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Strange diffusion is defined as a process in which the mean square dis-
placement of a randomly walking test particle behaves asymptotically as
〈

x
2(t)

〉

∼ t
α , with α6=1 . A brief review of the properties of such pro-

cesses is presented, stressing their deep difference from the correspond-
ing normal diffusive evolution. A number of examples are discussed, includ-
ing diffusion of charged particles in a fluctuating magnetic field, continuous
time random walks and transport in chaotic Hamiltonian systems.

Key words: strange diffusion, random process, chaos

PACS: 05.40.+j, 05.45.+b, 83.50.W

1. The problem of transport

Whenever a physicist wants to study the evolution of a certain amount of
matter, he is usually faced with a spatially inhomogeneous system. This means
that the values of the intensive physical quantities (mass density, energy density,...)
differ in different points. When left to itself (without any external constraints), the
system evolves irreversibly towards homogeneity, by progressively equalizing these
values. This evolution is necessarily accompanied by transport processes of mass,
energy, etc. The first of these is associated with the diffusion phenomenon, the
second with heat conduction, etc. (the list is not exhaustive). For simplicity, we
only discuss here the diffusion phenomenon.

This process is described quantitatively by a matter flux Γ (number of molecu-
les crossing, in a given direction, a unit area per unit time). The existence of
a non-vanishing flux is due to the inhomogeneity of the particle density n(x, t)
(number of molecules per unit volume at point x and at time t), measured by the
density gradient (∂n/∂x): the latter plays the role of a thermodynamic force.

The study of the diffusion process requires the establishment of a functional
relation between flux Γ and the corresponding force (∂n/∂x); such a relation is
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called a transport equation (sometimes called a phenomenological relation). 1 Such
a relation cannot be given a priori : it should be derived from a study of the
molecular mechanisms determining the system’s evolution. The identification of
these mechanisms and the study of their consequences constitutes the object of
the transport theory. In a simple case, when the forces are not very strong, these
general transport equations can be approximated by linear relations. In our case,
this relation will be written as:

Γ = −D ∂n

∂x
, (1)

where the diffusion coefficient D is assumed to be constant.The second law of
thermodynamics requires, moreover, that the sign of D be definitely positive: D >

0. Equation (1) expresses the celebrated Fick law.
We now appeal to the continuity equation of hydrodynamics, which expresses

the conservation of the number of particles:

∂

∂t
n = − ∂

∂x
· Γ. (2)

Combining equations (1) and (2), we obtain:

∂

∂t
n(x, t) =

∂

∂x
·D ∂

∂x
n(x, t). (3)

This is the diffusion equation, well known by all physicists (as well as math-
ematicians, chemists, geologists, etc.). It rules the time evolution of the density
profile n(x, t) under the action of spatial inhomogeneity.

The diffusion equation can also be interpreted probabilistically, by defining
n(x, t) as the probability density of finding a particle at point x, at time t. From
the diffusion equation it is easily shown that the average value of a particle’s
position, 〈x(t)〉, is zero at all times if it was zero initially. On the other hand, the
mean square displacement, which is non-vanishing, can be obtained from equation
(3) by simple partial integrations:

∂

∂t

〈

x2(t)
〉

=

∫

dxx2
∂

∂t
n(x, t)

=

∫

dxx2D
∂

∂x
· ∂
∂x

n(x, t) = 2dD,

where d is the dimensionality of the space; hence:

1

2d

∂

∂t

〈

x2(t)
〉

= D(t). (4)

Here appears an apparent paradox: the left-hand side of this equation is gener-
ally a function of time; hence, the quantity appearing in the right-hand side cannot

1In more general cases, one should derive a relation between the set of fluxes and the set of
forces. This leads to a transport matrix, whose symmetry properties are studied in the celebrated
work by L. Onsager. We shall not discuss these aspects here.
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be identified with the constant diffusion coefficient appearing in equation (3). We
will call D(t) the running diffusion coefficient. This simple analysis shows that the
macroscopic equation (3) cannot be universally valid. It appears, however, that in
numerous cases, the mean square displacement starts nonlinearly (usually as t2)
for short times, then tends progressively toward a linear form. As a result, the
running diffusion coefficient tends, for long times, toward the positive constant D
(see figure 1): the latter is identified, by definition, with the macroscopic diffusion

Figure 1. Mean square displacement (A) and running diffusion coefficient (B).
Diffusive regime.

coefficient:

D = lim
t→∞

1

2d

∂

∂t

〈

x2(t)
〉

. (5)

The macroscopic transport equation thus appears as an asymptotic limit, valid
for sufficiently long times. In the molecular transport theory, there appears, there-
fore, a characteristic time τR, such that the macroscopic laws (e.g., the emergence
of a constant diffusion coefficient) become valid for times sufficiently long compared
with τR: t≫ τR.

2. Normal transport

If the system under consideration were made up of strictly independent molecu-
les, in the absence of any external field, these particles would have a uniform rec-
tilinear motion limited only by the reflexions on the walls. Their positions would
be linear functions of t and their MSD would be proportional to t2. Hence, equa-
tion (5) would yield an infinite diffusion coefficient! In order to understand the
existence of a finite diffusion coefficient, we must necessarily identify one (or sev-
eral) mechanism(s) that are able to slow down (on the average) the motion of the
particles. A universal mechanism of this kind is provided by the particle collisions.

Kinetic theory

The most rigorous tool for the derivation of macroscopic transport processes
from the basic laws of molecular dynamics is provided by non-equilibrium statisti-
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cal mechanics. In this field D. N. Zubarev was a great master: his book “Nonequi-
librium statistical thermodynamics” [1] is a classic. Although the discipline was
inaugurated by L. Boltzmann in 1872 [2], it only began flourishing in the second
half of the 20-th century, with a large number of works of which we quote only
a few [3]–[8]. Although the methods used by various authors differ in details, the
main strategy is common. The theory proceeds in two steps. At the first stage it
is shown that the basic Liouville equation leads asymptotically, under certain con-
ditions, to an intermediate equation called a kinetic equation. In the second step
the laws of macroscopic physics are derived from the latter (using an additional
asymptotic treatment) by the averaging process.

The kinetic equation governs the time evolution of the one-particle reduced dis-
tribution function f(x,v; t) defined as the probability density of finding a particle
at point x with velocity v at time t. 2 Its general form can be written as follows
(in the absence of an external field):

∂

∂t
f(x,v : t) = −v· ∂

∂x
f(x,v; t) +K{f}. (6)

The first term on the right-hand side represents the free motion of the particles,
the second one describes the effect of the collisions. The latter is an expression
depending nonlinearly on the distribution function; its explicit form depends on
the type of the system considered (gas, solid, plasma, etc.) It is out of the question
to give in this short paper even an outline of the derivation or of the solution of
this class of equations: these matters are treated in detail in [1]–[8]. Let us just
say that, as mentioned above, an asymptotic treatment of the kinetic equation (6)
leads to the diffusion equation (3) with the following expression of the “classical”
diffusion coefficient :

DCL =
V 2
T

2 ν
=
kBT

mν
. (7)

Here VT represents the thermal speed of the particles related to the temperature T
and the mass m of the molecules: VT = (2kBT/m)1/2 (where kB is the Boltzmann
constant). ν is the collision frequency (number of collisions per unit time): its form
depends on the nature of the molecular interactions, as well as of the temperature T
and of the density n of the environment. Its specific expression is derived from the
kinetic equation. This quantity defines the characteristic time mentioned above:
τR = ν−1.

Classical random walks

Although kinetic equations are the starting point of any rigorous transport
theory, their derivation and/or their solution are often extremely difficult. It thus
appeared necessary to develop alternative methods that avoid the difficulties, at
the price of introducing some a priori reasonable assumptions. The necessity of
such alternative approaches was also mentioned by Zubarev in chapter 4 of [1]. An

2We only discuss classical mechanical systems in this paper.
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extreme type of such approaches is the classical theory of random walks elaborated
at the beginning of this century by Einstein [9]. In this model the dynamical laws
governing the motion of the molecules are replaced by purely probabilistic rules.

More precisely, it is assumed that a particle starting at the origin performs
at each instant t = n τ a step of length (and direction) x, with the transition
probability density f(x) specified in advance. The steps thus occur at discrete times
separated by intervals of length τ (n is a positive integer). If f(x) is symmetric,
the average 〈x(t)〉 = 0, but the mean square displacement 〈x2(t)〉 6= 0. It appears
that the latter quantity (which measures the extent of the region visited by the
particle) increases linearly in time. Combining this result with the probabilistic
interpretation (5), an expression for the diffusion coefficient is obtained.

Clearly, this model is much rougher than the kinetic theory, but for complex
systems it is often one of the few theoretical tools available. 3 The main results ob-
tained within this framework are summarized here. The mean square displacement
grows linearly in time:

〈

x2(t)
〉

= 2dD t. (8)

This property defines what will be called a diffusive regime. The diffusion coeffi-
cient is obtained as:

D =
〈〈x2〉〉
τ

. (9)

Here 〈〈x2〉〉 is the second moment of the transition probability, namely: 〈〈x2〉〉 =
∫

dx x2 f(x). Clearly, the diffusion coefficient is determined by the “pseudo-dyna-
mical law” defined by f(x); it is automatically a positive quantity. A more detailed
result is obtained in the theory of random walks: the form of the density profile
n(x, t):

n(x, t) =
1

(4πD t)d/2
exp

[

− x2

4D t

]

. (10)

The density profile thus has, at all times, a Gaussian form. This result is an
expression of the celebrated central limit theorem of the probability theory. It
is easily checked that expression (10) is a fundamental solution of the diffusion
equation (3) which reduces to the delta-distribution δ(x) at t = 0. The three
results (8)–(10) are the signature of the normal transport (or classical transport)
law. This law is applicable to a large number of “usual” situations. The “perverse”
physicist, however, is eager to find exceptions...

3. Anomalous diffusion

In the situations discussed above the dissipative mechanism controlling diffu-
sion consists of interparticle collisions. There exist, however, very interesting and
important situations where the collisions become extremely rare: this happens, for
instance, in plasmas at very high temperatures. Nevertheless, in these cases there

3An intermediate, “semidynamical” approach will be discussed below.
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exist transport processes characterized by finite coefficients. This observation im-
plies that some phenomena, other than individual particle collisions, introduce the
necessary dissipation. These are collective phenomena involving simultaneously a
large number of particles acting synchronously. One must consider in this case
the density fluctuations and/or the electromagnetic field fluctuations producing
waves which exist in a large variety in plasmas. These excitations interact glob-
ally producing scattering, emission, absorption or transformation processes which
introduce dissipation. When the amplitude of these excitations increases (in par-
ticular, as the result of their intrinsic instability), their nonlinear interactions may
lead (through a cascade of bifurcations) to a new state, far from the equilibrium,
called a turbulent state.

The problem of transport in turbulent states remains one of the most difficult
problems of physics: up till now it has only partial answers in specific cases. It
may be shown in certain instances that a positive diffusion coefficient may exist.
In comparison with our discussion of the normal transport, we may underscore the
following characteristics:

• The mean square displacement is asymptotically a linear function of time of
the form (8).

• The diffusion coefficient is not of the form (7). It is not (or not only) con-
trolled by the collision frequency ν (which is either zero or very small) but
rather by the characteristics of the non-collisional dissipative processes, such
as the intensity of fluctuations, the correlation lengths, etc.

• The density profile remains Gaussian (10) (at least asymptotically), hence
this quantity is the solution of the diffusion equation (3).

Whenever these three conditions are combined, we speak, by definition, of an
anomalous transport regime: it is a diffusive but non-collisional regime. We cannot
summarize here the enormous amount of literature devoted to this problem (see,
e.g., [10]). A specific example will appear below.

4. Strange transport

The anomalous transport regime differs from the normal one only by the dissi-
pation mechanism controlling it (the difference is, however, not a minor one, as it
results from the difficulty of establishing a rigorous theory of these processes). We
now make a decisive step that will lead us to “another world”. The new regime
considered here is defined by the following criteria:

• The mean square displacement tends asymptotically toward the following
form:

〈

x2(t)
〉

=⇒
t→∞

A tα, α 6= 1. (11)
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• The coefficient α is called a diffusion exponent. (A is a positive dimensional
constant). The present regime is thus definitely non-diffusive; if α = 1, the
diffusive regime is recovered.

• The running diffusion coefficient D(t) behaves asymptotically as follows:

D(t) =⇒
t→∞

C tα−1. (12)

• The running diffusion coefficient D(t) is controlled by non-collisional (or
partially collisional) mechanisms.

• The density profile is non-Gaussian.

These features together define a strange transport regime.4 Two types of strange
transport can be distinguished.

• The superdiffusive regime is characterized by the diffusion exponent α > 1.
In this case, equation (12) shows that:

lim
t→∞

D(t) = ∞. ( superdiffusive) (13)

• The subdiffusive regime is characterized by the diffusion exponent α < 1. In
this case,

lim
t→∞

D(t) = 0. ( subdiffusive) (14)

We now discuss several examples of strange transport.

5. Diffusion of charged particles in a fluctuating magnetic fi eld

We consider a collection of independent charged test particles moving in the
presence of an external magnetic field. The latter is a superposition of the (strong)
constant field B0 directed along the z -axis of a cartesian reference frame, and a
stationary (“frozen”) fluctuating perpendicular component directed (for the con-
venience) along the x -axis, and depending on z :5

B(z) = B0 [ez + b(z) ex] . (15)

4Many authors call this regime anomalous transport. The same terminology is used by other
authors in the sense defined in section 3. We believe that it is very important to distinguish between
these two completely different types of phenomena [8]. The term “strange kinetics” first appeared
in an important work by Shlesinger, Zaslavsky and Klafter [11].

5In general, b(z) depends on the three coordinates x,y,z. The assumption of the dependence on
z alone yields a major simplification, as it will be seen below.
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Here ex, ez are unit vectors, B0 is the amplitude of the unperturbed field, and
b(z) is statistically defined by a homogeneous, centred Gaussian stochastic process
characterized by the following correlation function:

〈b(z1) b(z1 + z)〉 = B(z), (16)

where B(z) is a function of z, given a priori.6 The following form may be chosen
for the convenience:

B(z) = β2 exp

(

− z2

2λ2

)

. (17)

This function introduces two characteristic parameters: β measures the intensity
of fluctuations and λ is the correlation length. This problem can be solved by a
“semi-dynamical” method (see the footnote 2).

The Langevin equations

The magnetic field lines associated with (15) obey the following purely geo-
metric equation defining the coordinate x(z) along the line, in terms of the pa-
rameter z :7

dx(z)

dz
= b(z). (18)

Given that b(z) is not a deterministic quantity, the “solution” x(z) of equation (18)
cannot take numerical values; only the averages of the functions of x(z) over the
ensemble of realizations of b(z) have meaningful values. Equation (18) belongs to
the class of stochastic differential equations first introduced by Langevin in 1908
in the theory of the Brownian motion (see: [12]). From equation (18) it is not
difficult to obtain an expression of the mean square displacement of the magnetic
field lines:

〈

x2(z)
〉

=⇒
z→∞

2Dm z. (19)

In this problem, where z plays the role of “time”, we find an asymptotically
diffusive behaviour. Starting from a given point on a field line and advancing in
the z -direction, the field line becomes more and more diffusive because of the
fluctuations: this is the phenomenon of magnetic diffusion which introduces the
magnetic diffusion coefficient Dm.

We now introduce test particles in this field. In the first approximation, if the
unperturbed field B0 is sufficiently strong, the particles’ position can be replaced
by the position of their guiding centres which move (upon neglecting the slow drift
motion) in a direction parallel to the (perturbed) field and undergo, from time to

6In a completely self-consistent theory, the particle’s motion retroacts on the magnetic field, and
one should use a coupled system of equations for the plasma and the magnetic field. In the present
simplified model, independent particles move under the action of an independently prescribed field
(for this reason they are called test particles rather than plasma particles).

7It is now seen that if the fluctuating field were to depend on the coordinate x, the right-hand
side of equation (18) would be b[x(z), z], and the equation would be highly nonlinear.
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time, a collision. The z coordinate of the test particle is thus represented by the
following equation:

d z(t)

dt
= v(t). (20)

The right-hand side is a random quantity modelling the action of the collisions. It is
also assumed to be a stationary, centred Gaussian stochastic process characterized
by the following correlation function:

〈v(t) v(t+ τ〉 = R0(τ), (21)

where R0(τ) is a prescribed function:

R0(τ) =
1

2
V 2
T exp(−ντ). (22)

We may note that the calculation of the (“parallel”) diffusion coefficient from
equations (20)–(22) – which do not depend on the magnetic field! – yields exactly
the classical, purely collisional diffusion coefficient DCL, equation (7).

Combining equations (18) and (20), we find the equation for the x -coordinate
of the test particle:

d x(t)

dt
= b[ z(t) ] v(t). (23)

We now have to treat a doubly stochastic equation, involving both the collisional
fluctuations and the magnetic ones: it was solved exactly in [13], [14]. The result
for the mean square displacement 〈δx2(t)〉 ≡ 〈[(x(t)− x(0)]2〉 is a highly nonlinear
function of time:

〈

δx2(t)
〉

= 4DCL β
2

γν

{

[1 + γψ(νt)]1/2 − 1
}

, (24)

where the function ψ(x) = x− 1 + exp(−x), and:

γ =
V 2
T

ν2λ2
=

(

λmfp

λ

)2

. (25)

The parameter γ, square of the ratio of the collisional mean free path λmfp to
the correlation length, is a measure of the collisionality (large γ is equal to small
collisionality). It is easily found that the mean square displacement starts like t2

for short time, whereas asymptotically, for large t, it tends towards:

〈

δx2(t)
〉

=⇒
t→∞

4DCL β2

√
γν

t1/2. (26)

We thus found a typical strange, subdiffusive behaviour, as in equation (11), with
α = 1/2. The corresponding (“perpendicular”) running diffusion coefficient be-
haves asymptotically, as:

D(t) = DCL β2

√
γν

t−1/2; (27)
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it tends to zero as t → ∞. This subdiffusive behaviour expresses the fact that
the particles “stick” to the magnetic field lines: they move in the lateral direction
only because the field lines themselves are diffusing. The mean square displace-
ment and the running diffusion coefficient are shown in figure 2 (to be compared
with figure 1).

Figure 2. Mean square displacement (A) and running diffusion coefficient (B).
Subdiffusive regime.

The hybrid kinetic equation

It is always possible to associate with the Langevin equations (20) and (23)
a kinetic equation for the distribution function of particles in the space (x, z):
F (x, z; t):

∂F (x, z; t)

∂t
+ v(t)

∂F

∂z
+ v(t)b(z)

∂F

∂x
= 0. (28)

The main difference from the ordinary kinetic equation, e.g. (6), is that the
velocity is not considered as a phase space variable, but rather as a given function
of t in every realization, globally defined statistically by equation (21); similarly,
b(z) is defined statistically by equation (16). Equation (28) thus incorporates both
the statistical aspect of the phase space probability distribution (as in ordinary
statistical mechanics) and additional fluctuations of the coefficients. It will be
called the hybrid kinetic equation [13], [8] (sometimes also “stochastic Liouville
equation”, a rather improper name). Although containing the same physics as the
Langevin equation, the hybrid kinetic equation provides a direct access to more
refined physical quantities (such as the density profile) and can treat problems for
which the Langevin equation is not applicable [15].

A rather standard calculation [13], [8] leads to the derivation of an equation for
the radial density profile, defined here as the average of the distribution function
over the ensemble of magnetic and collisional fluctuations and integrated over the

824



Strange diffusion

coordinate z, n(x, t) =
∫

dz 〈F (x, z; t)〉:

∂ n(x, t)

∂t
=

∫ t

0

dθ R(θ)
d2

dx2
n(x, t− θ). (29)

This evolution equation resembles the diffusion equation (as it contains the
Laplacian on the right-hand side), but differs from the latter in an essential aspect.
The rate of change of n(x, t) depends not only on the instantaneous state at time t,
but on the whole history of situations between 0 and t. The influence of history is
contained in the memory function R(θ) whose explicit expression is obtained from
the hybrid kinetic equation. Equation (29) is properly called a non-Markovian
diffusion equation.

Figure 3. Memory function in the non-
Markovian diffusion equation.

Whenever the memory function de-
cays very fast (exponentially) over a
characteristic correlation time τC dur-
ing which the density profile is barely
changed, the retardation can be ne-
glected, n(x, t − θ) ≈ n(x, t), and
the limit of integration can be ex-
tended to infinity. As the result of this
asymptotic approximation (markovian-
ization), equation (29) reduces, for t≫
τC, to the ordinary diffusion equation
(3), with the following identification of
the diffusion coefficient:

D =

∞
∫

0

dθ R(θ). (30)

In our present problem, however, the situation is different. It appears that the
memory function decays very slowly for long times, as a power law (figure 3):

R(θ) ∼ θ−3/2. (31)

As a result, the Markovian approximation is no longer justified; one must solve
directly the non-Markovian diffusion equation. The subdiffusive regime thus leads
to a deep change of the evolution law. This change is responsible, in particular, for
the non-Gaussian density profile which appears as the solution of equation (29).
The latter has at all times a long tail, as can be seen in figure 4. This figure also
shows the solution of equation (29), arbitrarily markovianized, with the memory
function (31). The large difference between the two functions is clearly visible.

On the other hand, the running diffusion coefficient, defined as in equation (30)
with an upper integration limit equal to t, rather than ∞, appears to be identical
to the result derived from equation (24) for all times, and reduces to (27) for long
times. [This can be immediately checked qualitatively from equation (31)].
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Figure 4. Subdiffusive (solid line) and markovianized (dashed line) density pro-
files at two different times.

6. Continuous time random walks (CTRW)

We now consider a remarkable generalization of the classical concept of a ran-
dom walk introduced by E. Montroll and his co-workers in 1965 [16] and beautifully
exposed in a review paper [17]. It is only recently that this concept began to exploit
its many possibilities (e.g., [18], [11], [19], [14], [8]). In this model, a test particle
performs uncorrelated steps of length and direction defined by x, at times t which
are random. As this description no longer considers time as an integer multiple of
an elementary quantum, but rather as a real variable, the corresponding model is
called a Continuous Time Random Walk (CTRW). In order to define the problem,
two functions must be specified a priori :

• f(x) : the probability density of step x (the same object as in the classical
random walk theory),

• p(t) : the probability density of a waiting time of length t between two
successive steps.

The CTRW defined in this way is an exactly solvable problem.
This generalization of the classical random walk is very flexible; it turns out

to be a remarkable tool for the study of strange transport. In particular, we may
choose (in one dimension) for f(x) a Gaussian distribution (at least at a large
distance):

f(x) ∼ exp

(

− r2

2σ2

)

, (32)

where r = (x · x)1/2, and σ is a characteristic length. For the waiting time distri-
bution we assume a power law decay (for large t):

p(t) ∼
(

t

τD

)

−1−α

, 0 < α < 1, (33)

where τD is a characteristic time. This model will be called the standard long-
tail CTRW (SLT-CTRW). It is then shown that the system behaves according to
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the strange transport law, for which α is precisely the diffusion exponent. More
precisely, the following results are obtained [8], [14], [17], [19]:

• The mean square displacement behaves asymptotically as follows:

〈

x2(t)
〉

∼
(

t

τD

)α

. (34)

• The density profile obeys the non-Markovian diffusion equation:

∂n(x, t)

∂t
=

∫ t

0

dθ Rα(θ)∇2n(x, t− θ). (35)

• The memory function has a long-tail power law behaviour (for long times):

Rα(θ) ∼
(

θ

τD

)

−2+α

.

• The density profile [fundamental solution of equation (35)] is non-Gaussian;
it reduces to a Gaussian one only when α = 1:

n(r, t) = σ−d

(

t

τD

)

−αd/2

exp
(

−bξ2/(2−α)
)

. (36)

• The density profile obeys the scaling law, i.e. it depends on x only through
the similarity variable ξ:

ξ =
r

tα/2
. (37)

These results show that the SLT-CTRW bears all the signatures of a strange
diffusion evolution of the subdiffusive type. It is interesting to compare these re-
sults, for α = 1/2, with the exact solution of our test problem from the previous
section. It appears [14] that, with some rather weak restrictions, the SLT-CTRW
is an excellent model for the strange diffusion in a fluctuating magnetic field, even
for predicting very refined quantities.

7. Chaotic Hamiltonian dynamical systems

Non-integrable dynamical systems have been very extensively studied in the
past three decades, both analytically and numerically [20] - [23]. In particular, iter-
ative maps are simple models exhibiting the complex nature of orbits of dynamical
systems, especially Hamiltonian systems. A map that was used by many authors
as a paradigm applicable to a variety of problems is the standard map introduced
by Chirikov and Taylor in 1983 [20]. It is a two-dimensional map describing the
evolution at discrete times ν = 0, 1, 2, ... of the (action) variable xν and the angle
variable θν :

xν+1 = xν −
K

2π
sin 2πθν , θν+1 = θν + xν+1 (mod1). (38)
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Figure 5. Diffusion coefficient vs. stochasticity
parameter in the standard map: diffusive and
superdiffusive regimes.

K is the stochasticity parameter.
For small finite values of K, the
phase portrait consists of island
chains around periodic orbits sur-
rounded by thin stochastic layers
and sandwiched between KAM
(Kolmogorov - Arnol’d - Moser)
surfaces. As K increases, the
stochastic layers become thicker
and the KAM surfaces are pro-
gressively destroyed. Above the
critical value Kc all KAM barri-
ers are destroyed, and any chaotic
orbit wanders up to unlimited val-
ues of x: this is the state of a
global chaos. We are interested
here in the relation of the stan-
dard map to the transport of
“particles” in the x-direction. The standard map appears to describe all types
of the normal and strange diffusion regimes according to the value of the stochas-
ticity parameter K.

It has been known for a long time [24] that in the limit of very large
stochasticity, i.e. in the region of a global chaos, the standard map de-
scribes a typical diffusive evolution. This result has been recently derived
in a very rigorous way, by using the methods of statistical mechanics, by
Hasegawa and Saphir [25], [8]. It is stated precisely as follows. Consider
a distribution of particles over the phase space described by the density
profile n(x, ν). The following limiting domain of the parameters is defined:

Figure 6. A chaotic orbit around the period-1
island in the standard map phase portrait.

1√
K

≪ 1,
x

K
≫ 1. (39)

Thus, the stochasticity parameter
is very large, but simultaneously,
the distances considered are very
large. In this limit it is shown that
the density profile at (discrete)
time ν is:

n(x, ν) ∼ exp

(

− x2

4D ν

)

. (40)

Thus, the density profile is Gaus-
sian, with a constant positive dif-
fusion coefficient. The latter is
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Figure 7. A section of the time series of the chaotic orbit of figure 6.

given to the dominant (“quasilinear”) order as follows:

DQL =
K2

4
. (41)

It is clearly seen that now we deal with the typical situation of anomalous
transport, in the sense defined in section 3. Indeed, the process has all the features
of a diffusive process, but the diffusion coefficient is determined by K, a quantity
that is not related to collisions. When the diffusion coefficient is evaluated to the
next order in the small parameters (39), one finds:

D =
K2

4
[1− 2 J2(K)] , (42)

where J2(K) is the Bessel function of order 2. The curious oscillations of this
quantity as a function of K (figure 5) may be due to the presence of islands,
although this usual interpretation is not formally proven.

Numerical simulations confirm this behaviour of the diffusion coefficient up to
a point: the position of the maxima is quite well reproduced, but the first maxima
are much higher than indicated by (42). It has been shown that this behaviour is
due to a specific property of the standard map: the variable x is also periodic, as
well as θ [this is easily seen in equations (38)]. As a result, there exist periodic
orbits which wander indefinitely far both in the θ and x directions: these are called
accelerator modes [21]. Orbits starting in the neighbourhood of such a mode are
carried away very far before decorrelating. It has been shown in detail that such
a behaviour leads to a superdiffusive regime with D → ∞ for certain ranges of K
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(corresponding to the stability domains of the accelerator modes) [26], [27]. This
explains quite well the presence of the peaks (singularities) in figure 5.

Figure 8. Running diffusion coefficient in the
chaotic layer of figure 6.

A problem of great interest
is the behaviour of chaotic or-
bits in the domain of an incom-
plete chaos, K < Kc. In particu-
lar, if we think of the diffusion of
magnetic lines in a toroidal mag-
netic field configuration (as in a
tokamak), the interest lies in sit-
uations in which the latter are
effectively confined, and cannot
wander out of the vessel. Con-
sider a chaotic layer around an is-
land chain, such as the one whose
phase portrait is shown in fig-
ure 6. The single chaotic orbit
shown there is sticking around the island. An alternative picture is obtained by
showing the time series xν as a function of ν for a long orbit (figure 7). The parti-
cle has a very peculiar behaviour: for a certain time it oscillates pretty regularly,
remaining all the time around the lower half of the island, then suddenly it jumps
to another mode where it oscillates around the upper half, then it may jump to a
mode where it oscillates around the whole island, etc. We thus identify three basins ;
the particle waits in one basin for an (apparently) random time, then jumps to an-
other basin, etc. This behaviour strongly suggests a continuous time random walk
(CTRW) of the type studied in the previous section [28], [8], [29]. The adaptation
of a CTRW to the present problem is very easily performed. The input, i.e. the
transition probabilities fnm between the basins and the waiting time probabilities
pn(t) in each basin are determined numerically by analyzing very long orbits [29].
A set of evolution equations for the density in the three basins is then derived and
the mean square displacement, as well as the running diffusion coefficient are de-
termined analytically from the latter. The result is a typical subdiffusive behaviour
of the standard map in the subcritical regime K<Kc characterized by a running
diffusion coefficient (figure 8) which behaves asymptotically as:

DSM ∼ t−β , β ≈ 1.1. (43)

The subdiffusive behaviour is due, on the one hand, to the sticking of the
orbits around the island and, on the other hand, to the presence of KAM barriers
bounding the stochastic region and preventing the mean square displacement from
growing indefinitely as in the case of a free diffusion.
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8. Conclusion

The main conclusion of this review is that the paradigm of the diffusive trans-
port theory, based on the classical collisional kinetic theory and the theory of the
Brownian motion has numerous and important exceptions. We insist on the fact
that the signature (11) of strange transport, with α 6= 1, is not a mere small
quantitative difference from the diffusive regime. It rather implies a deep change
of the evolution law, which becomes non-Markovian, hence, history-dependent.
Whenever the memory function has a slow power-law decay in time, the stan-
dard Markovian model cannot even be considered as an approximation to the true
evolution law.

Among the applications of the concept of strange transport, let us quote: fluid
flow in disordered media (e.g., porous solids), percolative transport that intro-
duces diffusion in a fractal environment, diffusion in a turbulent plasma, proper-
ties of polymers, etc. Clearly, a large number of fields of investigation open up
for researchers in the domain of the transport theory, where D. N. Zubarev made
pioneering contributions.
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Аномальна дифузія

Р.Балеску

Асоціація “Євроатом – Бельгія” з термоядерного синтезу,

Вільний університет м. Брюселя, CP 231,

Кампус Плен, бульвар Перемоги,

1050 м. Брюсель, Бельгія

Отримано 25 березня 1998 р.

Подається означення аномальної дифузії як процесу, при якому се-

реднє квадратичне зміщення випадкового блукання частинки, що

розглядається, має асимптотичну поведінку
〈

x
2(t)

〉

∼ t
α , де α6=1 .

Подається короткий огляд властивостей таких процесів, особливо

наголошується на глибокій різниці з відповідною нормальною ди-

фузійною еволюцією. Обговорюється багато прикладів, у тому числі

дифузія заряджених частинок у флуктуюючому магнітному полі, не-

перервні часові випадкові блукання та процеси переносу в системах

з хаотичним гамільтоніаном.

Ключові слова: аномальна дифузія, випадковий процес, хаос

PACS: 05.40.+j, 05.45.+b, 83.50.W
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