Краткие сообщения

## Колебания тока и N-образная BAX в манганите $Sm_{1-x} Sr_x MnO_3$

И.К. Камилов, К.М. Алиев, Х.О. Ибрагимов, Н.С. Абакарова

Институт физики Дагестанского научного центра РАН ул. М. Ярагского, 94, г. Махачкала, 367003, Россия E-mail: kamilov@datacom.ru

Статья поступила в редакцию 4 сентября 2003 г., после переработки 18 февраля 2004 г.

В образцах  $Sm_{1-x}Sr_xMnO_3$  с x = 0,425 и 0,450 при температуре 77 К экспериментально исследованы вольт-амперные характеристики (ВАХ) в импульсных и постоянных электрических E и магнитных H полях до 10 кЭ при их взаимных ориентациях  $H \parallel E$  и  $H \perp E$ . Обнаружены N-образные ВАХ и высокочастотные (до 3 МГц) колебания тока.

В зразках Sm<sub>1-x</sub>Sr<sub>x</sub>MnO<sub>3</sub> з x = 0,425 та 0,450 при температурі 77 К експериментально досліджено вольт-амперні характеристики (BAX) в імпульсних та сталих електричних E й магнітних H полях до 10 кЕ при їх взаємних орієнтаціях **H**||**E** та **H**⊥**E**. Виявлено N-подібні BAX та високочастотні (до 3 МГц) коливання струму.

PACS: 72.20.Ht, 72.80.Ga, 75.30.Vn

Обнаружение явления колоссального магнитосопротивления (КМС) в манганитах стимулировало исследования процессов переноса заряда в системах, где проявляется глубокая взаимосвязь магнитной, решеточной и электронной подсистем.

Нелинейные ВАХ манганитов и гетероструктур на их основе, а также релаксационные процессы установления тока при приложении электрического напряжения к ним изучены в работах [1-10]. Обнаружены нелинейные BAX суб- или суперлинейного поведения и S-образные BAX [1-4,6-10]. В работе [5] показано, что установление стабильной величины электрического тока, соответствующего приложенному напряжению, носит релаксационный характер с большими (до 10 мин) характерными временами. Отметим, что большинство исследованных ВАХ проявляют гистерезис, т.е. восходящие и нисходящие ветви ВАХ не совпадают. Причем физические механизмы, лежащие в основе нелинейностей, включают в себя влияние протекающего тока на магнитную однородность системы [1,2,4], неупругое рассеяние носителей заряда в магнитоактивных слоях на контактном переходе [3], электрическую модуляцию процессов двойного обмена в ферромагнитных системах [6] с образованием и движением волн зарядовой плотности [9,10].

Цель настоящей работы — изучение влияния величины электрического поля на перенос тока в манганитах на примере  $\text{Sm}_{1-x}\text{Sr}_x\text{MnO}_3$  с x = 0,425 и 0,450 при 77 К в магнитных полях до 10 кЭ, когда  $\mathbf{H} \parallel \mathbf{E}$  и  $\mathbf{H} \perp \mathbf{E}$ .

Согласно рентгенографическим данным, исследованные керамики  $\text{Sm}_{1-x}\text{Sr}_x\text{MnO}_3$  представляют собой орторомбические перовскиты с однородным гранулометрическим составом с хорошей спайностью и пористостью около 20%. Результаты детального экспериментального исследования теплоемкости и электросопротивления этих образцов для x = 0,450 в широком температурном интервале представлены в работах [11,12]. Размеры исследованных образцов для x = 0,450 в широком температурном интервале представлены в работах [11,12]. Размеры исследованных образцов для x = 0,425 и 0,450 были равны соответственно  $6 \times 1,7 \times 0,7$  и  $2,5 \times 1,2 \times 0,7$  мм. Токовые контакты наносили на торцы образцов серебряной пастой. Все измерения проводили при температуре 77 К. Температуру образцов контролировали медьконстантановой термопарой.

Вольт-амперные характеристики исследуемых образцов измеряли как на постоянном токе, так и в импульсном режиме генератора напряжения  $R_s >> R_i$ , где  $R_s$  — сопротивление образца,  $R_i$  — токоснимающее сопротивление, включенное последовательно с образцом. Длительность треугольного импульса, на котором снималась ВАХ, не превышала



*Рис.* 1. Восходящая и нисходящая ветви ВАХ (*a*) и колебания на импульсе тока (при различных значениях приложенного напряжения U, B: 2,48 (1), 2,64 (2), 2,72 (3), 2,8 (4), 3,02 (5)) (6) для образца  $\text{Sm}_{1-x}\text{Sr}_x\text{MnO}_3$  с x = 0,425 при 77 К.

120 мкс, а длительность прямоугольных импульсов – 80 мкс с фронтами не хуже 0,1 мкс.

На рис. 1,*а* представлены восходящая и нисходящая ветви ВАХ для образца с x = 0,425, измеренные в импульсном режиме. Они представляют собой кривые с омическими участками вначале, которые плавно переходят в суперлинейные с характерным наклоном  $I \sim U^n$ , где n = 1,4-1,6. В дальнейшем, при напряжениях  $U \approx 1,5$  В ВАХ имеет N-образный участок, который с ростом напряжения снова выходит на положительную ветвь, где dI/dU > 0.

Восходящая и нисходящая ветви ВАХ в зависимости от максимального значения приложенного электрического напряжения не совпадают, т.е. проявляют гистерезис, величина которого зависит не только от напряжения, но и от величины нагрузочного сопротивления. При соответствующем подборе нагрузочного сопротивления на токовом импульсе (рис. 1, $\delta$ ) возникают колебания тока, амплитуда и частота которых зависят от величины приложенного напряжения. Эти колебания тока в электрическом поле *E* имеют следующие характерные особенности: 1) уменьшается частота и увеличивается амплитуда с ростом поля; 2) появляются колебания и на второй положительной ветви ВАХ вплоть до больших значений напряжения *U* (20–30 В) и при этом демонстрируют свойства, характерные для хаотических систем (удвоение периода, квазипериодичность, стохастическое поведение или широкополосные шумы и т.п.). На рис.  $1, \delta$  приведены значения частот, соответствующие максимальным амплитудам, согласно их фурье-анализу. Изменение направления тока в образце не влияет на вид ВАХ, которые совершенно идентичны в обоих направлениях. Форма колебаний тока при этом меняется незначительно, но основные закономерности независимо от величины смещения U сохраняются. При N-переключении в начале импульса тока происходит спад тока с характерными временами порядка нескольких микросекунд.

В импульсных электрических продольных **H**||**E** и поперечных **H** $\perp$ **E** полях эффект КМС, рассчитанный по формуле ( $\rho_H - \rho_0$ )/ $\rho_H$ , достигал 35%. Замечено, что магнитное поле уменьшает амплитуду колебаний и смещает порог N-переключения в сторону меньших электрических полей.

На рис. 2 приведены ВАХ для образца с x = 0,450в продольных магнитных полях **H**||**E**, измеренные в постоянных электрических полях. Подчеркнем, что все измерения проведены при постоянной температуре T = 77 К, что контролировалось термопарой, и рассеиваемые на образце мощности не приводили к джоулеву разогреву образца. В магнитных полях ВАХ для образцов этого состава, как и для состава с x = 0,425, свидетельствуют, что КМС достигает 35%, а также демонстрируют незначительное снижение порога N-переключения с ростом величины магнитного поля. Как видно на рис. 2, КМС несколько уменьшается при N-переключении, но в минимуме и на второй восходящей ветви ВАХ КМС достигает



*Рис.* 2. ВАХ образца  $\text{Sm}_{1-x}\text{Sr}_x\text{MnO}_3$  для x = 0,450 при T = 77 К и различных значениях продольного магнитного поля H, кЭ: 0 (1), 1,38 (2), 2,25 (3), 4,5 (4), 6,7 (5), 8,5 (6).

того же порядка или заметно больше. В поперечных магнитных полях  $\mathbf{H} \perp \mathbf{E}$  поведение ВАХ совершенно идентично случаю продольных полей  $\mathbf{H} \parallel \mathbf{E}$ . Отметим, что наблюдается незначительная анизотропия КМС: влияние продольного магнитного поля сильнее и эффект КМС на всех участках ВАХ в продольных полях больше, чем в поперечных. Величина КМС на участках ВАХ, где выполняется закон  $I \sim U^{1,6}$ , постоянна либо незначительно уменьшается (~ 3%) с ростом напряжения до N-переключения.

При многократном (более 30 раз) термоциклировании образца в пределах 77–300 К было обнаружено качественное изменение формы ВАХ и резкий рост гистерезиса на восходящей и нисходящей ветвях ВАХ.

Если в образце нет встроенных гетеро- или сандвич-структур, точечных или других контактов с неравновесными свойствами, то для интерпретации результатов по обнаружению N-образной BAX в манганитах можно привлечь  $\Delta m\tau$ -модель, приведенную в работе [13], в которой удельное электросопротивление вычисляется по формуле Друде:

$$\rho = \frac{m^*}{e^2 n\tau},\tag{1}$$

где e — заряд электрона,  $m^*$  — эффективная масса, n — концентрация носителей тока, а время релаксации  $\tau$  представляется как сумма  $\tau^{-1} = \tau_{\rm st}^{-1} + \tau_{\rm ph}^{-1} + \tau_{\rm m}^{-1}$ , где  $\tau_{\rm st}$ ,  $\tau_{\rm ph}$  и  $\tau_m$  — характеристические времена при рассеянии на статических нарушениях трансляционной симметрии системы, фононах и флуктуациях локальных магнитных моментов соответственно. Окончательное выражение с учетом энергии активации  $\Delta$  выглядит следующим образом:

$$\rho = e^{2\Delta/3T} (\rho_{\rm st} + \rho_{\rm ph} + \rho_m).$$
 (2)

Значительное неупругое рассеяние носителей заряда при определенных значениях порогового электрического поля может привести к резкому росту сопротивления вследствие изменения времени рассеяния, особенно с учетом второго, поляронного, и третьего, описывающего спиновой беспорядок, членов в скобках формулы (2), что может привести к N-образной BAX.

Дальнейший рост напряжения, увеличивая энергию носителей заряда для преодоления барьеров поляронов и спинов, выводит ВАХ на новый участок роста тока. При этом нельзя исключить влияния протекающего тока на магнитную однородность исследуемых систем или другие механизмы, приводящие к резкому изменению концентрации носителей тока вследствие нарушения зарядового или орбитального порядка, а также из-за образования и движения волн зарядовой плотности [1–2,5,9–10]. В заключение авторы выражают благодарность А.Б. Батдалову и Ш.Б. Абдулвагидову за полезное обсуждение результатов работы и О.Ю. Горбенко за предоставление высококачественных образцов. Работа выполнена при финансовой поддержке грантом РФФИ № 02-02-17817 и грантом № НШ-2253.03.2 на базе приборного парка аналитического центра ДНЦ РАН.

- 1. A. Guha, N. Khare, A.K. Raychaudhuri, and C.N.R. Rao, *Phys. Rev.* **B62**, R11941 (2000).
- 2. A. Guha, A.K. Raychaudhuri, A.R. Raju, and C.N.R. Rao, *Phys. Rev.* **B62**, 5320 (2000).
- М.А. Belogolovskii, Yu.F. Revenko, A.Yu. Gerasimenko, V.M. Svistunov, E. Hatta, G. Plituik, V.E. Shaternik, and E.M. Rudenko, *ФНТ* 28, 553 (2002);
  М.А. Белоголовский, Ю.Ф. Ревенко, А.Ю. Герасименко, Ю.В. Медведев, О.И. Черняк, В.М. Свистунов, Дж. Плитник, *ФНТ* 29, 889 (2003).
- S. Heim, T. Nachtrab, M. Mößle, R. Kleiner, R. Koch, S. Rother, O. Waldmann, P. Müller, T. Kimura, and Y. Tokura, *Physica* C367, 348 (2002).
- М.К. Губкин, Т.М. Перекалина, А.М. Балбашев, В.В. Киреев, С.В. Пушко, ФТТ 43, 293 (2001).
- M. Tanaka, J. Zhang, and T. Kawai, *Phys. Rev. Lett.* 88, 027204-1 (2002).
- 7. J.Z. Sun, J. Magn. Magn. Mater. 202, 157 (1999).
- J.S. Moodera, J. Novak, and Rene J.M. van der Veerdonk, *Phys. Rev. Lett.* 80, 2941 (1998)
- 9. A. Wahl, V. Caignaert, and S. Mercone, *arXiv: cond-mat/0306160* (2003).
- A. Wahl, S. Mercone, A. Pautrat et al., arXiv: cond-mat/0306161 (2003).
- Ш.Б. Абдулвагидов, И.К. Камилов, А.М. Алиев, А.Б. Батдалов, ЖЭТФ 123, 857 (2003).
- А.М. Алиев, Ш.Б. Абдулвагидов, А.Б. Батдалов, И.К. Калимов, О.Ю. Горбенко, В.А. Амеличев, А.Р. Кауль, А.И. Курбаков, В.А. Трунов, *ФТТ* 45, 124 (2002).
- A.B. Beznosov, B.I. Belevtsev, E.L. Fertman, V.A. Desnenko, D.G. Naugle, K.D.D. Rathnayka, and A. Parasiris, *ΦHT* 28, 774 (2002).

## Electric oscillations and N-type current-voltage characteristics of $Sm_{1-x}Sr_xMnO_3$ manganite

## I.K. Kamilov, K.M. Aliev, Kh.O. Ibragimov, and N.S. Abakarova

The current-voltage characteristics of  $\text{Sm}_{1-x}\text{Sr}_x\text{MnO}_3$  (x = 0.425 and 0.450) have been measured at temperature 77 K in direct and pulsed electric and magnetic fields of  $\mathbf{H} || \mathbf{E}$  and  $\mathbf{H} \perp \mathbf{E}$  orientations. N-type current-voltage characteristics and high frequency (up to 3 MHz) electric oscillations have been found.