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Low-temperature features of thermodynamics of an open
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Low-temperature magnetic susceptibility and specific heat of an antiferromagnetic Heisenberg

chain with open boundary conditions are calculated with the help of exact Bethe ansatz method.

These characteristics behave with temperature in a different way from the ones of a periodic chain.

PACS: 75.10.Pq

Low-dimensional quantum spin systems, as one of
the most interesting phenomena in condensed matter
physics, have attracted much interest of theorists and
experimentalists during last years. For example, re-
cent experiments on two-dimensional (2D) and 1D
antiferromagnetic spin systems reveal very interesting
behavior of nonmagnetic impurities [1,2]. In 2D Hei-
senberg antiferromagnets nonmagnetic impurities may
give rise to divergent magnetic susceptibility [3]. In
1D spin chains nonmagnetic impurities cut chains [4].
The behavior of latters is different from the behavior
of bulk spins. Exact Bethe ansatz description of open
quantum chains was initiated by Gaudin [5]. Thermo-
dynamic characteristics of an essentially anisotropic
XXZ spin-1,/2 open chain were studied by the Bethe
ansatz in [6]. It was shown there that low-temperature
characteristics of the XXZ chain may diverge at low
temperatures. The ground state magnetic susceptibil-
ity of a Heisenberg chain with open boundary condi-
tions was calculated in [7], where it was shown that
edge contributions to the susceptibility diverge in the
ground state as a function of a homogeneous magnetic
field H. On the other hand, it is known that irrelevant
boundary operators (in the renormalization group
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sense) usually give only subleading contributions to
any physical quantities.

Very recently two groups studied the low-tempera-
ture behavior of characteristics of an open spin-1,/2
chain with isotropic Heisenberg antiferromagnetic in-
teractions between nearest spins perturbatively, using
bosonization and renormalization group-like appro-
aches [8]. However, there were no exact results for
such a characteristics. Motivated by these facts, in
this work we study the low-temperature characteris-
tics of a Heisenberg spin-1,/2 chain.

Let us study the behavior of the Heisenberg anti-
ferromagnetic spin-1,/2 chain of the length L with
open boundary conditions with the Hamiltonian
H :Jzﬁ;}sns,m, where J is the exchange con-
stant using Bethe’s ansatz. The principal difference
between Bethe ansatz studies of periodic and open
chains consists of reflections at edges of open chain,
which produce not only permutations, but also nega-
tions of quantum numbers (rapidities) parametrizing
eigenfunctions and eigenvalues of the stationary
Schrédinger equation [5]. The Bethe ansatz equations
(BAE) for the set of rapidities {k}%1’ where M is the
number of down spins, is [5,7]:
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where H is the value of the homogeneous magnetic
field and 28, =(J/hy 1) —1. Here hy ; are boundary
magnetic fields, which act only on the spins at the
sites 1 and L, respectively. BAE for an open chain dif-
fer from the ones for a closed geometry [9] by the fol-
lowing: (i) there are not only differences but also
sums of rapidities on the right-hand sides of BAE for
an open case; (ii) the effective length of a chain is
doubled; (iii) on the left-hand sides of BAE for an
open case there are multipliers connected with non-
zero boundary fields. Sy ; play the role of effective
«boundary spins». These «boundary spins» depend on
the values of the boundary fields 7. For 7y =0
these boundary spins are infinite, leading to effective
twists of m at each edge. At /y; =£J these effective
«boundary spins» change their signs. This situation
is related to the effective addition or removal of one
site to or from the chain, respectively, with finite
zero-field magnetic susceptibility. It leads to onsets of
complex roots of Bethe ansatz equations Eqs. (1) in
the ground state: For —1,/2 < Sy <0 there appear
bound states parametrized by complex rapidities
A =G/ =/l )], localized at edges. Finally,
for hy; —> 40 we have S;; — —1/2, effectively re-
moving one site, respectively, from the system.

Consider how these differences affect thermody-
namic characteristics in the limit of large L and M
(with M /L fixed). In the framework of the string hy-
pothesis [10] we look for the solution of Egs. (1) in
the form of strings %.; =%, +i[(m +1),/2 - v] with
v =1,...,m, valid with the accuracy O(exp (~L)); tak-
ing then the logarithm we get for BAE:
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where 6, (x) =2 tan” ' (x/n),

min([m],[n])
em,n(x) = Z em+1+n—21(x) J (4)
=1

[x] denotes the integer part of x,

O, () =0 —S,nyn)e‘m_n‘ (x) + 2e|m—n|+2 () +...+
+20,4 0 000) +0,,,,(x), (5)

and integers

1< 1j <L+ M, =2 min (mn)M,]
n=1

appear because the logarithm is the multi-valued
function. We look for solutions to thermodynamic
BAE for large L, keeping corrections of order of 't
too. In this limit we introduce distribution functions
(densities) for particles, p,,(x), and holes, p,,;, (x),
corresponding to strings of length m:
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and a,, (x) =2m/[n(4x> + m*)]. The internal energy
E and the total magnetic moment M? are given as
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where Eg =—-[2(HL + hy + hy) —(L =1)J]/4 is the
energy of the ferromagnetic state. The (complimen-
tary) set of thermodynamic equations for dressed en-
ergiese, (L) =TlIn[p,, W) /p,0)]=n, Q) is

Hm —JO' 1 ) =T In[1 +n,, )] -
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Thermodynamic BAE for densities are linear inte-
gral equations. There are two kinds of driving terms
(not dependent on p,, and p: the ones of order of 1,
and the ones of order of L™!). Hence, we can divide
densities as p, (1) =p @) + L (L) (and the
same for densities of holes). Then one can separate
BAE for densities into two sets: one of the scale 1 for
the main (of order of L) contribution and the other
one of the scale L~ for the finite contribution (of or-
der of 1). The former describes thermodynamics of
bulk spins, which is equivalent to the ones for the
chain with periodic boundary conditions [7]. The lat-
ter reveals the contribution from edges. In what fol-
lows we shall concentrate namely on that contribution
only. Since ¢,,(L), p,, (W) and p,,, (1) are even func-
tions, one can rewrite the thermodynamic BAE fol-
lowing [11] as (we drop the superscript (1) in what
follows)

Hm = J0' 1y 0 = TIn [ +m,, O] -
ST Ay G =2 s In 1+ ;' 01, (10)

n

and
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where we introduced additional terms to avoid double
counting due to the symmetrization of functions
(with 2 =0) and to take into account the term with
Lg =%p in the right-hand side of Egs. (1).

In what follows we shall concentrate on the low
temperature, T << J, dependencies of the magnetic
susceptibility and specific heat caused by free edges
themselves (i.e., for 2 ; =0 and even L). Equations
(10) and (11) are very similar in structure to the ones,
which describe thermodynamics of the Kondo impu-
rity in a metal [12]. The principal difference, how-
ever, is that the contributions to the magnetization
and the energy of order of 1 of the open spin-1,/2
Heisenberg chain, see Eq. (8), have no terms, which
do not depend on dressed densities, while such terms
are present for the Bethe ansatz description of the
Kondo problem [12]. Following known methods of
consideration of the low temperature corrections, we
find the contribution to the free energy of the Heisen-
berg chain for H << T, caused by free edges:

Fedges = —g tanh [H/2T] x
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where T, =ans/n/eJ (a is a constant). This implies
the expressions for the low-temperature magnetic sus-
ceptibility of an open Heisenberg chain, caused by
free edges

Xedges =

1 1_1n|lnT0/T|
8T|InTy, T\ 2|InTy /7]

j+... (13)

One can see that the magnetic susceptibility of open
edges of the chain diverges as T — 0. However, this
divergency is different from the usually presumed Cu-
rie-like 1/T behavior. Logarithmic terms appear due
to the interaction in the SU(2)-symmetric spin-1,/2
system. This is different from the constant behavior
of the magnetic susceptibility of bulk spins (and the
ones of a periodic chain) at low temperatures.

The low-temperature entropy of the Heisenberg
chain caused by free edges is calculated as

2
i + .. (14)

Sedges = ———————
S 3InT, /T

which implies the low-temperature specific heat

3n?
Cedges = 1 + .. (15)
32In Ty /T
The last equation implies that the low-temperature
Sommerfeld coefficient is divergent as

3n2

et (16)
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It is again, very different from the behavior of the
specific heat of bulk spins (and the ones of a periodic
chain) at low temperatures. While the Sommerfeld
coefficient of free edges is divergent at low tempera-
tures, the edges‘s entropy and specific heat are finite,
as it must be. It turns out that the Wilson ratio of the
contributions from free edges is divergent, in a drastic
contrast with the finite value of such a coefficient for
bulk spins. It is important to emphasize that while
Eq. (13) agrees with the expressions, obtained in the
approximate calculations [8], the expressions for the
low-temperature entropy and specific heat are differ-
ent from the ones, obtained using approximate
bosonization method. We point out, that namely cu-
bic in 1/[InTy/T| terms for H =0 appear in the
low-temperature corrections of the behavior of the
free energy of the Kondo impurity [12] and the bulk
free energy of a Heisenberg spin-1,/2 chain [13], while
there are no linear terms in those dependencies.

In conclusion, using the exact Bethe ansatz method
we calculated the low-temperature characteristics of
free edges of an open Heisenberg antiferromagnetic
spin-1,/2 chain. We have shown that the magnetic sus-
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ceptibility and low-temperature Sommerfeld coeffi-
cient of the specific heat of free edges of an open chain
are divergent, unlike similar characteristics for bulk
spins of the chain. Notice, that similar behavior of
low-temperature magnetic susceptibility of quasi-
one-dimensional compounds of Cu was observed [2].
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