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A small viscosity approach to discontinuous flows is discussed in relativis-
tic hydrodynamics with a general (possibly, non-convex) equation of state
that typically occurs in the domains of phase transitions. Different forms of
criteria for the existence and stability of relativistic shock waves, such as
evolutionarity conditions, entropy criterion and corrugation stability condi-
tions are compared with the requirement of the existence of shock viscous
profile. The latter is shown to be most restrictive in case of a single-valued
shock adiabat expressed as a function of pressure. One-dimensional nu-
merical simulations with artificial viscosity for a simple piecewise-linear
equation of state are carried out to illustrate the criteria in the case of pla-
nar and spherical shock waves. The effect of a phase transition domain on
the shock amplitude in the process of a hydrodynamical spherical collapse
is demonstrated.

Key words: relativistic hydrodynamics, shock waves, anomalous equation
of state, instabilities, numerical methods

PACS: 95.30.Lz, 95.30.Qd

1. Introduction

A number of applications of relativistic hydrodynamics deal with shock wave
propagation in a matter at extremely high densities. This problems concern, e.g.,
the relativistic stellar collapse, the theory of early Universe, hydrodynamical mod-
els of elementary particle production in nucleus-nucleus collisions. Such a consid-
eration usually requires taking into account various phase transitions that may
occur in a super-dense matter under appropriate conditions. The domain of phase
transitions typically has essential peculiarities from the viewpoint of hydrodynam-
ics because of the possible non-convexity of the equation of state. Namely, this
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requires special attention to the existence and stability properties of discontinuous
solutions [1,2]. The main problem is that standard equations for an ideal fluid
flow with the general equation of state do not restrict properly the discontinuous
solutions and the question is how to distinguish the physical solutions obtained
either by analytical or numerical algorithms from those that cannot be realized in
nature. This problem is well known in classical hydrodynamics [1,2] and needs to
be investigated in a relativistic case.

The equations for a fluid flow of relativistic hydrodynamics are defined by con-
servation laws for energy-momentum and baryonic charge (or another conserved
charge) combined with the equation of state. However, in the presence of dis-
continuities (shock waves) these equations must be complemented by additional
restrictions in order to define correctly a generalized solution and to provide its
uniqueness. Otherwise, there may be different solutions satisfying the same discon-
tinuous initial data. This situation is typical of the quasilinear equations theory
[1,2]. The criteria for the existence of a viscous profile (EVP), entropy criterion
(EnC) and evolutionarity criterion (EvC) may be considered as the most famous
examples of the above restrictions [1-3]. EVP selects the discontinuous solutions
that can be obtained from continuous solutions of hydrodynamical equations with
a non-zero viscosity in the small-viscosity limit. The physical background of this
approach involves a discussion of validity of a viscous hydrodynamics approxi-
mation to describe the shock wave structure. This approximation is not always
physically admissible and this diminishes the role of an EVP criterion. Neverthe-
less, a small viscosity model is physically well understandable and may be useful
in phenomenological schemes of relativistic hydrodynamics (see, e.g., [4,5]) dealing
with a superdense matter, where investigation of the shock structure at a micro-
level is rather complicated. EnC prohibits unphysical shocks with the decreasing
entropy. In many cases it is the only criterion that may be taken into account, but
in the case of a non-convex equation of state it is not sufficient [1,2]. EvC may
be considered as a general requirement that provides a correct construction of the
solution by the determination of hydrodynamical parameters on the shock [3]. The
solutions that do not satisfy these requirements are considered to be unphysical
and must be rejected on a formal level [1-3]. An important practical question con-
cerns the validity of numerical algorithms and their correspondence to the above
criteria.

Another set of criteria concerns the stability of shock waves. According to
the general notion of stability these criteria do not prohibit (mathematically) the
existence of certain solutions. However, they show that some solutions are de-
stroyed with time by exponentially growing small perturbations and, therefore,
they cannot be realized in nature. The corrugation stability criterion [6,7] exam-
ines such perturbations of hydrodynamical quantities in a continuous flow and
three-dimensional deformations of the discontinuity front itself.

In classical hydrodynamics much attention has been paid to compare different
criteria for the existence and stability of shock waves. The aim of this paper is to
outline some results concerning such a comparison in relativistic hydrodynamics.

644



Relativistic shock waves

The plan of the paper is as follows. In section 2 we review the conditions for EVP
of relativisic shock waves with some generalization that allows one to compare
different types of viscosity. In section 3 the EVP is compared with the corrugation
stability conditions. Section 4 deals with numerical simulations of the shocks in
the case of plane and spherical symmetry for a simple piecewise-linear equation
of state that models a phase transition. We compare the numerical and analytical
results in a plane case and study some qualitative effects due to the domain of
phase transition in a spherical collapse. Section 5 summarises the results of the

paper.

2. Existence of a viscous profile of a shock wave

A detailed investigation of the EVP criterion for relativistic shocks in an ideal
fluid with a general equation of state has been carried out in [4,5]. It is important
to note that the results of [4,5] do not use supposition about the convexity of
Poisson adiabats, that is one of the Bethe-Weyl conditions (see, e.g., [1]) for a
normal medium. In this section we reconsider some of these results in order to
compare them with the stability criteria and with numerical algorithms involving
the Neumann-Richtmyer artificial viscosity.

The equations of motion of an ideal relativistic fluid can be written as conser-
vation equations of the energy-momentum tensor [3]

T" = (e + p) u'u” — pg"”, (1)

where u* is 4-velocity of the fluid, {¢**} = diag(1, —1,—1,—1), p is pressure and
¢ is the proper energy density. The pressure is related to ¢ and to the baryon
number density n (or density of some other conserved charge) by a sufficiently
smooth equation of state p = p(¢,V), V = 1/n being the specific volume.

The conservation equations for T#” must be complemented by conservation
equations for the baryonic charge

d, (nut) = 0. (2)

In a discontinuous flow the hydrodynamic quantities on both sides of the shock
are related through the integral form of conservation laws. However, relations on
the discontinuities must be complemented by certain restrictions that are necessary
to provide the uniqueness of discontinuous solutions [1,2]. These restrictions may
be obtained by analyzing the structure of a shock transition in the presence of small
dissipative effects, such as viscosity. In the presence of viscosity the conservation
equation for T"” must be replaced by

O, (T + 1) = 0, (3)
where
Tuw = R7,¢,
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: 2\ ou®
Toy = 1] (U + Uy — Ut 0 — U U Up0) + (C - 5?7) Oz (G — wpur) , (4)

is the Landau-Lifshits relativistic viscosity tensor [3]; and the multiplyer R, that
makes equation (3) somewhat different from that used in [4,5], may be any positive
function of flow parameters to be specified later.

Under the given equation of state and appropriate initial conditions, equations
(2) and (3) define solutions for the viscous fluid dynamics. To obtain the discontin-
uous ideal fluid motion we suppose that some limit of such a dissipative solution
exists for n — 0, ¢ — 0. This limit is considered as a generalized solution of the
conservation equations for an ideal fluid. This is one of a number of possible meth-
ods to define discontinuous solutions; there may be, e.g., other dissipative effects
besides viscosity; one may also use different definitions of a generalized solution
of hydrodynamic equations of motion [3]. However, the approach based on the
viscosity tensor [3] appears to be the simplest and physically well understandable.
It is sufficient to obtain a continuous profile of the shock, the resulting restrictions
being more stringent, e.g., than the evolutionarity conditions.

Thus, we expect that in the limit of small viscosity the solutions of hydrody-
namical equations yield discontinuous flows describing shock waves. In the case of
a nonzero viscosity the stationary shock wave propagating in a space-like direction
l,, is locally represented in a proper frame by a stationary viscous flow depending
upon the only variable x = z#[,. We choose the coordinates in such a way that
{1,} ={0,1,0,0}, x = 2'. Further, without loss of generality, one may also put
u? = u® = 0 due to the choice of the reference frame.

The equations (1), (2) yield

TV + 7% = T,” = const, (5)

nu' = j = const, (6)

where j = nguj and Ty are asymptotic quantities either for x — oo or for z — —o0.
Here we assume that for x — —oo, all the quantities tend to some constant values
marked by “0” (the state ahead of the shock) and for x — oo, the quantities
tend to constant values marked by “1” (behind the shock). Because 7 — 0 for
x — £o0, the solution of equations (5), (6) (if it exists) satisfies the conservation
relations that connect hydrodynamical quantities on the both sides of the shock.

However, there arises the question whether there is a continuous one-dimen-
sional flow represented by the solution of (5), (6) that satisfies the both above
asymptotics for  — oo and x — —o0. The existence conditions for a continuous
solution of this boundary value problem are then interpreted as admissibility con-
ditions for shock transition ué‘o), Vo, po — ué‘l), Vi, p1 with the corresponding states
satisfying the relations on the shock wave.

Equations (5), (6) can be reduced, analogously to [4,5], to the first order ordi-
nary differential equation

R(c+3n) 5 = p(iE@) -5, )
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where
PO = {1+ )} {1 - T} Q
E(V) = Tifuu/u'. (9)

The right-hand side of equation (7) equals zero for V' =1j and V = V;.

Now one must analyse different choices of R.

a) R = 1. This case has been studied in [4,5]. Let, e.g., V; > 1} (the reverse case
yields the same results), and the r.h.s. of (7) is smooth and positive for V' € (14, V}).
Then, there is a smooth solution V' (z) of (7) that tends to V; for z — —oo and to
V1 for & — oo. If the right-hand side of (7) changes its sign at some point between
Vo and Vi, then there is no continuous solution of (7) in (—o0, 00) connecting Vj
and V]. As a result, we obtain the following criterion of admissibility of a stationary
shock transition:

V=W @V,e(V))-p(V)) >0 (10)

for all V' between V; and Vj. The cases when the left-hand side of (10) has zeros
within (V4, V7) but does not have negative values (e.g. in the case of Joquet points)
may be also included, but this requires some additional consideration.

b) The hydrodynamical numerical calculations often deal with an artificial vis-
cosity of the Neumann—Richtmyer type [1,11]. We shall take this into account by
putting R = C ‘i—‘;‘ in (4), C being a positive constant. Let again, for definiteness,
Vi >V, and one has a strict inequality in (10). In this case, expanding equation
(7) in the neighborhood of Vi and Vj, one obtains dV/dz o« (V; — V)? and an
analogous relation for V;. Using this it is easy to see that we have a finite in-
terval [zg,z;] for the smooth solution V (z), such that V (z¢) = Vo, V(1) = W
(finite width of the shock front, cf. [1]). Outside this interval the solution may be
continued by putting V (z) = Vj for x < zq, V () = V] for x > 2 > ;.

On the other hand, if there is point V' € (V4,V7) where the right-hand side of
(7) changes its sign, then the solutions of (7) must be increasing for V' < V' and
decreasing for V' > V'. Therefore, there is no continuous solution connecting states
“0” and “1”. Therefore, we again come to criterion (10).

It is shown in [4,5] that inequality (10) is equivalent to another one

(61 —c0) (P (e) = pu (€)) > 0 (11)

expressed in terms of the Hugoniot—Taub shock adiabat pg (¢) in plane of thermo-
dynamical variables p — ¢; the pattern function p(¢) = A — C/ (A + ¢) represents
curve (8) passing through the initial and the final state in the p — & plane of ther-
modynamical parameters (this condition defines constants A and C). Inequality
(11) must hold for all the values of energy density ¢ between states “0” and “17,
ahead of and behind the shock, respectively. This form of the EVP criterion works
in the case of the single-valued Hugoniot-Taub adiabat pg (¢). If this is not the
case, one may use another form [4,5] of the criterion that uses an equation of state
only. An equivalent assertion in terms of shock adiabats may be formulated as
follows.
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The compression (rarefaction) shock transition has a viscous profile on the
condition that pattern curve p(e) lies above (below) the Hugoniot—Taub adiabat
in the vicinity of the initial point and does not intersect it between the initial and
the final states.

It has been shown [4,5] that EnC follows from EVP, but the reverse statement is
not valid. The evolutionarity conditions for relativistic shocks yield the inequalities
for fluid velocities and sound speeds v, v1, ¢g, ¢; ahead of and behind the shock

vo = ¢, V1 < €, (12)

that have the same form as for nonrelativistic ones [3]. Inequalities (12) can be also
be obtained as a consequence of EVP [4,14]. Evidently, EVP imposes more powerful
restrictions upon the parameters of the shock because (10) or (11) concerns all
the states on the Hugoniot-Taub adiabat, not only in the neighbourhood of “0”
and “1”7. However, in the case of a normal equation of state (that allows only
compression shocks) these criteria are equivalent.

Further we shall use another form of the EVP criterion [13]:

(1 = po) (Poi (T) = pu (7)) > 0, 7 € [10, 7], (13)

where Py (1) = 222 (1 — 1) + po is a relativistic analog of the Rayleigh line,
pr (7) is a shock adiabat with the centre at pg, 79, 7 = (¢ + p) V? is a generalized
specific volume. It has been shown in [13] that inequalities (11) and (13) are

equivalent.

3. Shock wave instabilities and viscous profiles

Consider now the corrugation stability conditions [6,7] dealing with perturba-
tions of the solutions of hydrodynamical equations. The shock transition “0” — “1”
is corrugationally unstable [6,7] if at the final state p = p;, 7 = 7 either

m? <8—7> < -1 (14)
op) 5
or
1+2M
m? (a—T> 5 L2 von (15)
op/ 4 1 — vyuy

where M = vy /¢ is the Mach number behind the shock; v is the fluid velocity with
respect to the shock front, m=pv/v/1 — v? is a conserved flux, index H means that
the derivatives are taken along the Hugoniot—Taub adiabat.

On account of the relation m?> = (p —pg) / (10 — 7) we see that by virtue of
(14) the relative disposition of the shock adiabat and the Rayleigh line in the
neighbourhood of the final point p = p; contradicts (13). Then condition (14) is
not satisfied for shocks satisfying EVP.
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To analyse the second inequality (15) we pass on to variables u,p, where u is
the fluid velocity ahead of the shock with respect to the fluid behind the shock,

s (p—po) (e —¢0)
v (g0 +p) (e +po) (16)

Let py (u) represent a shock adiabat in the p—u plane. We shall now analyze in-
equality (15) in view of the requirement that py (u) is a single-valued function. This
is not a physical requirement; and, indeed, there are examples of non-single-valued
adiabats [2]. However, the case of single valued adiabats py (u) covers a signifi-
cant number of physical applications; and in the opposite case the investigation of
discontinuous solutions requires additional information of a non-hydrodynamical
nature [2],[9].

The equation for the Hugoniot—Taub adiabat [8] with the centre at (g9, pg) can
be written as

T(S—l—pg) — T (80 +p) = 0.

Due to this equation we have the derivative (ds/0dp)y that is used to obtain
(Ou/0p)y from (16); then, substitution into (15) yields

0 M 1-uv2
(_u) < - ’012 R 5 < 0 for p = p;. (17)
ap H meTy (1 — ’U(]Ul)

On the other hand, direct calculation of this derivative from (17) for the initial
point yields (Ou/0p)y = 1/co (€0 + po)] > 0. So, this derivative changes its sign
between the initial and the final states, and, therefore, dependence uy (p) is not
monotonous. This conclusion is the same as in classical hydrodynamics. In other
words, shock adiabat py (u) is not single-valued.

Therefore, either the corrugationally unstable shocks do not satisfy EVP, or
they are non-single-valued in the above sense.

So, we infer that shocks for the single-valued Hugoniot-Taub adiabat segments
satisfying criterion (13) are evolutionary, corrugationally stable and satisfy the
entropy criterion. Discontinuities that correspond to the segments of the shock
adiabat where (13) is not valid break up, although their existence is not prohibited
by conservation laws.

If the Hugoniot—Taub adiabat py (u) is not single-valued, this statement gener-
ally does not hold. Such shocks can break up in a non-unique way [2]. Even stable
shocks may break up for non-single-valued Hugoniot—Taub adiabats. Considera-
tion of shocks in this case needs additional information of a non-hydrodynamical
nature [2,9].

4. Numerical simulations of shock waves

We have shown in section 2 that introduction of either the Landau-Liftshits
viscosity or an analytical counterpart of the Neumann-Richtmyer viscosity leads to
similar criteria for the shock existence in a one-dimensional flow. However, strictly
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speaking, when we pass on to a finite-difference analogues of hydrodynamical equa-
tions, such a comparison needs special mathematical investigation of a concrete
numerical algorithm. In this connection we outline the results of numerical simula-
tions of discontinuous flows in order to illustrate the correspondence between the
above EVP criterion and an algorithm involving artificial viscosity. In this section
we also apply a numerical algorithm to study the formation of a shock wave in a
hydrodynamical spherical collapse.

We confine ourselves to a simple piecewise-linear equation of state that is simi-
lar to those considered in a most simple hydrodynamical model of a quark-hadron
phase transition (see, e.g., [12])

p(e) =¢/3 for 0 < e < g1 (hadron phase), p(¢) = 1/3 for ¢ < & < &9,
(18)
p(e) = (e — 1) /3 for € > &5 (quark phase).

The intermediate part for £; < € < &5 is considered as some model of a phase
transition domain between the quark and hadron phases. This is a non-convex
one-parametric equation of state; the same is the Hugoniot—Taub adiabat.

To perform the numerical calculations we have worked out a computer pro-
gram that realizes an absolutely conservative numerical algorithm for relativistic
hydrodynamical equations using small viscosity of the Neumann-Richtmyer type.
The principle of absolute conservation means that not only conservation laws are
approximated numerically but so are all their differential consequences. Such a
property permits us to work with rather rough grids (which do not require pow-
erful hardware) in order to obtain qualitatively good results by means of personal
computers. For a detailed description of the
method for nonrelativistic equations see [11];
we have modified this approach to the rela-
tivistic one-dimensional flow in the case of
planar and spherical symmetry.

A. In a planar case the problem we deal
with is essentially a break-up problem of ar-
bitrary discontinuity which is analogous to
the well-known classical problem [1]. An al-
gorithm of an analytical solution for a rela-
tivistic version of this problem can be found
in [13,14]; a detailed analytical investigation
of discontinuous initial data break-ups for
the above equation of state is presented in
[14]. The hydrodynamical flows of the break-
up problem depend upon the only similarity

Figure 1. Numerical simulations
using the Neumann—Richtmyer vis-

variable x/t (¢ is time, z — a spatial vari- cosity (crosses) versus analytical
able). The analytical solutions for discontin-  golutions (solid line). The picture
uous initial data have been compared with  describes an energy density pro-
the results of computer simulations. The re-  file that evolves from an “unstable”

sults shown in figures 1 and 2 demonstrate  plane compression shock.
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that the initial configurations not satisfying (13) on discontinuities are disrupted
into smaller shocks and simple waves. The results also show the existence of admis-
sible (satisfying (13)) rarefaction shocks compatible with analytical calculations.
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Figure 2. Energy density profile
evolving from the desruption of an
unstable plane rarefaction shock.
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Figure 3. Spherically symmetri-
cal discontinuous flow in the case
of a converging rarefaction shock.
The solid line shows the solution
obtained by numerical integration
of ordinary differential equations
corresponding to the self-similarity
case; the crosses show the results of
an artificial viscosity algorithm.

B. In the case of spherical symmetry we
cannot construct an analytic solution for the
equation of state (18) with the same degree
of completeness as in the planar case. To
check up the program in this case we use a
specific self-similar solution describing evap-
oration of a liquid drop through a converg-
ing rarefaction shock wave. The solution de-
pends upon the only variable & = r/t (r be-
ing a radial variable). The trajectory of the
converging shock is £ = —&.

Inside the drop (|¢] < &) the fluid is at
rest (v =0), e = g9 = const.

Outside the drop (|| > &) the solu-
tion is described by an ordinary differential
equation (see, e.g., [15]) that is solved nu-
merically. The initial values for v and ¢ in
the hadron phase are obtained from ¢4 and
& through conservation relations that relate
the hydrodynamical quantities on the both
sides of the shock. Then this result is com-
pared with the results of numerical simula-
tions using artificial viscosity. These are also
in good agreement (see figure 3).

C. The following question concerns the
application of the above algorithm to the
study of a role of the shelf part (modelling
the phase transition domain) in the equation
of state (18) in a hydrodynamical spherical
collapse. As initial conditions for the con-
verging rarefaction shock wave we take a
spherically symmetric configuration with en-
ergy density € (r,0) = 1/(2+ r?) and with
homological conditions on velocity v (r,0) =
—ar. We consider a class of equations of
state (18) with different sizes of the “shelf”
Ae = g9 — &1 and our aim is to study the
qualitative dependence of the flow upon it.
The results of the calculations are depicted

in figure 4. These figures show the sequential time slices of energy density ¢ (r, )
as a function of the Eulerian coordinate.
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time step
1= 0.05
t= 225

time step
1= 0.05

4.00

040 050 0.00 0.10 0.20 0.30 040 [ 050

Figure 4. Energy density profiles in the case of a spherical collapse for different
time moments. The figures a), b) and ¢) correspond to the values of the “shelf”
Ac¢ equal to 0,5,17, respectively. The wave-like structures and oscillations in the
numerical solution are the consequence of the grid roughness. The “tails” of the
solutions at the right-hand side of the curves correspond to a rarefaction wave of
the outer layers in view of a nonequillibrium initial configuration that is cut off

at ¢ = 0.05.

As it can be seen from the figures, the
shelf part of the EOS causes an emergence
of a shock wave moving from the centre of
the configuration to the outer layers. This
takes place at the moment when the energy
density reaches 5. This is not surprising be-
cause the stiffening of the equation of state
at this point acts as an elastic piston. Such
a shock emerging in a star core in the col-
lapse process will press on the outer layers of
the star as a piston and may contribute to
the envelope overthrowing in supernovae ex-
plosions. Dependence of the intensity of the
shock wave upon the size of a phase tran-
sition, i.e. on the size of the “shelf”, is de-
picted in figure 5. As we see, the larger Ae,
the stronger is the shock, i.e. the stronger is
the effect of the piston on the outer envelope.

5. Conclusions

10.00 +
Ag A

8.00 +

6.00 —

B +
4.00
+
2.00
+
+ shelf

0.00 T T T T T ]

0.00 4.00 8.00 12.00 16.00 20.00

Figure 5. Numerical simulations
using the Neumann—Richtmyer vis-
cosity (crosses) versus analytical
solutions (solid line). The picture
describes an energy density pro-
file that evolves from an “unstable”
plane compression shock.

We have compared different known criteria for the existence and stability of
relativistic shock waves: the existence of a viscous profile, entropy criterion, evo-
lutionarity criterion and corrugation stability. These criteria have different senses
and levels of physical justification and differently restrict discontinuous flows. The
EnC and EvC follow from very general requirements, however, in the case of non-
convex equations of state they do not properly restrict discontinuous solutions of
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hydrodynamical equations. The solutions may be specified due to EVP require-
ments; in particular, this criterion does work in the relativistic problem of decay of
arbitrary discontinuity [14]. However, justification of this criterion is less general
from the physical point of view. This criterion was obtained in [4,5] by using the
phenomenological relativistic viscosity tensor [3] (in a small viscosity limit) for a
one-dimensional picture of the shock wave, so one may enquire about other models
of the relativistic shock structure yielding other ways of studying discontinuous
solutions. Here we do not discuss possible physical situations related to this model,
but concentrate on formal results.

Though the relativistic EVP criterion of [4,5] is essentially one-dimensional and
the corrugation stability concerns three-dimensional perturbations of the fluid flow,
in the case of single-valued shock adiabats (in the p — u plane) the requirement of
EVP is shown to be most restrictive: the shocks satisfying this criterion also satisfy
EvC, EnC and are corrugationally stable. This is analogous to the non-relativistic
case [2]. Though the requirement of a single-valued shock adiabat is not a physical
one [2], this case covers a significant number of physical applications. If the shock
adiabat is not single-valued, then there may exist corrugationally unstable shocks
that satisfy EVP, EvC and EnC [2,9] and their consideration requires additional
information of a non-hydrodynamical nature. Note that the results are valid for
a wide class of equations of state including those having anomalous domains that
are typical in the neighbourhoods of phase transitions.

It is also important to note that the results of the computer simulation based
on widely used artificial viscosity schemes agree with the EVP criterion. This
has been illustrated by numerical simulations using an absolutely conservative
scheme with artificial viscosity for special one-dimensional relativistic flows with a
simple piecewise-linear equation of state. The results of these simulations show an
essential influence of the model phase transition domain on the amplitude of the
shock arising in the spherical hydrodynamical collapse. This may be of interest
for more detailed considerations of a relativistic stellar collapse in the supernova
flares theory.
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IcHyBaHHS Ta CTiKICTb PENATUBICTUYHUX YAAPHUX
XBWUNb: 3aranbHi KpUTepii Ta YMCNoBe MOAeNIIoOBaHHS
ONS HeoNnyKJ/oro PiBHAHHA CTaHy

N.B.TutapeHko, B.l.)KnpaHoB

AcTpoHoMi4Ha o6cepBaTopis Kniecbkoro yHiBepcuteTy iMm. T.LLIeBueHka,
254053 m. KuiB, Byn. ObcepBaTopHa, 3

Otpumanro 30 ciyHa 1998 p.

O6roBoploeTLCS Niaxig Masoi B'a3K0OCTU [0 PO3PUBHUX NMOTOKIB y pens-
TUBICTUYHIN rigpoanHaMmiLi i3 3arafibHUM (MOXJ/IMBO, HEOMYKIIUM) PIBHSH-
HSIM CTaHy, sIke XxapakTepHe ans obnactu pazoBux nepexoqis. PisHi pop-
MU KPUTEPIiB iICHYBaHHS Ta CTIMKOCTU PENATUBICTUYHNX YOAPHUX XBUSb
— YMOBW €BOJIOLIMHOCTU, EHTPONINHUI KPUTEPIA Ta YMOBU CKNagyacToi
CTabiNbHOCTN — NMOPIBHIOKOTLCS 3 BUMOIOO iCHYBaHHS yAAapPHOro B’ A3Kic-
Horo npodinto. NokasaHo, WO OCTaHHIN KpuTepin € BinbLl 0OMEXYIUNM
y BUNagKy yaapHoi afisdbartin, sika BUpaxaeTbCs 9K OAHO3Ha4YHa PYHKLLSA
TUCKY. [n§ intoCTPyBaHHS LMX KPUTEPIIB Y BUNAAKy NaoCKuX Ta chpepmy-
HUX YOAPHUX XBW/Ib NPOBEAEHO OQHOBMMIPHE YMC/IOBE MOAENIOBAHHS 3i
LUTYYHOIO B’A3KICTIO AJ1 NPOCTOro KYCKOBO—NIHIMHOIO PIiBHAHHSA CTaHy.
MpoaemMoHCTPOBaHO BB 061acT Ga30BMX NEPEXOLiB HA yoapHY aM-
nAaiTyay y Npoueci rigpogmHamivHoro cpepmuyHoro Konancy.

KniouoBi cnoBa: pessstuBicTnyHa rigpoanHamika, yaapHi XxBuii,
aHoMaJlbHi PIBHSIHHS CTaHy, HECTIMKOCTI, Y1CesIbHI MeToan

PACS: 95.30.Lz, 95.30.Qd
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