρf , (2.32)

whose evolution is of the form:

ˆ̄H ′(t) = eit[Ĥ1(s)+Ĥ2(f)] ˆ̄H ′e−it[Ĥ1(s)+Ĥ2(f)]. (2.33)

Using (2.29) one finds that

ˆ̄H ′(t) =
∑

jα

ūα
j (t)V̂

α
j (t), (2.34)

V̂ α
j (t) = eitĤ1(s) V̂ α

j e−itĤ1(s),

ūα
j (t) = eitĤ2(f) ūα

j (t)e
−itĤ2(f); ūα

j (f) = 〈uα
j (f)〉f . (2.35)

With the help of the time Fourier transformation

V̂ α
j (t) =

∑

µ

V̂ α
j (Ω− µα) exp(−itΩα

µ) (2.36)

we obtain

R1(P̂m) =
∑

ij

∑

µν

∑′

αα′

0
∫

−∞

dt1e
εt1−iΩα

µt1 ×

{〈ūα
j (t1)ū

α′

i 〉q〈V̂
α
j (Ω

α
µ)[P̂m, V̂

α′

i (Ωα′

ν )]〉q (2.37)

− 〈ūα′

i ūα
j (t1)〉q〈[P̂m, V̂

α′

i (Ωα′

ν )]V̂ α
j (Ω

α
µ)〉q}.

Hereafter we assume that fluctuations of heat bath variables at different sites do
not correlate. Using also a translational invariance of the model we obtain:

〈ūα
j (t)ū

α′

j 〉q = δij〈ū
α
j (t)ū

α′

j 〉q, (2.38)

〈ūα
j (t)ū

α′

j 〉q = 〈ūα
j ū

α′

j (−t)〉q = γαα′(t),

Re γαα′(t) = mαα′(t) = mα′α(−t), (2.39)

Im γαα′(t) = nαα′(t) = −nα′α(−t).

If there exists a diagonal basis for Ĥ2(f), where matrix elements of operator Uα(f)
are real, the following relations hold [44]:

mαα′(t) = mαα′(−t); nαα′(t) = −nαα′(−t). (2.40)
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In this case

γαα′(t) = mαα′(t)− inαα′(t) = mα′α(t)− inα′α(t), (2.41)

γα′α(−t) = mα′α(−t) − inα′α(t) = mα′α(t) + inα′α(t)

and (2.37) can be written in the form

R1(P̂m) = −
∑

j

∑

µν

∑

αα′

{[Kα′α(Ω
α
µ) + iMα′α(Ω

α
µ)]Q

−
jνµα′α(P̂m) (2.42)

+ [−Lα′α(Ω
α
µ) + iNα′α(Ω

α
µ)]Q

+
jνµα′α(P̂m)}.

where the following notations are used:

Q∓
jνµα′α(P̂m) = 〈[[P̂m, V

α′

j (Ωα′

ν )], V α
j (Ω

α
µ)]

∓〉q, (2.43)

Kα′α(Ω
α
µ) =

∞
∫

µ

dte−εtmα′α(t) coshΩ
α
µt =

∞
∫

µ

dte−εtRe γα′α(t)e
−iΩα

µ t,

Lα′α(Ω
α
µ) =

∞
∫

0

dte−εtnα′α(t) sinhΩ
α
µt =

∞
∫

0

dte−εtImγα′α(t)e
−iΩα

µt,

Mα′α(Ω
α
µ) =

∞
∫

0

dte−εtmα′α(t) sinhΩ
α
µt, (2.44)

Nα′α(Ω
α
µ) =

∞
∫

0

dte−εtnα′α(t) coshΩ
α
µt.

Using a spectral representation for time-dependent correlation functions in (2.43)

γα′α(t) =

∞
∫

−∞

J(Ωµ)e
iΩα

µtdΩα
µ, γαα′(−t) =

∞
∫

−∞

J(Ωµ)e
βΩα

µteiΩ
α
µtdΩα

µ, (2.45)

J(−Ωα
µ) = J(Ωα

µ)e
βΩα

µ ,

one gets:

i Imγα′α(Ω
α
µ) = − tanh

(1

2
βΩα

µ

)

Reγα′α(Ω
α
µ), (2.46)

Lα′α(Ω
α
µ) = − tanh

(1

2
βΩα

µ

)

Kα′α(Ω
α
µ).

If correlations in the dissipative subsystem have a Markovian character andMα′α(t)
takes the form [7]

mα′α(t) =
1

2
〈[ūα′

, uα]〉q e−t/τfα , (2.47)

where τfα are correlation times, then

Mα′α(Ω
α
µ) = Ωα

µτfαKα′α(Ω
α
µ) (2.48)
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coefficients N and K can be related using (2.43), (2.46) and (2.47). We obtain:

nα′α(t) = −
1

τfαΩα
µ

tanh
(βΩα

µ

2

)

mα′α(t), (2.49)

Nα′α(Ω
α
µ) = tanh

( β

2τfα

)

Kα′α(Ω
α
µ).

Finally,

R1(P̂m) = −
∑

j

∑

µν

∑

αα′

{[1 + iΩα
µτfα]Q

−
jνµα′α(P̂m) (2.50)

+ [tanh
βΩα

µ

2
− i tanh

β

2τfα
]Q+

jνµα′α(P̂m)}Kα′α(Ω
α
µ).

The terms with Ωα
µ 6= Ωα′

ν give contributions of order Kα′α(Ω)/Ω to the solution of
the kinetic equation. Such contributions are of no importance in many cases [7].
Condition Ωα

µ = Ωα′

ν , in its turn, allows one to keep only the terms with α = −α′.
The last condition can be proven in a very general form [7,42,43]. The relaxation
term (2.50) takes the simplest form if the set {P̂m} contains only diagonal oper-
ators. In this case imaginary terms in (2.50) and R2(P̂m) vanish, and the kinetic
equation (2.27) takes the form [7,42,43]:

d

dt
〈P̂m〉 = −

∑

j

∑

µα

{

Q−
jµα(P̂m) + tanh

βΩµα

2
Q+

jµα(P̂m)

}

Kα
µ . (2.51)

Here the following notations are used:

Kα
µ = K−αα(Ω

α
µ); Q∓

jµα(P̂m) = Q∓
j,µµ−αα(P̂m). (2.52)

It is equation (2.51) that will be used in the following section in order to describe
the relaxation dynamics of deuterated quasi-1D ferroelectrics with hydrogen bonds.

3. Dynamics and thermodynamics of deuterated quasi-1D fer-
roelectrics with hydrogen bonds in the two-site cluster
approximation

We shall consider a system of protons located at O-H. . .O bonds constituting
zig-zag chains. Elementary cells of such compounds contain two PO4 tetrahedrons
with two short H-bonds related to one of them (tetrahedron of type A). H-bonds
related to the other (B-type) tetrahedron belong to two nearest structural elements
surrounding it [28]. The Hamiltonian of the proton subsystem of the considered
ferroelectrics has the form [28]:

Ĥ = −
1

2
w
∑

ij

σz
Ri1

σz
Rj2

[δRiRj
+ δRi+r2,Rj

] (3.1)

−
1

8

∑

if

∑

jf ′

Jff ′(Ri −Rj)σ
z
Rif

σz
Rjf ′ −

1

2
µ̃E

∑

if

σz
Rif

; σz
Rif

= 2Sz
Rif

.
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Here the first term describes short-range configurational interactions of protons in
chains near the A-type tetrahedron (the first Kronecker symbol) and the B-type
one (the second Kronecker); the second term is an effective long-range interaction
between the protons including interactions mediated by lattice vibrations, the last
term includes an interaction of protons with a longitudinal external field, σz

Rif
=

±1 is an operator of the z-component of the quasispin, which we juxtapose to the
proton located in elementary cell Ri at the fth H-bond (f = 1, 2); r2 is a vector of a
relative position of H-bonds in the cell; µ denotes an effective dipole moment of the
elementary cell along the polar axis. We shall study thermodynamics and dynamics
of the systems with the Hamiltonian (3.1) in the two-site cluster approximation [12,
13,28]. The approximation is based on the one-site and two-site Hamiltonians [28]:

Ĥ
(2)
Rj

= −
w

2
σz
Rj1

σz
Rj2

−
x

2β
(σz

Rj1
+ σz

Rj2
), (3.2)

Ĥ
(1)
Rjf

= −
x̄

2β
σz
Rjf

.

Here

x = β
(

∆+
ν1
2
η(1) + µ̃E

)

, ∆ = ∆Rjf ,

ν1 =
∑

jf ′

Jff ′(Ri −Rj); η(1) = 〈σz
Rjf

〉, (3.3)

x̄ = β
(

2∆ +
ν1
2
η(1) + µ̃

)

,

∆Rif denotes an effective field generated by those neighbouring H-bonds which
are not included in the cluster, ν1

2
η(1) is a molecular field generated by remote

H-bonds via a long-range interaction. The fields ∆Rif are variational parameters
that have to be found via self-consistency equations. Following the Hamiltonian
H(2) the evolution of quasispin operators is given by

σα
Rj1

(t) = σα
Rj1

exp
(

−itα[wσRj2 +
x

β
]
)

, (3.4)

σα
Rj2

(t) = σα
Rj2

exp
(

−itα[wσRj1 +
x

β
]
)

or in a frequency representation

σα
Rjf

(t) =
1
∑

µ=−1

σα
Rjf

(Ω(2)
µ )e−itαΩ

(2)
µ , (3.5)

where the eigenfrequencies are

Ω
(2)
1 = w +

x

β
, Ω

(2)
−1 = −w +

x

β
(3.6)

and

σα
Rjf

(Ω(2)
µ ) = σα

Rjf
R̃Rjf (Ω

(2)
µ ), (3.7)

R̃Rj1(Ω
(2)
µ ) =

1

2
(1 + µσz

Rj2
), R̃Rj2(Ω

(2)
µ ) =

1

2
(1 + µσz

Rj1
). (3.8)

858



Nonequilibrium statistical operator approach

On the other hand, the Hamiltonian H (1) suggests

σα
Rjf

(t) = σα
Rjf

R̃Rjf (Ω
(1))e−itαΩ(1)

. (3.9)

In TCA, operators P̂m coming into kinetic equation (2.51) are

PRjf = σz
Rjf

, PRj12 = σz
Rj1

σz
Rj2

. (3.10)

Now one can calculate Q±
Rjµα

(Pm) and, taking into account the boundary condi-
tions,

〈σz
Rjf

〉q = 〈σz
Rjf

〉 = η(1); 〈σz
Rj1

σz
Rj2

〉q = 〈σz
Rj1

σz
Rj2

〉 = η(2) (3.11)

obtain a system of equations for one-site and two-site DFs within the “H (2) ap-
proach”:

d

dt
η(1) = T11η

(1) + T12η
(2) + T13, (3.12)

d

dt
η(2) = T21η

(1) + T22η
(2) + T23,

and an equation for one-site DF within the “H(1) approach”

d

dt
η(1) = −2K(1)η(1) + 2K(1) tanh

βΩ(1)

2
. (3.13)

Here the following notations are used:

T11 = K
(2)
1 z

(2)
1 −K

(2)
−1z

(2)
−1 −K

(2)
1 −K

(2)
−1 , (3.14)

T12 = K
(2)
−1 −K

(2)
1 , T13 = K

(2)
1 z

(2)
1 +K

(2)
−1z

(2)
−1 ,

T21 = 2(K
(2)
1 z

(2)
1 +K

(2)
−1z

(2)
−1 −K

(2)
1 +K

(2)
−1), (3.15)

T22 = −2(K
(2)
1 +K

(2)
−1), T23 = 2(K

(2)
1 z

(2)
1 −K

(2)
−1z

(2)
−1),

K(1) =

∞
∫

0

dt coshΩ(1)t e−εtRe{〈ū−(t)ū+(t)〉q + 〈ū+(t)ū−(t)〉q},

K(2)
µ =

∞
∫

0

dt coshΩ(2)
µ t e−εt Re{〈ū−(t)ū+(t)〉q + 〈ū+(t)ū−(t)〉q}, (3.16)

where

z
(2)
1 = tanh

βΩ
(2)
1

2
, z

(2)
−1 = tanh

βΩ
(2)
−1

2
, (3.17)

Thus, the TCA algorithm leads to a system of nonlinear differential equations
(3.12), (3.13) for variables η(1), η(2), ∆. This system seems to be quite intractable.
Therefore, we consider only the case of small deviations from equilibrium values
η̃(1), η̃(2), ∆̃, Ẽ

η(1) = η̃(1) + η
(1)
t , η(2) = η̃(2) + η

(2)
t , (3.18)

∆ = ∆̃ + ∆t, E = Ẽ +Et, (3.19)
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and neglect nonlinear in η
(1)
t , η

(2)
t ,∆t, Et terms in the kinetic equations. This leads

to separate equations for static quantities

η̃(1) =
sinh x̃

a+ cosh x̃
, η̃(2) =

cosh x̃− a

cosh x̃+ a
, x̃ =

1

2
ln

1 + η̃(1)

1− η̃(1)
+

βν1
4

η̃(1), (3.20)

and dynamic deviations

−
d

dt
η
(1)
t = a1η

(1)
t + a2η

(2)
t + a3

µ̃Et

2kBT
, −

d

dt
η
(2)
t = b1η

(1)
t + b2η

(2)
t + b3

µ̃Et

2kBT
, (3.21)

where

a1 = a11 −
Y (1)

Y (1) − 2Y (0)
(a11 − a31) +

βν1
4

Y (0)Y (1)

Y (1) − 2Y (0)
,

a2 = a12 −
Y (1)

Y (1) − 2Y (0)
a12, a3 = −

Y (0)Y (1)

Y (1) − 2Y (0)
, (3.22)

b1 = a21 −
Y (2)

Y (1) − 2Y (0)
(a11 − a31) +

βν1
4

Y (0)Y (2)

Y (1) − 2Y (0)
,

b2 = a22 −
Y (2)

Y (1) − 2Y (0)
a12, b3 = −

Y (0)Y (2)

Y (1) − 2Y (0)
,

a11 = K̃
(2)
1 (1− z̃

(2)
1 ) + K̃

(2)
−1(1− z̃

(2)
−1); a12 = K̃

(2)
1 − K̃

(2)
−1 ,

a21 = 2[K̃
(2)
1 (1− z̃

(2)
1 )− K̃

(2)
−1 (1− z̃

(2)
−1)]; a22 = 2(K̃

(2)
1 + K̃

(2)
−1 ),

Y (1) = K̃
(2)
1 z11(η̃

(1) + 1)− K̃
(2)
−1z−11(η̃

(1) − 1), (3.23)

Y (2) = 2[K̃
(2)
1 z11(η̃

(1) + 1) + K̃
(2)
−1z−11(η̃

(1) − 1)],

Y (0) = 2K̃(1) cosh−2
( ˜̄x

2

)

; ˜̄x =
1

2
ln

1 + η̃(1)

1− η̃(1)
.

z̃
(2)
1 = tanh

(βw

2
+

x̃

2

)

= (1− a2 + 2a sinh x̃)y−1, (3.24)

z̃
(2)
−1 = tanh

(

−
βw

2
+

x̃

2

)

= (−1 + a2 + 2a sinh x̃)y−1,

z̃
(2)
11 = 1− tanh2

(βw

2
+

x̃

2

)

= 4a{2a+ cosh x̃− sinh x̃+ a(cosh x̃+ sinh x̃)}y−2, (3.25)

z̃
(2)
−11 = 1− tanh2

(

−
βw

2
+

x̃

2

)

= 4a{2a+ cosh x̃+ sinh x̃+ a(cosh x̃− sinh x̃)}y−2,

xt

2
=

β∆t

2
+

βν1
4

η̃(1) +
βµ̃Et

2
,

x̃

2
=

β∆̃

2
+

βν1
4

η̃(1), (3.26)

a = e−βw, y = 1 + a2 + 2a cosh x̃,
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K̃
(2)
± =

∞
∫

0

dt e−εt cos(±w +
x̃

β
)t Re{〈ū−(t)ū+〉q + 〈ū+(t)ū−〉q},

K̃(1) =

∞
∫

0

dt e−εt cos
˜̄x

β
t Re{〈ū−(t)ū+〉q + 〈ū+(t)ū−〉q}. (3.27)

Equations (3.20) coincide with the results of the conventional static theory. The
general solution of (3.21) is of the form:

η
(1)
t = C1 e−t/τ1 + C2 e−t/τ2 + C(iω)

µ̃Et

2kBT
(3.28)

with the relaxation times

(τ I1,2)
−1 =

1

2

{

(a1 + b2)±
√

(a1 + b2)2 − 4(a1b2 − a2b1)
}

, (3.29)

and

C(iω) =
(a2b3 − a3b2)− a3iω

(a1b2 − a2b1) + (a1 + b2)iω + (iω)2
. (3.30)

The quantity C(iω) determines the dynamic susceptibility of the model

χI(ν) =
µ̃

va
lim
εt→0

dη
(1)
t

αEt
=

2
∑

l=1

χ
(−)I
l

1 + i2πντ Il−
, (3.31)

where

χI
1,2 = ±

f̃

2T

( 1

τ I1
−

1

τ I2

)−1
[τ I1,2(a3b2 − a2b3)− a3], f̃ =

µ̃2

kBva
. (3.32)

Consequently, the dynamic permittivity is of the form:

ε(ν, T ) = ε∞ + 4πχI(ν), (3.33)

where ε∞ is a high-frequency contribution to permittivity. Let us note that, if
K(2)

µ = K(1) = K = 1
2α
, the obtained in this section kinetic equations (3.12) coin-

cide with that used in the stochastic Glauber model in [28]. Therefore, Glauberian
equations describe a physical system where Fourier-transforms of the heat bath
correlation functions do not depend on frequency [7,42,43]. In this case α is a
constant of time dimensionality which characterizes an interaction of the spin sub-
system with the heat bath.

Now let us note that the cluster approach yields exact results (obtained in
[5,7–10]) for the static properties (free energy, specific heat, static permittivity
ε(0, T ) (see (3.33)), order parameter (3.20)), equilibrium distribution functions
[32,37] of quasi-one-dimensional systems. For the results of the cluster approach
for the systems of higher dimensions the reader is referred to [13]. In the case of a
zero long-range interaction, formula (3.33) yields the result of [12].

To describe the property of some compound on the basis of the obtained above
results one has to consider a mechanism of relaxation of that compound and cal-
culate the kinetic parameters K(2)

µ and K(1). We shall not discuss this problem
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Table 1. The model parameters that describe experimental data on CsH2PO4

and CsD2PO4: the nearest neighbour coupling K; the long-range interaction J ;
the effective dipole moment of a proton (deuteron) on a hydrogen bond µ; the
parameter of the kinetic equation — relaxation time of the noninteracting proton
(deuteron) α.

CsH2PO4 CsD2PO4

K/kB, K 390 610
J/kB, K 1.05 2.85
µ, e.s.u 1.87×10−18 2.17×10−18

α, s 6.2×10−15 3×10−15

here. Figures 1 and 2 show that dynamic permittivity of CsH2PO4 and CsD2PO4

crystals in the paraelectric phase can be described within the Glauberian approach
under certain choice of model parameters (see table 1). To describe the dynamic
permittivity in the ferroelectric phase one should suppose that bare relaxation
time α depends on temperature.

In the theory of the CsH2PO4-type ferroelectrics it is important to describe
dramatic isotope effects in these crystals. Partial substitution of hydrogens by
deuterons can be described within the disordered Ising model. In such a way a
problem of the calculation of dynamic properties of the disordered Ising model
arises. Papers [49–52] treat the Glauberian dynamics of the model within the two-
site cluster approximation. NSO dynamics of the disordered Ising model is an open
problem.

In the next section we shall consider alternative methods for the solution of
the kinetic equation in order to verify the cluster approach developed here.

4. Relaxation dynamics of the quasi-one-dimensional Ising
model

For the sake of convenience we write the Hamiltonian of quasi-1D ferroelectrics
of the order-disorder type in the following form [20,32]

Ĥc(s) = −
∑

ij

J‖S
z
i+1,jS

z
i,j −

1

2

∑

ij

∑

mn

J⊥mnS
z
i+m,j+nS

z
ij −

∑

ij

µEijS
z
ij . (4.1)

The first term describes the short-range intrachain interactions between the hy-
drogen bonds, the second one accounts for their effective long-range interactions,
the last term is an interaction of hydrogen bonds with an external longitudi-
nal electric field; Sz

ij is a quasispin operator corresponding to the hydrogen bond
(Sz

ij = 1
2
σz
ij ; σz

ij = ±1). The spatial position of each quasispin is described by
two indices (ij). The first one denotes the sequential number of the quasispin in a
chain, the second is a chain number.

We shall treat the long-range interactions in the mean field approximation. In
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Figure 1. The dynamic dielectric permittivity ε = ε ′−iε′′ of the crystal CsD2PO4

at the frequencies ν = 5.1, 72.4, 251, 423, 730, 1044, 2000, 1150 MHz: the lines
are theoretical results that correspond to the model parameters of table 1, the
symbols present the experimental data [48,25,47].

this case the effective Hamiltonian takes the form:

Ĥc(s) = −
∑

ij

J‖S
z
i+1,jS

z
ij −

∑

ij

xij

β
Sz
ij = −

∑

j

Ĥjc(s). (4.2)

Here the notations
xij = β

∑

mn

J⊥mn〈S
z
i+m,j+n〉+ βµEij (4.3)

are used. The time evolution of the quasispin operator is defined by (2.33):

Sα
ij(t) =

∑

µ

Sα
ij(Ωµ)e

i tΩµ , µ = 0,±1, (4.4)

where

Ω0 =
1

β
xij, Ω1 = J‖ +

1

β
xij , Ω−1 = −J‖ +

1

β
xij , (4.5)
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Figure 2. The dynamic dielectric permittivity of the crystal CsH2PO4. The lines
present theoretical results (parameters in table 1), the symbols show experimental
data [25].

Sα
ij(Ωµ) = Sα

ijRij(Ωµ), (4.6)

Rij(Ω0) =
1

4
[1− 4Sz

i−1,jS
z
i+1,j ] =

1

2
(1− σz

i−1,jσ
z
i+1,j), (4.7)

Rij(Ω±1) =
1

4
(1± σz

i−1,j)(1± σz
i+1,j).

The choice of operators Pk, which come into the kinetic equation, is determined by
the system’s properties and the form of its Hamiltonian. In our case the following
choice of Pk is convenient:

Plj =
∏

i∈l

σz
ij . (4.8)

The kinetic equation (2.51) takes the form:

d

dt
〈
∏

i∈l

σz
ij〉 = −

∑

µ

Kµ







〈
∏

i∈l

σz
ij

∑

i∈l

Rij(Ωµ)〉q − Zµ〈
∏

i∈l

σz
ij

∑

i∈l

Rij(Ωµ)〉q







. (4.9)
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where Zµ = tanh βΩµ

2

Kµ = K+1
µ +K−1

µ =

∞
∫

0

dt e−εt cos(Ωµt)Re[〈ū
−(t)ū+〉q + 〈ū+(t)ū−〉q]. (4.10)

Now, on the basis of (4.9) one can obtain a system of equations for time-dependent
spin correlation functions

d

dt
η = −a1ηq + a2η1q + a3η2q + a4η3q + a0, (4.11)

d

dt
η1 = b1ηq − b2η1q + b3η2q + b4η3q + b0,

where the following notations are introduced:

a1 = K0 +
1

2
(K1 +K−1)− ā1, ā1 = K1Z1 −K−1Z−1,

a2 = −(K1 −K−1), a3 = −K0Z0 +
1

2
(K1Z1 +K−1Z−1),

a0 = K0Z0 +
1

2
(K1Z1 +K−1Z−1), a4 = K0 −

1

2
(K1 +K−1), (4.12)

b1 = −(K1 +K−1)− b̄1, b̄1 = 2(K1Z1 +K−1Z−1),

b2 = (K1 +K−1), b3 = −K1Z1 −K−1Z−1,

b0 = K1Z1 −K−1Z−1, b4 = −(K1 −K−1);

η = 〈σz
ij〉, η1 = 〈σz

ijσ
z
i+1,j〉 = 〈σz

ijσ
z
i−1,j〉, η2 = 〈σz

ijσ
z
i−2,j〉 = 〈σz

ijσ
z
i+2,j〉, (4.13)

ηm = 〈σz
ijσ

z
i+m,jσ

z
i+(m+1),j〉 = ηm,m+1, η1,2 = η3, (4.14)

ηq = 〈σz
ij〉q, ηiq = 〈...〉q, i = 1, 2, 3.

The system of equations (4.11) is not closed. Unfortunately, we do not know other
relations between the nonequilibrium quasispin distribution functions of the model.
The equilibrium spin distribution functions for the quasi-one-dimensional Ising
model (4.1) were studied in papers [2,5,7–9]. The exact results for several correla-
tions functions are known [7,8]:

η0 = 〈σz
ij〉0 =

sinh x̃/2
√

sinh2 x̃/2 + a
, x̃ =

β

2
ν⊥η0 + βµE, a = e−βJ‖/2, (4.15)

η0m = 〈σz
ijσ

z
i±m,j〉0 = η20 + (1− η20)f

m, f =
η0 − tanh x̃/2

η0 + tanh x̃/2
, (4.16)

η0mm+1 = 〈σz
ijσ

z
i±m,jσ

z
i±(m+1),j〉0 = η0η01 + fm(1 + f)(1− η20) tanh x̃/2. (4.17)

One can easily verify that all the correlation functions in (4.16) and (4.17) can be
expressed in terms of the equilibrium averages η0 and η1 (see [7,8]):

η0m = η20 + (η01 − η20)
m(1− η20)

1−m, (4.18)

η0mm+1 = η0
[

η01 + (1− η01)
(η01 − η20
1− η20

)m]

.
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In view of relations (4.18) we can suggest closure relations for the kinetic equations
(4.11):

η2 = η2 + (η1 − η2)2
1

1− η2
, η3 = η

{

η1 + (1− η1)
η1 − η2

1− η2

}

. (4.19)

One can see that (4.19) is consistent with the exact relations (4.18), though there
is no guarantee that such a dependence among η, η1, η2 and η3 is preserved even in
weakly nonequilibrium states. Using (4.19) and the condition 〈

∏

i∈l
Sz
ij〉 = 〈

∏

i∈l
Sz
ij〉q

we derive a closed system of kinetic equations

d

dt
η = (a4 − a1)η + a2η1 +

a3
1− η2

(η2 + η21 − 2η2η1)−
a4η

1− η2
(1− η1)

2 + a0,

(4.20)

d

dt
η1 = (b1 + b4)η − b2η1 +

b3
1− η2

(η2 + η21 − 2η2η1)−
b4η

1− η2
(1− η1)

2 + b0.

The system of equations (4.20) is nonlinear and quite complex. Therefore, we re-
strict further consideration to small deviations from the equilibrium and represent
the distribution functions as sums of their equilibrium values and (small) time-
dependent deviations:

η = η0 + ηt, η1 = η01 + η1t, xij = x̃+ xijt. (4.21)

In this case the following relations hold:

Z0 = Z00 +
[βν⊥

4
ηt +

βµEt

2

]

Z01,

Z1 = Z10 +
[βν⊥

4
ηt +

βµEt

2

]

Z11, (4.22)

Z−1 = Z−10 +
[βν⊥

4
ηt +

βµEt

2

]

Z−11,

where

Z00 = tanh
x̃

2
,

Z10 = tanh
(βJ⊥

2
+

x̃

2

)

=
1− a4 + 2a2 sinh x̃

1 + a4 + 2a2 cosh x̃
, (4.23)

Z−10 = tanh
(

−
βJ⊥

2
+

x̃

2

)

=
−(1− a4) + 2a2 sinh x̃

1 + a4 + 2a2 cosh x̃
,

Z11 = 1− tanh2
(βJ⊥

2
+

x̃

2

)

=
4a2[2a2 + (1 + a4) cosh x̃− (1− a4) sinh x̃]

(1 + a4 + 2a2 cosh x̃)2
,

Z−11 = 1− tanh2
(

−
βJ⊥

2
+

x̃

2

)

=
4a2[2a2 + (1 + a4) cosh x̃+ (1− a4) sinh x̃]

(1 + a4 + 2a2 cosh x̃)2
,

Z01 = 1− tanh2 x̃

2
. (4.24)
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Substitution of (4.21) and (4.22) into (4.20) and linearization of the obtained
system of equations with respect to ηi, ηit and Et allow one to obtain two systems of
equations. The first one contains equilibrium correlation functions, and its solution
yield relations (4.15) – (4.17). The second one contains a dynamic part of the
correlation functions and has the form:

d

dt
ηt + A1ηt + A2η1t = A3

µEt

2kBT
, (4.25)

d

dt
η1t +B1ηt +B2η1t = B3

µEt

2kBT
,

where

A1 = a10 − a30
2η0(1− η01)

2

(1− η20)2
− a4

[

1−
(1 + η20)(1− η201)

2

(1− η20)
2

]

−
βν⊥
4

[

ā11η0 + a31
η20 + η201 − 2η20η01

1− η20
+ a01

]

, (4.26)

A2 = −
[

a2 + a30
2(η01 − η0)

1− η20
+ a4

2η0(1− η01)

1− η20

]

,

A3 = ā11η0 + a31
η20 + η201 − 2η20η01

1− η20
+ a01,

B1 = −b10 − b30
2η0(1− η01)

2

(1− η20)2
− b4

[

1−
(1 + η20)(1− η201)

2

(1− η20)
2

]

−
βν⊥
4

[

b̄11η0 + b31
η20 + η201 − 2η20η01

1− η20
+ b01

]

, (4.27)

B2 = b2 − b30
2(η01 − η0)

1− η20
− b4

2η0(1− η01)

1− η20
,

B3 = b̄11η0 + b31
η20 + η201 − 2η20η01

1− η20
+ b01.

Equations (4.25) yield the following expression for dynamic susceptibility of the
system:

χII(ω) =
µ2

2vakBT

(B2A3 − A2B3) + iωA3

(A1B2 − A2B1) + iω(A1 + B2) + (iω)2
(4.28)

=
χII
1

1 + iωτ II1
+

χII
2

1 + iωτ II2
,

where

χII
1 =

µ2

2vakB

1

T
(

1/τ II1 − 1/τ II2
)

[

τ II1 (A3B2 −A2B3)− A3

]

, (4.29)

χII
2 =

µ2

2vakB

1

T
(

1/τ II1 − 1/τ II2
)

[

τ II2 (A3B2 −A2B3)− A3

]

,
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τ II1,2 = 2
{

(A1 + B2)∓
√

(A1 + B2)2 − 4(A1B2 − A2B1)
}

. (4.30)

In the paraelectric phase our results have a particularly simple form:

χ(ω) =
2βµ2

va

1

4a− βν⊥

1

1 + iωτ
, (4.31)

τ =
(1 + a)2(1 + a2)

[K0(1 + a2) + 2Ka](4a− βν⊥)
.

Like in the preceding section, in the case K0 = K1 = K−1, expressions (4.26)
and (4.27) become simplified and we obtain the results of the Glauber approach
derived in [32].

5. Conclusions

In this paper we study relaxational phenomena in quasi-one-dimensional fer-
roelectrics of the order-disorder type. We use Zubarev’s NSO method in order to
describe the kinetics of these compounds. Two closure relations are used to deal
with the obtained kinetic equations. The first one uses the two-site cluster approxi-
mation in order to calculate the dynamic and thermodynamic characteristics of the
system. The second one uses suggested in [32] decoupling for a chain of equations
for quasispin distribution functions. The both approaches give numerically close
results. For the description of experimental data within the NSO method one must
calculate kinetic parameters K(2)

µ and K(1). In the course of such a calculation one
must consider mechanisms of relaxation in given crystals. Such problems will be
considered in our future works. Here we only note that if the kinetic parameters
are independent of frequency, our results coincide with those obtained in [28,32]
within the Glauber model and provide a good description of the experimental data
on quasi-one-dimensional ferroelectric crystals CsH2PO4 and CsD2PO4.

Appendix

The obtained within the NSO method system of equations (4.11) for distribu-
tion functions is not closed. Therefore, the problem of the correct decoupling of
this system arises. The ones used in this paper are not unique.

For example, in paper [20] in order to decouple the equation

−α
d

dt
〈σz

ij〉 = −〈σz
ij〉+ P

(1)
0 (〈σz

i−1,j + σz
i+1,j〉)

+ (M
(1)
1 〈σz

i−1,jσ
z
i+1,j〉+ L

(1)
1

1

2
xij , (A.1)

P
(1)
0 =

1

2

1− a2

1 + a2
, M

(1)
1 =

1

2

(1− a2

1 + a2

)2
, L

(1)
1 =

1

2

1 + 6a2 + a4

(1 + a2)2
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from that for the pair distribution function the following approximation is used:

〈σz
i−1,jσ

z
i+1,j〉 = Γ+ Γ′ xtij

2
, (A.2)

where

Γ =
2

tanh βJ‖/2

{

1−
2a2 − (1− tanh2 βJ‖/2)(βν⊥η0/4)

2

[a2 + (βν⊥η0/4)2]3/2

}

− 1,

Γ′ =
4

tanh βJ‖/2

β2βν⊥η0/4a
2

[a2 + (βν⊥η0/4)2]3/2
. (A.3)

In this way one finds

χIII(0, T ) =
f

2t

M(1)

1− 2P
(1)
0 − βν⊥/4m(1)

, (A.4)

T>Tc=
f

2t

a+ a2 − a3

a2 − βν⊥/4(a+ a2 − a3)
,

τ III = α

{

1− 2P
(1)
0 −

βν⊥
4

M(1)

}−1

, (A.5)

T>Tc= α
1 + a2

2[a2 − βν⊥/4(a+ a2 − a3)]
,

where

M(1) = L(1) + ΓM (1) +
1

4
βν⊥η0Γ

′M (1). (A.6)

Numerical calculations show that these results are close to (4.29), (4.30) at high
temperatures, but in this approach the static susceptibility and relaxation time
become negative at T → Tc.

In [21] the equation for the dynamic part of the distribution function is written
in the form:

α
d

dt
〈σz

ij〉t = −〈σz
ij〉t + P

(2)
0 (〈σz

i−1,j〉t + 〈σz
i+1,j〉t) (A.7)

+
1− 2P

(2)
0

F

(β

4

∑

mn

J⊥mn〈σ
z
i+m,j+n〉t +

βµ

2
Etij

)

,

where

P
(2)
0 =

1

4
(Z10 − Z−10), F =

(sinh2 βν⊥/4η0 + a2)3/2

a2 cosh βν⊥/4η0
. (A.8)

The solution of this equation coincides with the results (3.32), (3.29) of the
two-site cluster approximation, except that at T < Tc

τ IV = α

{

1− 2P
(2)
0 −

βν⊥
4

(1− 2P
(2)
0 )

1

F

}

. (A.9)
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До теорії релаксаційних явищ у квазіодновимірних

сегнетоелектриках з водневими зв’язками. Підхід

нерівноважного статистичного оператора

Р.Р.Левицький, І.Р.Зачек, Р.О.Соколовський

Інститут фізики конденсованих систем НАН України,

290011, Львів–11, вул. Свєнціцького, 1

Отримано 27 грудня 1997 р.

В рамках методу нерівноважного статистичного оператора Д.М.Зу-

барєва виведені кінетичні рівняння для діелектричних характеристик

сегнетоелектриків типу CsH2PO4. Ці рівняння розв’язані в набли-

женні двочастинкового кластера та шляхом розщеплення ланцюжка

рівнянь для функцій розподілу. Обидва методи дають близькі резуль-

тати. Показано, що розраховані динамічні характеристики є близьки-

ми до тих, що отримуються в рамках кінетичної моделі Глаубера та

дозволяють описати динамічну діелектричну проникність кристалів

CsH2PO4 і CsD2PO4.

Ключові слова: нерівноважний статистичний оператор, кінетичне

рівняння, сегнетоелектрики типу лад-безлад, динамічна

діелектрична проникність

PACS: 64.60.Cn
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