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It is known that the zero-bias conductance peak (ZBCP) is expected in tunneling spectra of
normal-metal/high-Tc cuprate junctions because of the formation of the midgap Andreev resonant
states (MARS) at junction interfaces. In the present review, we report the recent theoretical study
of impurity scattering effects on the tunneling spectroscopy. In the former part of the present pa-
per, we discuss impurity effects in normal metal. We calculate tunneling conductance for diffusive
normal metal (DN)/high Tc cuprate junctions based on the Keldysh Green's function technique.
Besides the ZBCP due to the MARS, we can expect ZBCP caused by the different origin, i.e., the
coherent Andreev reflection (CAR) assisted by the proximity effect in DN. Their relative impor-
tance depends on the angle � between the interface normal and the crystal axis of high-Tc supercon-
ductors. At � � 0, we find the ZBCP by the CAR for low transparent junctions with small Thouless
energies in DN; this is similar to the case of diffusive normal metal/insulator/s-wave supercon-
ductor junctions. Under increase of � from zero to �/4, the contribution of MARS to ZBCP be-
comes more prominent and the effect of the CAR is gradually suppressed. Such complex spectral
features would be observable in conductance spectra of high-Tc junctions at very low temperatures.
In the latter part of our paper, we study impurity effects in superconductors. We consider impuri-
ties near the junction interface on the superconductor side. The conductance is calculated from the
Andreev and the normal reflection coefficients which are estimated by using the single-site approx-
imation in an analytic calculation and by the recursive Green function method in a numerical simu-
lation. We find splitting of the ZBCP in the presence of the time reversal symmetry. Thus the
zero-field splitting of ZBCP in the experiment does not perfectly prove an existence of broken time
reversal symmetry state.

PACS: 74.25.Fy, 74.25.Dw, 74.76.Bz

1. Introduction

Nowadays, charge transport in unconventional su-
perconductor junctions has become one of the most
important topics in solid state physics. The most re-
markable property is the so-called zero bias conduc-
tance peak (ZBCP) observed in tunneling experi-
ments. The ZBCP arises from the formation of midgap
Andreev bound states (MARS) at the interface [1–5].
The MARS, which is created by injected and reflected
quasiparticles feeling different signs of the pair poten-

tial, can play an important role in determining the
pairing symmetry of unconventional superconductors.
The experimental observation of the ZBCP has been
reported for various unconventional superconductors
of anisotropic pairing symmetries [5–20]. A basic the-
ory of the ballistic transport in the presence of MARS
has been formulated in Refs. 3,5. Stimulated by this
theory, extensive studies of MARS in unconventional
superconductor junctions have been performed during
the last decade: in the case of broken time reversal
symmetry state [21–28], in triplet superconductor
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junctions [29–34], in quasi-one-dimensional organic
superconductors [35–38], MARS and Doppler effect
[39–43], MARS in ferromagnetic junctions [44–52],
influence of MARS on Josephson effect [53–62], and
other related problems [63–71]. However, the impu-
rity scattering effect on the ZBCP in realistic normal
metal/high-Tc cuprate junctions has not been clari-
fied yet. The aim of present paper is to review the im-
portant progress in this issue.

The organization of the paper is as follows. In
Sec. 2, we discuss the impurity scattering effect
in normal metal. We calculate the tunneling con-
ductance for diffusive normal metal (DN)/high-Tc
cuprate junctions based on the Keldysh Green's func-
tion technique. Besides the ZBCP due to the MARS,
we can expect ZBCP caused by a different mechanism,
i.e., coherent Andreev reflection (CAR) assisted by
proximity effect in DN. In Sec. 3, we discuss impurity
effects in superconductors. The random potential near
junction interfaces causes splitting of the ZBCP even
in the presence of the time reversal symmetry.

2. Theory of charge transport in diffusive normal
metal/high-Tc cuprate superconductor contacts

Before discussing charge transport in high-Tc
cuprate junctions, we should review the progress of
charge transport in mesoscopic superconducting sys-
tems. The low energy transport in mesoscopic super-
conducting systems is governed by Andreev reflection
[72], a unique process specific to electron scattering at
normal metal/superconductor interfaces. The phase
coherence between incoming electrons and Andreev
reflected holes persists at a mesoscopic length scale in
the diffusive normal metal, which enhances interfer-
ence effects on the probability of Andreev reflection
[73]. The coherence plays an important role at suffi-
ciently low temperatures and voltages when the en-
ergy broadening due to either voltages or temperatures
becomes of the order of the Thouless energy ETh in
mesoscopic structures. As a result, the conductance
spectra of mesoscopic junctions may be significantly
modified by these interference effects. A remarkable
experimental manifestation of the electron—hole phase
coherence is the observation of the zero bias conduc-
tance peak (ZBCP) in diffusive normal metal (N)/su-
perconductor (S) tunneling junctions [74–84].

Various theoretical models of charge transport in
diffusive junctions extend the clean limit theories de-
veloped by Blonder, Tinkham and Klapwijk [85]
(BTK) and Zaitsev [86]. In Refs. 87–92, the scatter-
ing matrix approach was used. On the other hand, the
quasiclassical Green's function method in nonequi-
librium superconductivity [93] is much more powerful

and convenient for the actual calculations of conduc-
tance for the arbitrary bias-voltages [94]. Using the
Kuprianov and Lukichev (KL) boundary condition
[95] for a diffusive SIN interface, Volkov, Zaitsev and
Klapwijk (VZK) have obtained the conductance spec-
tra with ZBCP, origin of which was attributed to co-
herent Andreev reflection (CAR) which induces the
proximity effect in diffusive metal [94]. Several au-
thors studied the charge transport in mesoscopic junc-
tions combining this boundary condition with the
Usadel [96] equation that describes superconducting
correlations in diffusive metal [97–103]. The modified
boundary conditions were studied by several authors
[104,105]. Important progress was achieved by Naza-
rov [97,106] who developed a much more intuitive
theory (the so-called «circuit theory») for matrix cur-
rents that allows to formulate boundary conditions for
Usadel-like equations in the case of arbitrary transpar-
encies [107]. Recently we have succeeded to extend
this circuit theory for unconventional superconductors
[108–110]. In order to resolve the charge transport in
high-Tc cuprate junctions, we apply above theory for
d-wave superconductors. We have shown that the for-
mation of MARS strongly competes with the pro-
ximity effect that is an essential ingredient for CAR in
diffusive conductor (DN). We consider a junction
consisting of normal and superconducting reservoirs
connected by a quasi-one-dimensional DN with a
length L much larger than the elastic mean free path.
The interface between the DN and the US (unconven-
tional superconductor) electrode has a resistance Rb
while the DN/N interface has zero resistance. The po-
sitions of the DN/N interface and the DN/S interface
are denoted as x L� � and x � 0, respectively. Accord-
ing to the circuit theory [106], the constriction area
between DN and US is considered as composed of the
diffusive isotropization zone, the left side ballistic
zone, the right side ballistic zone and the scattering
zone. The scattering zone is modeled as an insulating
delta-function barrier with the transparency Tn �
� �4 42 2 2cos ( cos )� �/ Z , where Z is a dimensionless
constant, � is the injection angle measured from the
interface normal to the junction and n is the channel
index. We assume that the sizes of the ballistic and
scattering zones along x axis is much shorter than the
superconducting coherence length.

Here, we express insulating barrier as a delta-
function model H x�( ), where Z is given by Z �
� 2 2mH/ kF( )� with Fermi momentum kF and effec-
tive mass m. In order to clarify charge transport in
DN/US junctions, we must obtain Keldysh–Nambu
Green's function, which has indices of transport chan-
nels and the direction of motion along x axis taking
into account the proper boundary conditions. For this
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purpose it is necessary to extend a general theory of
boundary condition which covers the crossover from
ballistic to diffusive cases [106] formulated for con-
ventional junctions in the framework of the circuit
theory [97,106]. However, the circuit theory cannot
be directly applied to unconventional superconductors
since it requires the isotropization. The latter is just
incompatible with mere existence of unconventional
superconductivity. To avoid this difficulty we restrict
the discussion to a conventional model of smooth in-
terface by assuming momentum conservation in the
plane of the interface. We apply the quasiclassical
Keldysh formalism for calculation of the conductance.
The spatial dependence of 4�4 Green’s function in DN
G N x( ) which is expressed in the matrix form as

�N
N N

N
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should be determined. The Keldysh component � ( )K xN
is given by � ( ) � ( ) � ( ) � ( ) � ( )K x R x f x f x A xN N N� �1 1 with
retarded component � ( )R xN and advanced component
� ( )A xN using distribution function � ( )f x1 . We put the
electrical potential zero in the S-electrode. In this
case the spatial dependence of �N x( ) in DN is deter-
mined by the static Usadel equation [96],
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Here �� � �� �( )� �2 2 2/ . Rd and Rb denote the
resistance in DN and that at the DN/S interface, re-

spectively. The detailed derivation of the matrix current
is shown in [109]. The average over the various angles
of injected particles at the interface is defined as
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with� �( )� � and T Tn( )� � . The resistance of the in-
terface Rb is given by
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�N L( )� coincides with that in the normal state. We
denote Keldysh–Nambu Green's function �1, �2� ,

�1
1 1

10
�
	




�
�

�




�
�

R K

A

^ �

�

, �2
2 2

20
�

� �

�
�
	



��

�



��

� �

�

R K

A
, (10)

where the Keldysh component �
,K12� is given by

� � � ( ) � ( ) �
( ) ( ) ( ) ( ) ( )K R f f A1 2 1 2 1 2 1 2 1 20 0� � �� � with the retar-

ded component �
,R12� and the advanced component

�
,A12� using distribution function � ( )( )f1 2 0 . In the

above, �R2� is expressed by
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� � � �

†A R2 3 2 3� �� �� � where � denotes the quasiparticle en-

ergy measured from the Fermi energy. � ( )f2 0 �

� �f / k TS B0 0( ) tanh [ (2 )]� in thermal equilibrium
with temperature T.
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�. In the actual calcula-

tion, we introduce a parameter "( )x which is a mea-
sure of the proximity effect in DN where we denoted
" "( )0 0� . Using "( )x , � ( )R xN can be written as

� ( ) � cos ( ) � sin ( ).R x x xN � �� " � "3 2 (13)

� ( )A xN and � ( )K xN satisfy the following equations:
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� ( )f x1

� ( )f x1 which is given by � ( ) ( ) � ( )f x f x f xN N1 0 3 3� � � .

In the above, f xN3 ( ) is the relevant distribution func-
tion which determines the conductance of the junc-
tion we are now concentrating on. From the retarded
or advanced component of the Usadel equation, the
spatial dependence of "( )x is determined by the fol-
lowing equation
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while for the Keldysh component we obtain
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condition f L fN t3 0( )� � is satisfied with
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whereV is the applied bias voltage. Next, we focus on
the boundary condition at the DN/S interface.
Taking the retarded part of Eq. (4), we obtain
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On the other hand, from the Keldysh part of Eq. (4), we obtain
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we obtain the following final result for the current
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Then the total resistance R at zero temperature is
given by

R
R

I

R

L
dx

x

b

b

d

L

�
� �

�

�
�

0
2

0

cosh "Im( )
. (25)

We will discuss the normalized conductance *T eV( ) �
� * *S NeV / eV( ) ( ) where *S N eV( )( ) is the volt-
age-dependent conductance in the superconduct-
ing (normal) state given by *S eV /R( ) � 1 and
* *N N d beV R R( ) / ( )� � �1 , respectively.

It should be remarked that in the present circuit
theory, R /Rd b can be varied independently of Tn ,
i.e., of Z, since we can change the magnitude of the
constriction area independently. In the other words,
R /Rd b is no more proportional to T L/lav ( ), where
Tav is the averaged transmissivity and l is the mean
free path in the diffusive region, respectively. Based
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on this fact, we can choose R /Rd b and Z as independ-
ent parameters.

First, we focus on the line shapes of the conduc-
tance where d-wave symmetry is chosen as a pairing
symmetry of unconventional superconductor. The pair
potentials  � are given by   � � 0 2cos [ ( )]� ��

where � denotes the angle between the normal to the
interface and the crystal axis of d-wave supercon-
ductors and  0 is the maximum amplitude of the pair
potential. In the above, � denotes the injection angle
of the quasiparticle measured from the x axis. It is
known that quasiparticles with injection angle � with
� � � � �/ /4 4� � � �| | | | | | feel the MARS at the inter-
face which induces ZBCP. In the following, we choose
relatively strong barrier Z � 10. Results for high trans-
parent cases are written in detail in Ref. 109.

Let us first choose � � 0 where ZBCP due to the
MARS is absent. We calculate *T eV( ) for various
R /Rd b. For ETh �  0 [see Fig. 1,a], the magnitude
of *T eV( ) for | |eV �  0 increases with the increase of
R /Rd b. First, the line shape of the voltage-dependent
conductance remains to be V shaped and only the
height of the bottom value is enhanced (curve 2 and
3). The V-shaped line shape originates from the exis-
tence of nodes of the d-wave pair potential. Then, with
a further increase of R /Rd b, a rounded bottom struc-
ture (curve 4) appears and finally it changes into a
nearly flat line shape (curve 5). For ETh � 0 01 0.  
(Fig. 1,b), the magnitude of *T eV( ) has a ZBCP once
the magnitude of R /Rd b deviates slightly from 0. The
order of the magnitude of the ZBCP width is given by
ETh as in the case of s-wave junctions [107]. When
the magnitude of R /Rd b exceeds unity, the *T eV( )
acquires a zero bias conductance dip (ZBCD)
(curve 5). The qualitative features of line shapes of
*T eV( ) is different from those in s-wave junctions
(see Figs. 1 and 2 in Ref. 37). It should be remarked
that even in the case of d-wave junctions we can ex-
pect ZBCP by CAR as in the case of s-wave junction
for � � 0.

Next, we focus on *T eV( ) and "0 for� + 0
( )0 4� �� �/ . First we focus on � �� /8, where
MARS is formed for � � �/ /8 3 8� �| | . *T eV( ) has a
ZBCP due to the formation of MARS at the DN/US
interface. The height of ZBCP is reduced with the in-
crease of R /Rd b (see Fig. 2,a). Contrary to the corre-
sponding case of � � 0, *T eV( ) is almost independent
of ETh (see Fig. 2,b). This is because proximity effect
is almost suppressed due to the competition of MARS
and the magnitude of "( )x is reduced. In the extreme
case, � �� /4, the *T eV( ) is completely independent
of ETh. The obtained results is plotted in Fig. 3.

In the present Section, detailed theoretical investi-
gation of the voltage-dependent conductance of diffu-

sive normal metal/unconventional superconductor
junctions is presented.

1. The ZBCP is frequently seen in the shape of
*T eV( ). For � + 0, the ZBCP is robust not depending
on the diffusive resistance Rd . For � � 0, ZBCP is due
to the CAR.

2. The appearance of ZBCP is different for MARS
and CAR mechanisms. The first mechanism may lead
to arbitrary large *T ( )0 . The second mechanism can-
not provide *T ( )0 exceeding unity. While for the first
mechanism the width of the ZBCP is determined by
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Fig. 1. Normalized conductance *T eV( ) for Z = 10, � � 0,
and ETh �  0 (a), ETh � 001 0.  (b) at different R /Rd b:
0 (1), 0.1 (2), 1 (3), 2 (4), and 10 (5).



the transparency of the junction, it is determined by
Thouless energy for the second one. These two me-
chanisms compete since the proximity effect and the
MARS in singlet junctions are generally incompa-
tible [108].

3. In the extreme case � � -� 4 the proxi-
mity effect and the CAR are absent. The *T eV( )
is then given by a simple Ohm’s law: *T eV( ) �
� � ��( ) ( )R R / R Rb d R dd 0 ; Rb being the resistance
of the interface.

4. We have clarified various line shapes of the con-
ductance including ZBCP. The obtained results serve

as an important guide to analyze the actual experimen-
tal data of the tunneling spectra of high-Tc cuprate
junctions. We want to stress that the height of ZBCP
is strongly suppressed by the existence of DN and the
resulting *T ( )0 is not so high as obtained in the ballis-
tic regime [3]. In the actual fit of the experimental
data, we strongly hope to take into account the effect
of Rd . In such a case without solving Usadel equation
*T eV( ) can be simply approximated by
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with   � � 0 2cos [ ( )]� �� and � � eV. This expres-
sion is a convenient one for the fit of the experimental
data. However, for the quantitative discussions includ-
ing much more general cases, one must solve Usadel
equation as was done in the present paper. Recently,
mesoscopic interference effects are observed in actual
cuprate junctions [111]. We expect the present results
will be observed in many experiments near future.

3. Impurity in high-Tc cuprate near the interface

The MARS is sensitive to the time reversal symme-
try (TRS) of junctions because the retro-reflectivity
of the Andreev reflection assists the constructive in-
terference effect of a quasiparticle [112]. Actually, the
ZBCP in NS junctions splits into two peaks under
magnetic fields [25,39–43]. The peak splitting is also
discussed [21–26,113,114] when the broken time re-
versal symmetry state (BTRSS) is formed at the inter-
face. Theoretical studies showed that such BTRSS’s
are characterized by the s idxy� [26] or d idxy x y� �2 2

[115] wave pairing symmetry. In the presence of the
BTRSS, splitting of the ZBCP is expected in the zero
magnetic field. Experimental results, however, are
still controversial [116,117]. Some experiments re-

ported the split of the ZBCP at the zero magnetic field
[9,17,18,118–122], other did not observe the splitting
[8,10,11,15,20,123]. In addition, a recent experiment
shows the almost absence of BTRSS in high-Tc grain
boundary junctions [124].

In previous papers, we showed that random poten-
tials at the NS interface cause the split of the ZBCP at
the zero magnetic field by using the recursive Green
function method in numerical simulations [55,125]
and by the single-site approximation in an analytical
calculation [126]. We also showed that the splitting
due to the impurity scattering can be seen more clearly
when realistic electronic structures of high-Tc materi-
als are taken into account [127]. Our conclusion, how-
ever, contradicts to those of a number of theories
[69–71,128,129] based on the quasiclassical Green
function method [2,86,130–132]. The drastic suppres-
sion of the ZBCP by the interfacial randomness is the
common conclusion of all the theories. The theories of
the quasiclassical Green function method, however,
concluded that the random potentials do not split the
ZBCP. Thus this issue has not been fixed yet. There
are mainly two reasons for the disagreement in the two
theoretical approaches (i.e., the recursive Green func-
tion method and the quasiclassical Green function
method). One is the treatment of the random poten-
tials, the other is the effects of the rapidly oscillating
wave functions on the conductance. In our simula-
tions, we calculate the conductance without any ap-
proximation to the random potentials and the wave
functions; this is an advantage of the recursive Green
function method [55,133]. Our results indicate that
the splitting of the ZBCP in experiments is not a di-
rect evidence of the BTRSS at the interface of NS
junctions.

Let us consider two-dimensional NS junctions as
shown in Fig. 4,a, where normal metals (x � 0) and
d-wave superconductors (x � 0) are separated by the
potential barrier V H xB( ) ( )r � � . We assume the peri-
odic boundary condition in the y direction and the
width of the junction is W. The a axis of high-Tc su-
perconductors is oriented by the 45 degrees from
the interface normal. The pair potential of a high-Tc
superconductor is described by   k � 2 0k kx y in
the momentum space, where k k /kx x F� � cos� and
k k /ky y F� � sin� are the normalized wave number
on the Fermi surface in the x and the y direction, re-
spectively. The schematic figure of the pair potential
is shown in Fig. 4. The NS junctions are described by
the Bogoliubov–de Gennes equation,

d
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Fig. 4. The normal-metal/d-wave superconductor junction
is schematically illustrated. In (a), crosses represent impu-
rities. In (b), open, filled and gray circles represents the
normal metal, insulator and superconductor, respectively.
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2
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2
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�
3 , (33)

V V VB I( ) ( ) ( )r r r� � (34)

where

 4  ( , ) ( )( ) exp [ ( )]r r k r rk
k

1 � � 1�x /V i1 vol .

The normal conductance of clean junctions is given
by G e /h N TN c B� ( )2 2 with TB being the transmis-
sion probability of the junction, N Wk /c F� � is the
number of the propagating channels on the Fermi sur-
face. In the low transparent junctions (i.e., Z �� 1),
we find T /ZB 5 1 2. In what follows, we redefine
z Z/ Hm/ kF0

22� � � . We consider impurities near
the interface on the superconductor side as indicated
by crosses in Fig. 4. The potential of impurities is
given by V VI i j

N
j

i( ) ( )r r r� � ��1 � , where Ni is the
number of impurities. Effects of impurities on the
wave functions are taken into account by using the
Lippmann–Schwinger equation,

6 6 * 6( ) ( ) ( )( ) ( ) � ( , ) � ( )l l

j

N

j i
l

jG V
i

r r r r r� �
�
�0 0

1
3 , (35)

where l indicates a propagating channel characterized
by the transverse wave number ky

l( ) and � ( , )G0 r r1 are
the real space Green functions in the clean junctions
which can be obtained analytically. Here 6 7

( )( )l r is
the wave function in which an electron like quasi-
particle with ky

l( ) is incident into the NS interface
from normal metals and is described as
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for x � 0, where 8 l y
ly ik y / W( ) [ ]( )� exp , kl is the

wave number of a quasiparticle in normal metals sat-

isfying k k kl y
l

F
2 2 2� �( ) , r lNN

ee ( ) and r lNN
he ( ) are the

normal and the Andreev reflection coefficients of the
clean junctions, respectively. The wave function for
x � 0 is expressed in the same way. The wave function
at an impurity 6 ( )( )l

jr 1 can be obtained by r r9 1j in

Eq. (35)

6 * � * 60 0 0 3
1

( )
,

( )( ) [� � ( , ) � ] (l
j j j j j i

j

N
lG V

i

r r r r1 1 1
�

� �� j ).

(37)

It is possible to calculate the exact conductance
if we obtain 6 ( )( )l

jr for all impurities by solving
Eq. (37). In this paper, we solve Eq. (37) within the
single-site approximation, where the multiple scatter-
ing effect involving many impurities (Anderson local-
ization) are neglected. However the multiple scatter-
ing by an impurity is taken into account up to the
infinite order of the scattering events. In the summa-
tion of j in Eq. (37), only the contribution with j j� 1
is taken into account in the single-site approximation
[134]. In this way, the wave function at rj is approxi-
mately given by

6 * * 6( ) ( )( ) [� � ( , ) � ] ( )l
j j j i

l
jG Vr r r r: � �

0 0 3
1

0 . (38)

Substituting the wave function at impurities in
Eq. (38) into Eq. (35), we obtain the wave function
in the presence of impurities. The normal reflection
coefficients Bl l1, and the Andreev reflection coeffi-
cients Al l1, are then calculated analytically from the
expression of the wave function for x 9 �!. The dif-
ferential conductance in NS junctions is calculated
from the normal and the Andreev reflection coeffi-
cients [85],
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The first term of Eq. (39), N gc
( )0 , is the conduc-

tance in clean junctions, f EFD( ) is the Fermi–Dirac
distribution function, and V is the bias-voltage ap-
plied to junctions. In Eq. (39), .j represents effects
of the impurity scattering on the conductance. Ex-
plicit expression of .j is given in Ref. 126.

Before discussing the conductance, the local den-
sity of states (LDOS) near the junction interface
should be clarified because LDOS affects the scatter-
ing events of a quasiparticle. The LDOS is given by

N E x Gs ( , ) � ( , )� �
1

0�
Im Tr r r , (41)
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0N z x/exp ( );
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In the second line, we use a condition E ��  0 [126].
As shown in Fig. 5,a, the imaginary part of the Green
function has a large peak around E � 0 reflecting the
MARS formed at the junction interface, where
xkF � 6, z0 10� and  0 01� . 3F . The energy scale
E /zZEP �  0 0

2 characterizes the width of the peak of
the LDOS. Since the self-energy of impurity scatter-
ing is roughly proportional to the LDOS, effects of
scattering becomes strong for a quasiparticle with
E E� ZEP. At E � 0, we find

N E x N z x/ xks F( , )� �0 4 0 0
2

0� exp ( ); , (43)

where N m/0
2� ( )�� is the normal density of states

in the unit area. In Fig. 5,b, we plot Eqs. (42) and
(43) with the solid and broken lines, respectively.
The results show the remarkable enhancement of the
local density of states around x ~ ;0, where
; �0 0� ( )�v /F  is the coherence length and is about
6/kF . This implies that the MARS is formed around
x ~ ;0.

In the presence of impurities, the self-energy of the
impurity scattering depends on the LDOS. Thus the
impurities around x ~ ;0 are expected to be strong
scatterers. At the same time, scattering effects become
remarkably strong around E ~ 0. The conductance in
disordered junctions is shown in Fig. 6, where impuri-
ties are distributed randomly in the range of
1 � �x k L kj F s F , < =i i F sN /WL� 2 is the dimension-
less area density of impurities and z0 10� . The con-
ductance is calculated from the expression

G
e
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N dE
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1

1
Ni

j
j

Ni

, (45)

where � �... means the ensemble average. The broken
line denotes the conductance in the clean limit. The
width of the ZBCP in clean junctions is also charac-
terized by EZEP. We choose L ks F � 20 in Fig. 6 be-
cause we focus on the impurities near the interface
and ;0 6kF ~ . In Fig. 6,a, we show the conductance
of junctions in which low density strong impurities
are distributed (i.e., V Ni 0 01� . and <i � 0 2. ). The
conductance for high density weak impurities (i.e.,
V Ni 0 0 005� . and <i � 0 6. ) is shown in Fig. 6,b.
There is no peak splitting in Fig. 6,a, whereas the
conductance clearly splits into two peaks in Fig. 6,b
at the zero temperature. The impurity scattering
affects the ZBCP in two ways: (i) it decreases the
conductance around the zero-bias and (ii) it makes
the ZBCP wider. Roughly speaking, the product of
V N Ei s ( , )� 0 0; characterizes the strength of the im-
purity scattering. The suppression of the zero-
bias conductance always happens irrespective of
V N Ei s ( , )� 0 0; . The widening, however, happens
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only if impurity scattering is sufficiently weak so that
V N E Oi s ( , ) ( )~� 0 10; is satisfied [126]. Since
N /Ns ( , )0 10 0; �� as shown in Fig. 6, the zero-bias
conductance is drastically decreased by impurities.
When V Ni s ( , )0 10; �� as shown in Fig. 6,a, the sup-
pression of the zero-bias conductance dominates over
the widening of the ZBCP. The conductance de-
creases from that in the clean junctions for almost the
all bias region for eV E� ZEP as shown in Fig. 6,a,
which leads to no splitting. On the other hand, for

weak scattering potentials, V N Oi s ( , ) ( )~0 10; , impu-
rities cause widening of the conductance peaks as well
as the suppression of the zero-bias conductance. As a
consequence, the conductance splits into two peaks as
shown in Fig.6,b. The splitting peaks merge into a
single peak under finite temperatures such as
T E� 01. ZEP which is comparable to peak splitting
width at the zero temperature. The results obtained
indicate that the strong random potentials are not
necessary for the split of the ZBCP. High density im-
purities with weak random potentials are responsible
for the split of the ZBCP in low transparent junc-
tions.

The analytical results can be confirmed by numeri-
cal simulations based on the recursive Green function
method on two-dimensional tight-binding lattice as
shown in Fig. 4,b. The system consists of three re-
gions: a perfect normal metal (open circles), an insu-
lator (filled circles) and a superconductor (gray cir-
cles). The gray sites correspond to Cu atoms on CuO2
layers. The Hamiltonian reads,

H � � � � �
1

1 1� �( ) ( )
, ,

, ,
†

,
,

,
†

r r
r r r r

r
r r r

*
* *

*
*� 3t c c c ch.c. ,* �

� �
1

� 1 > 1 ?�( )
,

,
†

,
†

r r
r r r r

 c c h.c. , (46)

where tr r, 1 and  r r� 1 are the hopping integral and the
pair potential between r and r1, respectively.

We consider the nearest neighbor hopping, tn , in
normal metals and insulators. The on-site potential � r
is fixed at zero in normal metals and is VB in insula-
tors. In superconductors, we consider nearest neighbor
hopping, t1, and second nearest neighbor hopping, t2.
The random potential at the interface is taken into ac-
count through the on-site potential given randomly in
a range of � @ @V / V /S S2 2� r as shown in Fig. 4,b.
The amplitude of the pair potential between the near-
est neighbor sites is  0 and the sign of the pair poten-
tial is determined to satisfy a d-wave symmetry. The
Bogoliubov–de Gennes equation derived from the
Hamiltonian of Eq. (46) is numerically solved by us-
ing the recursive Green function method [55]. The
transmission and reflection coefficients of the junction
are exactly computed in the simulation. We obtain the
differential conductance from these coefficients based
on the Blonder–Tinkham–Klapwijk formula [85].

In Fig. 7, we show the conductance as a function of
the bias-voltage, where the Fermi energy in normal
metals is �2 0. tn , W � 30 and the conductance is di-
vided by the normal conductance of the junction GN .
The potential barrier at insulators is V /tB n � 3 0. and
the transparency of insulating layers is of the order of
0.01. The Fermi energy 3S ,  0, t1, and t2 are deter-
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Fig. 6. The conductance in the presence of impurities dis-
tributed randomly in the range of 1 20� �x kj F , where <i
is the dimensionless area density of impurities near the in-
terface. The conductance for low density strong impurities
is shown in (a) with V Ni 0 01� . and <i � 02. . The conduc-
tance for high density weak impurities with V Ni 0 0005� .
and <i � 06. are shown for several choices of temperatures
(b). The conductance in the clean junction at the zero
temperature is plotted with a dot-and-dash-line.



mined from an analysis of t J� model [135] for 10%
hole doping. The degree of disorder is V /tS n = 0.0
(broken lines), 0.1, 0.3, 0.5, and 1.0 from top to bot-
tom. The conductance is averaged over a number of
samples with different random configurations. The re-
sults show the drastic suppression of the ZBCP even
for weak random potential at V /tS n= 0.1. The split
of the ZBCP can be seen for slightly stronger poten-
tials such as V /tS n � 0 3. and 0.5. For V /tS n � 10. ,
we find dip structures around eV ~ 0 instead of the
ZBCP. These results may correspond to the dip struc-
tures observed in disordered NS junctions in an experi-
ment [136].

Several experiments [9,122] show a sensitivity of
the conductance peaks to external magnetic fields.
Here we discuss the conductance in the presence of
magnetic fields. The effects of magnetic fields are
taken into account phenomenologically by using the
Aharonov–Bohm like phase shift [112,137] of a quasi-
particle. Since the impurity scattering in magnetic
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fields itself is a difficult problem to solve analytically,
we neglect the interplay between magnetic fields and
impurity scatterings. Within the phenomenological
theory [112], effects of magnetic fields is considered
by replacing E in Eq. (40) by E B�| cos sin | 0 � � � as
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, (47)

E EB B� � 2 0 | cos sin |� � � , (48)

� �
;
�

� �B
B

B� �2 0
2

0
0tan tan (49)

where � �0 2� �c/e and B0 0 001� . corresponds to
B � 1 T. A quasiparticle acquires the Aharonov–Bohm
like phase shift �B while moving near the NS inter-
face [112]. In a previous paper, we found that ZBCP
in clean junctions remains a single peak even in the
strong magnetic fields [112] as shown in Fig. 8,c,
where z0 10� and T E� 0 05. ZEP. In Figs. 8,a and 8,b,
we show the conductance in the presence of low den-
sity strong impurities and high density weak impuri-
ties, respectively, where Vi and <i are same as those
in Fig. 6,a and 6,b, respectively. A temperature is
fixed at T E� 0 05. ZEP. In contrast to clean junctions
in Fig. 8,c, the ZBCP in disordered junctions splits
into two peaks under magnetic fields as shown in
Fig. 8,a. The results obtained within the phenome-
nological theory indicate that the sensitivity of the
ZBCP to magnetic fields depends on the degree of im-
purity scatterings. In insets, peak positions ( )�eV are
plotted with circles as a function of magnetic fields.
For high density weak impurities in Fig. 8,b, we also
found that the degree of peak splitting increases with
increasing magnetic fields. In the limit of the strong
fields, �eV tends to be saturated as shown in the in-
set. These characteristic behavior are found in the ex-
periment [9].

In summary of this Section, we conclude that the
impurity scattering causes the split of the ZBCP in
normal-metal/high-Tc superconductor junctions. We
consider impurities near the junction interface on the
superconductor side. The conductance is calculated
from the Andreev and the normal reflection coef-
ficients which are estimated by using the single-site
approximation in an analytic calculation and by the
recursive Green function method in a numerical simu-
lation. The strength of the impurity scattering de-
pends on the transparency of the junction, the posi-
tion of impurities and the energy of a quasiparticle
because the MARS are formed at the interface. We
find splitting of the ZBCP in the presence of the time
reversal symmetry. Thus the zero-field splitting of

ZBCP in the experiment [9] does not perfectly prove
an existence of BTRSS.
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