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The bipolaron theory was first studied in [1] by the adiabat-
ic approximation for the case of strong coupling of electron-
phonon interaction and isotropic continuum medium. Leav-
ing aside the history of the bipolaron study presented in [2,
3], we consider the problem using the traditional Frohlich
Hamiltonian which is generalized to the case of anisotropic
two- atomic crystals [4, 5]. For the bipolaron problem the
corresponding Hamiltonian has the form
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where iT̂  is the kinetic energy of the electron with coordi-
nates 1r and 2r , 2,1̂V  is the potential energy of electrons,
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The phonon frequencies )(kjω  with normal coordinates

ka  and +
ka , polarization vectors )(ke j satisfy the disper-

sion equation
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Polarization vectors follow the condition
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It should be noted that the Hamiltonian in Eq.(1) de-
scribes the bipolaron states in crystals with the uniaxial an-
isotropy. In this case, if we reduce the tensors of effective
mass and dielectric permittivity 0ε̂ and ∞ε̂  to the main axes,
notations ||, mmmmm zzyyxx === ⊥  can be introduced.

Let us assume ||, εεεεε === ⊥ zzyyxx .In contrast
to works [6, 7] where the limiting cases of low- dimen-
sional systems are considered, we study crystals with ar-
bitrary anisotropy of effective band mass and dielectric
permittivity (in the general case we also take into account
their time and space dixspersion ).

In the weak -coupling limit there are no localized
bipolaron states in the continuum medium for which the
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Hamiltonian used Eq.1 is valid.
Let us use unitary transformation to change

kkk jjj faa +→ )()( , being kjf independent of variables
r  and )(kja . The average on the phonon vacuum leads to
the Hamiltonian
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Minimization of Eq.(6) over jkf  and summation over
the polarization vectors (which is similar to minimization of
the polaron energy, developed in [5]) result in the adiabatic
Pekar bipolaron functional

efVVTT +++=Ψ 1221)(J ,                        (7)
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Good results were obtained in [8] by minimization
of functional in Eq.(7) for isotropic systems, where the
trial wave functions were taken in the form

)exp()1(),( 2122 rrrr 11 ααβ −−+=Ψ rA  .          (8)

Here 212 rr1 −=r , and 1r , 2r  are the coordinates of
the first and the second electron, respectively. The ac-
count of the term with multiplier 12rβ enables us to con-
sider the electron correlation effects. But in the case of
anisotropic crystals, the use of these wave functions leads
to cumbersome calculations when evaluating integrals
for potential energy 12V  and the term corresponding to
the electron-phonon interaction. However, using a set
of Gaussian trial wave functions, we made the analyti-
cal calculations in the explicit form.

In this paper, we use the trial wave function, which is
axially symmetric and has the form

Ψ( , ) exp( )
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where { }ρ = x y, .

In this relation, the parameters are chosen to account
the symmetry or antisymmetry with respect to exchange
of electron coordinates.

The interference terms 2122 zza i  and 2122 ρρib  in the

exponential index take into account the correlation effects.
To calculate the minimum of functional Eq. (7), it is con-

venient to make the scale transformation rr λ⇒ ,where λ
is the scale multiplier, which can be found by the virial theo-
rem, TVV ef 2/)( 12 +−=λ , and NTVVE ef 4)( 12 +−=λ ,
where N is the normalization multiplier.

All averaged quantities in the functional Eq.7 can be
easily calculated by the wave functions Eq. 9. The mini-
mization of λE  with respect to the parameters
Cj , ija , bij (i = 1, 2, 3;  j = 1,..., n) was made by the method
of fast descent and it was applied to calculation of the
energy of para- and orto- helium ground states. The cal-
culations for n = 7 yield the following results E0 =
-2.8722374 for the parahelium, and E1 = - 2.1183365 for
the ortohelium, which coincide with the best calculations
of corresponding quantities [9] in all significant numerals.
This application shows that our approximation of trial func-
tions by  Eq.(9)  is rather convenient to minimize the bipo-
laron functional.

We note that the choice of the wave functions in the
form of Eq. (9) enables us to perform easily the symmetriza-
tion procedure (or antisymmetrization) over the electrons
coordinates. For instance, for the triplet states the coeffi-
cients Cj must differ in sign for terms different in the ex-
changing electron coordinates 1r and 2r , while for the singlet
states they coincide in sign. The following symmetrization
(the choice equivalent variational parameters corresponding
to the terms, which are different in exchanging electron coordi-
nates) can be made by the minimization of the functional. The
possibility of calculation of singlet- triplet splitting for two-
electron system by wave functions chosen as linear combina-
tion of gaussian orbitales enables us to estimate the depen-
dence of the exchange energy on the inter -ion distance with-
out ignoring the electron correlation effects which can play a
key role.

Fig 1. shows the dependence of the bipolaron ground
state energy (line 1) and the polaron one (line 2) on the
ratio of effective masses (in logarithmic scale) for the cases
of anisotropy «light axis» ( 1|| >⊥ mm ) and  light plane
( 1|| <⊥ mm ), when 00 ⇒∞ εε .

The corresponding bipolaron binding energy is plot-
ted in Fig. 2. The bipolaron and polaron energies of
ground state are shown to decrease if the anisotropy ris-
es, while the polaron binding energy increases (especial-
ly for crystals with quassi-one-dimensional anisotropy).

In the isotropic case, we result in lower energy of the
bipolaron ground state and the larger binding energy ∆W
(∆W I p2 0 253≅ .  as 00 ⇒∞ εε ) then the best results [8]
calculated for the strong-coupling case, with the use of
the conventional trial wave functions Eq. 8. The mini-
mization of the polaron functional by trial function in-
volving seven gaussian orbitales exactly leads to the en-
ergy evaluated in [10] in strong - coupling limit. We use this
value to evaluate the binding energy. The situation is similar
to the case of isotropic crystals.

In comparison with isotropic case, the regions of param-
eter 0εεη ∞= , where bipolaron exists, are slightly extend-
ed. For example, if 32|| =⊥ mm  the bipolaron is stable as
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,00 =≤≤ cηη .150, and if 64|| =⊥ mm  it yields
ηc = 0140. .

We note that the calculation of the bipolaron energy in
the ground state for anisotropic crystals is similar to the
calculations for the crystals with anisotropic effective mass-
es, which we study. Moreover, in the limit 00 →∞ εε , us-
ing the scale transformation of electron coordinates
( 2,1||2,1

~zz εε ⊥→  we can reduce the problem to the case
under consideration, where effective masses are anisotro-
pic, while the dielectric constants are isotropic. The new
effective masses are connected with the initial dielectric
constants. by the relation ∞⊥∞⊥ = εε ||||

~~ mm .
To discuss the bipolaron formation in the crystals where

high-temperature conductivity is observed, we consider
example La2CuO4, in which there is a great anisotropy of
effective masses and dielectric permittivities. This crystal
provides a good possibility for calculation of the bipolaron
bound energy in the crystals where the anisotropy of effec-
tive masses and dielectric constants occur coincidentally.
In our assumption, the data of static and high- frequency
dielectric constants are only required, these constants are
well-known from experiments [11], 4=∞ε , 500 =ε in the
plane of layers CuO2, and 230 =ε in the perpendicular di-
rection.

In the case of isotropic effective masses, the bipo-
laron binding energy is 15.6 % of the polaron energy,
but in the limiting case of the maximum anisotropy of
effective masses zxy mm << , this quantity is 25,2 % of
the polaron energy. Therefore bipolaron formation
should be quite possible in crystals with high-tempera-
ture conductivity, especially, if we take into account that
these crystals are the systems with «light plane» anisotro-
py.

Fig. 3 shows the bipolaron bound energies expressed in
the units of the double polaron energy at various values of
the ratio zxy mm . The lines 1, 2, 3, 4, 5, correspond to this
ratio at 1, 2-2, 2-4, 2-15, 2-20, respectively .

It is seen that the region of bipolaron existence extends,

and the binding energy increases as the anisotropy of crys-
tals grows. We point out that we can consider the two-di-
mensional systems by this method using scale transforma-
tion 2)4/3(32)3()2( π≅DIDI pp  (where )2( DI p  and
I Dp( )3  are the polaron energies in the two- and three- di-
mensional systems, respectively). Similar relations can be
derived for the bipolaron ground state energy and, conse-

Fig. 1. Energy of polaron ground state (line 1), and bipolaron ground

state (line 2). { }zxy mmm ,min* = .

Fig. 2. Bipolaron binding energy for the anisotropic cases: «light

axis» ( zmm =* ), and «light plane» ( xymm =*
).

Fig. 3. Dependence of bipolaron binding energy on parameter

0εεη ∞=c . The lines 1, 2, 3, 4, 5, correspond to the parame-

ter m mxy z  equal to 1, 2-2, 2-4, 2-15, 2-20, respectively.
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quently, for the considered bipolaron binding energy. The
validity of this scale transformation in the case of two-di-
mensional systems is revealed in [12], and numerically test-
ed by us for the case of the maximum anisotropy of effective
masses.

It must be noted note that we consider electron- optical-
phonon interaction. Using the continuum approximation, we
can easily express the binding energy for electron- acous-
tic-phonon interactions. But the absence of reliable data on
the tensor of the deformational potential makes it impossi-
ble to calculate the binding bipolaron energy with account
of the condenson effect. We note that this effect can play a
key role due to the increasing bound energy in this case.
The binding energy of autolocalized state may change sig-
nificantly as a result of interaction with plasma vibrations of
charge carries in conduction and valence bands, or in sys-
tems of movable ions for crystals with ion conductivity [13].
But in addition to the effect caused by screening Coulomb
interactions of electrons and ion vacancies, for bounded
systems, such as polarons, bipolarons, F, F′, F2- centers there
is a screening of electron interactions with optical phonons.
There for, without detailed calculations of binding energy
for the polaron and the bipolaron surrounded by plasmons
we cannot estimate the plasmon effect on these energies.
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