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A short outline of revived methods of an action-at-a-distance description
of interacting particles is given. A new approach to the problem of mo-
tion in relativistic gravity is discussed. The approach makes an essential
use of the predictive relativistic mechanics method with some phenomeno-
logical assumptions as to the character of relativistic “forces”. The tech-
nique of the construction of the approximate solutions for the Currie-Hill
equations is proposed. Some recurrent conditions for these solutions are
proved to be necessary and sufficient. The generalized Poincaré-invariant
equations of motion are derived in post-Newtonian approximations of the
phenomenological formulation of the relativistic action-at-a-distance gravity
for the closed system of N structureless particles. Connections of these
equations with those of the Lagrangian description are discussed.
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1. Introduction

It is customary to describe various interactions in the nature in terms of classi-
cal or quantum fields. Since Faraday, such a formulation has succeeded eminently in
describing natural phenomena, particularly two fundamental interactions of clas-
sical physics, namely, electromagnetism and gravitation. The success has led to a
belief that field prescription is the only way how to describe these interactions.
But the field-theoretic description has both achievements and difficulties which
have never been solved. The fact is that the particles interacting via fields are
submitted to a kind of dynamics very different from the classical one. Fields do
not propagate with the infinite velocity and the resulting dynamics is hereditary.
By this we mean that the positions and velocities given at a fixed time are not suf-
ficient data for prediction. For example, in order to determine the further states of
a two-electron system moving by retarded potentials, we need information about
its past behaviour: elimination of the fields by making use of the Lienard—Wiechert
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potentials does not eliminate the difficulty; the resulting equations of motion have
a differential-difference structure and the problem still defies the solution. If one at-
tempts to escape the difficulty by expanding these differential-difference equations
in the Taylor series about some observer’s present time, one obtains infinite-order
differential equations — i.e. again a description involving an infinite number of
degrees of freedom.

So, the basic difficulty of the field-theoretic description of an interparticle inter-
action in relativistic mechanics is the necessity of introducing an infinite number
of degrees of freedom to describe the world lines of a finite number of particles.
As a consequence of this, the simplest problem in the relativistic electrodynam-
ics of interacting particles, namely, the two-body problem, has never been solved,
with the exception of the circular-orbit solutions found by Schield, solutions to the
two-body problem in the limit in which the mass of one of the particles goes to
infinity, which is no longer a two-body problem (see, e.g., [1]-[5]).

Free or almost free from all of the aforementioned difficulties the action-at-a-
distance point of view was predominant from the time of Newton to the time of
Maxwell and Einstein. Since Maxwell, the action-at-a-distance point of view has
been largely ignored. Recent years have seen a revival of the action-at-a-distance
description (see [4,5]).

Two distinct threads can be seen in this revival (see [2,4,5]). The first starts
with Schwarzschild (see in [2]), Tetroge [6] and Fokker [7], and runs via Dirac (see
in [2]) to the electrodynamics of Wheeler and Feynman [8], which itself is a special
case of the later relativistic mechanics of Van Dam and Wigner [9,10]. This thread
is marked by manifestly covariant, many-time theories. The forces between the
particles act along light cones, or, in the case of Van Dam and Wigner, through
the space-like region between the past and future oriented light cones. Equations
of motion are coupled differential-difference equations. For the Wheeler—Feynman
electrodynamics, at least this differential-difference structure can be viewed as a
vestige of the field theory which has not been removed: it arises because of the
finite time required for the electromagnetic field to propagate from one particle to
another.

Another thread, to which the predictive relativistic mechanics (PRM) belongs,
starts with a 1949 paper by Dirac [11]. It is marked by equations of motion which
are coupled ordinary differential equations. In Dirac’s instant form—which is the
form which has been picked up and developed—the action-at-a-distance is then
instantaneous, as in the ordinary nonrelativistic Newtonian mechanics. The theory
is a single-time theory, rather than a many-time theory.

The modern form of PRM of the isolated systems of N structureless point-
like particles, in the manifestly predictive formalism is based on two fundamental
principles (see e.g. [12]):

(1) The principle of predictivity: the evolution of such a system is ruled as the
system of ordinary second-order differential equations over R3V.

(2) The principle of relativity: the set of trajectories of such a differential system
is invariant as regards the Poincaré group.
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These principles were considered incompatible for some time. However, in 1961
Havas and Plebanski [13] demonstrated the compatibility of principles (1) and (2).
Later Currie [14] and Hill [1] found the necessary conditions which the accelerations
of the particles must satisfy in order for the system to be a Poincaré-invariant. Bel
[15] proved that such conditions are also sufficient. These conditions that consti-
tute a system of first-order nonlinear partial differential equations which must be
satisfied by the accelerations, are called in the literature “world line conditions” or
Currie—Hill equations. We must say that the requirement of a special-relativistic
invariance for a classical dynamical system encompasses two distinct notions: one
is the identity of dynamical laws in all the inertial frames, and another is the
manifest covariance. The independence of these two notions is seen most clearly
within the canonical formalism to which one is led automatically if one has a La-
grangian starting point [16]-[23]. With a Lagrangian one has a definite parameter
of evolution with respect to which one has differential equations of motion. From
the Lagrangian description one can pass to the equivalent Hamiltonian description
based on both a phase space and the idea of Poisson brackets.

In the study of relativistic N particle systems with a direct interaction, several
methods have been proposed and thoroughly elaborated by the corresponding
streams of papers issued in the literature [17]. The common aim of most of these
approaches is to carry out the so-called Dirac program [11], i.e. to construct a
sympletic realization of the Poincaré group. There is a problem of space-time
interpretation of the theory which remains unsolved to the end in the scheme of
the relativistic Hamiltonian description of the directly interacting particle system
[23,24]. This problem was originated by the well-known “non-interaction theorem ”
[25,26] forbidding the identification (in the interaction zone) of canonical position
variables ¢! (i = 1,2, 3; the subscript a = 1,..., N labels particles of the system)
with covariant space coordinates z° of the particle world lines in the Minkowski
space M* [1,22].

There are some papers [20]-[22] treating the problems of establishing the re-
lation of canonical and covariant variables in the frames of the classical (non-
quantum) version of the relativistic direct interaction theory (RDIT). Most of the
authors relate three-dimensional covariant coordinates to a certain geometric form
of dynamics (see [27]), especially to the instant one. R.P. Gaida and V.I. Tretyak
in [28] proposed the algorithm of constructing canonical variables in terms of co-
variant coordinates and their derivatives in any order of some small parameter
(particularly, in the inverse speed of light ¢™!). The main results of this thread
of modern RDIT have been formulated by R.P. Gaida, Yu.B. Kluchkovsky and
V.I. Tretyak [18]-[22], [27,28]. Other results have been reported in papers [23]-
(25], [29] (see [22]).

In literature there are some results connecting the preceding threads (see [4,5,
14,23,28]).

In this paper, the conditions needed to cast a given system of gravitationally
interacted particles into the scheme of PRM (or RDIT) are studied. The purpose
of this study is to discuss a new approach to the problem of motion in relativistic
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gravity, which makes an essential use of the aforementioned distinct threads of
RDIT methods with some phenomenological assumptions as to the character of
the relativistic “forces”. Generalized Poincaré-invariant equations of motion are
derived from some recurrent conditions, which are proved to be necessary and
sufficient.

2. Manifestly predictive formalism

Such a denomination of the formalism was adopted by L. Bel [15] (PRM-
3).There are some papers [4], [15]-[17], [30] treating the problem of the construction
of PRM-3. Certainly, the basic principles of these approaches are almost the same
(namely, principles (1) and (2) formulated in the Introduction to this paper), but
each has peculiar features which may be significant from different points of view.
The most convenient for our consideration approach was described by R.P. Gaida
[4]. Most of the results presented in this paper have been already obtained [15]-[17],
[30]. However, according to [4], we are going to give a slightly different presentation
which, together with the one of [15], will provide a deeper insight into the way this
formalism works.

Let G, be an r-parametric Lie group of point transformations of the Minkowski
space M* with parameters \® [4]:

x'# = oz, \);
x={a"} ={ct,r}, p=0,1,2,3, (1)
A={A}, a=1,..r

Infinitesimal transformations
M =" 4 Sxt = o + E(x)ON + 0(6N) (2)

are defined by generators (tangent vector fields)

¥ —gi(o) s el = 25N ®)
which are connected by commutational relations
[Xa, Xs] = capd, (4)
or Bev ,
o g = ®)
where clﬂ are the structure constants of G,. Thus, operators X, form the Lie

algebra AG, of G,.

For 10-parametric Poincaré group P the generators of time translations (X7 ),
space translations (X;"), space rotations (X]) and Lorentz rotations (X;") are given
by

Xy =0, X = =y (6)
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0
XJR - _5jki$ka—xz_, (7)
0 0
L [— [ — _
Y= g g ®

where ¢,;; are the Levi-Civita symbols.

In this paper we put ¢ = h = 1.

The commutation relations characteristic of the Poincaré Lie algebra are the
following:

(&7 8] =0, [xFa]] =0, [x7.x]] =0, (9)
(AR XT| = Xl [XFR XF] = e,

(X2, XF] = e, } 10)

(A, af] = A, (11)

[k, &) = ouxd, [xF, P = el (12)

The Poincaré covariance of the word lines of interacting particles is the main ques-
tion which we are now going to discuss. PRM-3 aims to formulate the equations
of motion for a system of N interacting point particles in a way totally analogous
to the Newtonian one. Any observer bound to an inertial frame will be able to
predict the future of the system once positions and velocities of all the particles at
a certain time are given. As it was mentioned above, there is a problem of a space-
time interpretation of the theory which remains unsolved to the end in the scheme
of the relativistic Hamiltonian description of a directly interacting particle system
[23,24]. Within the framework of our approach this problem is quite avoidable.
To avoid a traditional consideration of the well-known “non-interaction theorem”
[25,26] forbidding the identification (in the interaction zone) of canonical position
variables with covariant space coordinates we have from the beginning to restrict
our analysis to the Newtonian-like RDIT. By this we mean that the “avoiding line”
starts from the Poincaré-Lie algebra of vector fields of infinitesimal transformations
acting in F = J®(R x E3N) [4] and leads straight to the restrictions imposed in
the system of interacting particles by the Currie-Hill equations derived with some
phenomenological assumptions as to the character of the relativistic “forces”.
Generators of infinitesimal transformations of E are given by [4]:

a N oo (a)i a
Xo=Wamr + 2 D &0 —F, a=1,.r (13)
ot a=10=0 0x

a

The vector fields w, and £2) define the infinitesimal transformations of the coor-
dinates of the point from F

i ot

=1+ Wb\ T (1) =2, (1) + &N, (14)
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For the spatial translation group (o = T'), and for the spatial rotation (o« = R)
group (none of them act on the variable ¢, i.e. w, = 0) we obtain:

0 ok 0
X;T:_Za—le’ X]R:_S'L]kzzzaa% (15)
For the boost generators we define
= d° 0
XJL = Z Z -_— (—téjk —I— Uakxaj) ; . (16)
a o0=0 dt” 0 Lok
And for X! we get
N X o1k 0 d 0
XTI = o _C 2 1
0 =2 T dt ot (17)

a=10=0 oz,

Inserting expressions (15)—(17) into (9)—(12) we shall see that the commutation
relations characteristic of the Poincaré-Lie algebra are satisfied. Thus, transforma-
tions (15)—(17) provide a realization of the Poincaré group which plays the central
role in the theory.

As we know, PRM-3 starts from the following premise: the equations of motion
are “Newton-like”, i.e. the positions z/ and velocities vj =7 of the particles in
any inertial frame of reference are described by a second-order differential system:

ii—ﬂi(%iat):o; 15:{% (t)}aiE:{iEZ (t)} (18)

We shall also assume that accelerations ;! depend on the masses of the particles
(ml, caey mN).

The Poincaré-invariance of such an approach requires the existence of a real-
ization of the Poincaré group on a configuration space with generators (13). This
condition yields the identity

Xo [ = pi{w2.1}]| =0, (19)

where symbol | , means that expression (19) must be computed with respect to
equations (18).

Inserting generators (15)—(17) into (19) we have for the accelerations a system
of equations:

ol out
aufz -k aufz n
Zajkl <x§8—xé+ Ty 8—x§)> = Ejnilly; (21)

b
ot 1 [ kOl ol k.j Ou o -
25 +g{2 {Tib (xb ok THE— % |~ T —,‘L} + 241y T 1 T4 0 = 0.
b 0T, b b x,
(22)
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So we see that the relativistic invariance of the world lines is equivalent to the
three conditions (see [4] and [2], [15]-[17]):

(I) the acceleration functions p do not depend on ¢ explicitly;

(IT) they are also invariant under space translations and behave like space
vectors under rotations;

(III) they satisty the so-called Currie-Hill equations (22).

Equations (22) were obtained by Currie [14] and later independently by Hill
[1] as the necessary Poincaré-invariance conditions. Bel [15] proved that such con-
ditions are also sufficient.

3. The instant form of the relativistic action-at-a-distance equa-
tions of motion

In this section we show how an instant form of the Poincaré-invariant dynamics
can be formulated in terms of the Currie—Hill approach to the study of relativistic
gravity. The main difficulty of this approach is a nonlinear character of the sys-
tem of the first-order partial differential equations (20)-(22), which disturbs the
principle of the linear superposition for relativistic “forces” p,.

Our intention is to describe a compatible with special relativity Newtonian-like
dynamical system of N gravitationally interacting structureless point-like particles.
Such kind of a description, first proposed in [31], is based on some phenomenolog-
ical assumptions as to the character of relativistic “forces” p,. In order to develop
the earlier proposed idea [31,32], we are going to give a slightly different presenta-
tion which, together with the one of [33], will provide a deeper insight into the way
how this approach works. Besides, we discuss a procedure which aims to construct
the solutions of the Currie-Hill equations for a Newton-like system of structureless
gravitating particles: some recurrent conditions for these solutions are proved to
be necessary and sufficient.

Let us now consider a problem of the gravitional interaction of N point-like
structureless particles characterized by their masses m,. We postulate that the
motion of each of the particles must be described by equations (18). Compatibility
with the special relativity imposes on (18) the conditions (20)—(22) constituting a
system of partial quasilinear equations which are very difficult to handle. Never-
theless, one can find the solution by means of the guiding principle of the so-called
“Dicke framework” (cited according to [34], p. 598)—Ockham (1495) razor: Nature
likes things as simple as possible. Aiming in the future to use our phenomenolog-
ical approach as the basis of a new theoretical frameworks for testing relativistic
gravity (the descriptions of the most widely known such kind of frameworks [34]—
[37] show that they are still not broad enough) we must choose the way of the
construction of solutions, which is not only “as simple as possible”, but rather “as
simple as needed” at every stage of the continuously changing experimental situ-
ation. This way is a standard one and corresponds to each of the aforementioned
conditions—the most convenient for our purpose is an approximate solution in
the form of the power series. But all the difficulties are in the selection of physi-
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cally meaningful solutions. These solutions, as a rule, depend on small parameters:
coupling constants or ¢ !.

So we postulate that
Mo = D HaiP}, (23)
p=0

where ! — i-th component of relativistic “forces”; a,b,... = 1,2,.... N; i, j,... =
1,2,3; p— the order (of power of ¥) of approximation. Further, within the frame-
work of our phenomenological description we must put that {0} corresponds to
the classical (Newtonian) limit, {1} — to the first post-Newtonian (relativistic)
approximation and so on. This scheme of constructing the solution may seem very
trivial, but actually it is not. The fact is that at each stage of this construction
there arises the necessity of a concretization of the functional dependence u’ {p},
which may be based on pure phenomenological considerations corresponding to
the physical reality. And from this point of view the present approach fills us
with confidence of the existence of a deep connection of this description with well
verified physical models.

Let us show how one can construct the solutions of equations (22) in the case
of the closed system of N structureless point-like gravitating particles. Assuming
the velocities to be small and the gravitational interactions to be weak, let us look
for the solutions in the form (23). Starting from widely known virial correlations of
the classical mechanics (see, for example, [37]), for our case of the closed system of
N gravitating point-like particles it is not difficult to obtain the next estimations
for the orders of the average values of the variables and their derivatives, which
characterize our systems of particles:

., a 0 1 0 T

v~ =y Y T, ™ D

ro ozt r Ot T

where « is a coupling constant (one must remember that we use a system of units
in which G = ¢ = 1). From the basic principles of our approach and estimations

(24) we conclude that for all orders of the p power series (23) one should consider
the form

(24)

‘ P 2(p—q)
pa{py =2 1o (25)

q=0 q+2

where /i is a function of the n-th power of v, k-th power of rol = (e )3
k

v =7(t); 2t, = 2° — x}. In such a natural way, taking all the possible combinations
of powers, which are allowed by the above adopted conventions, we get for every
value of p an appropriate set of free parameters of the formalism. Arbitrariness
of a choice of these parameters is removed by the selection of definite physical
restrictions.

As it turns out (see [31,32]), this approach to the “modelling” of a gravitational
interaction under a definite choice of free parameters describes the conclusions of
different theories of a gravitational interaction, including GR. It makes possible to
use the present approach as a basis for some common formalism which is broad
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enough, as we suppose, for the planning of experimental testing of relativistic
gravity.
Let define the next operators:

- 0
J ky _~ 9
£ = a0, (26)
L) = —20 + kavji + Z’kaj 9 (27)
2 a - bYb 8,01])9 - b+“ba 63:’; )
. . P
Li{p} = inauf {p}a_v{;’ (28)

Z Li{p} = Z«’rbaub aak, (29)

L= v, (30)
then equations (22) take the form:

Zﬁz o, + Lyl = 0. (31)

This is one of a series of papers which discuss the possibilities of quite a new gen-
eral framework for testing relativistic gravity. The differential geometrical meaning
of the operators (26)—(30) will be analyzed in the future papers of this series which
will be specially devoted to a unified geometrical approach allowing us to view dif-
ferent models for relativistic interacting particles from a common perspective. In
this paper we restrict our consideration to proving a practically significant sen-
tence.

The power series (23) is the approximate solution of equation (31) if, and only
if, at any order of p the next recurrence conditions take place:

Llpidp+ 1} + Llpi{p} + Z L dp — kY + Lipd{p} = 0. (32)

Indeed, the necessity of this statement follows from the fact that the Currie—Hill
equations must be fulfilled at any order of v and r as it is required by decompo-
sitions (25). Taking into account (25) and putting (23) into equation (31), after
calculations we get the series of recurrence conditions (32).

In order to prove condition (32) to be sufficient, one must denote the left-hand
part of (32) as £ {p} and compute the sum 32, £ {p}. Not until one adds to this
sum the zero terms £J 47 {0}, taking into account the properties of the operators
(26)—(30), can one be sure that the obtained result is identical with the Currie-
Hill equations in the form (31). Thus, the recurrence conditions (32) are proved
to be necessary and sufficient, whereby providing the required Poincaré-invariant
description, they themselves are suitable restrictions on the arbitrary parameters
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which permit us to construct approximate solutions in any needed order of the
post-Newtonian approximations. Such a recurrent technique, together with some
phenomenological assumption as to the character of relativistic “forces” allows us
almost completely to compensate lack of the manifest solutions of the Currie-Hill
equations.

An important application of these results, quite suited for solar-system tests,
is obtained from the relations (24), (25) and (32) under p = 0, 1, then, according
o (24) and (25),

1

= 30, (33)
2 b#a Tab

m .
Mo =D Tb {mfm [bl (Va)® + ba(vy)? + b3(vavs)

2 2
b (I‘ab:a) b (I‘ab:b) b (rapVa)(Tapve)

Tab Tab 7“31;
+ Utiz [c1(VaTap) + co(Vorap)] + vlz; [di(Varay) + da(Veray)] } (34)

my Mg my me
2 Z

Mo = S Tgp YW1 +G2—— +as —
3 b#a ' ab Tab ab ctab Tbe

+ a4 Z — +as Y me (rab:bc) +ag Y me (rbcrac)}

3
ca,b Tac c#ab be ca,b Tac

b#a T‘lb c#ab bC c#a,b TapTac c#a,b TapTbe

a Z mc(rabrac) +Cl11 Z mc(:abrbc)] } ‘ (35)

cab Tﬂbrac cab TapTbe

7
+ Lap

The condition (32) allows us to express all the arbitrary parameters by means, for
example, of
b2 — ﬁaba b4 = Yab, C1 = 5ab, (36)
then, after calculations we obtain the approximate Poincaré-invariant equations
of motion of the system of N gravitationally interacting structureless point-like
particles:
0 2 2
By = py, + Z { Lab lUZ — BabVay — Vab (rabzab) + §(rab:a)
3 b;ﬁa ab Tab 2 Tab

+ Uab [6ab(VapTap) + (VaTap)]} - (37)

In the conclusion of this section it can be noted that the analogous equations of
GR arise from (37) under the following values of the formalism parameters [31,32]:

ﬁab - 27 Yab = 07 5ab =4. (38)

Then, one has no trouble in the choice of the coefficient in that term (35), which
is not restricted in this approximation by conditions (32).
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4. Single-time relativistic Lagrangians in the phenomenologi-
cal approach to the relativistic gravity

The aim of this section is to formulate the results which were obtained for the
single-time relativistic Lagrangian description of the gravitational interaction in
the approximation of the concluding part of the previous section.

The existing theoretical frameworks (see, for example, [34]-[36]) are well suited
for the analysis of high-precision solar-system tests which may prevail in the com-
ing decade. Nevertheless, in our opinion they are still not broad enough. In the
phenomenological approach to this problem [31,32] a very significant role will be
played by a technique which is connected with the method of the Lagrangian
mechanics, brilliantly suited for such kind of the analysis.

As it turns out, the existence for equation (37) of the post-Newtonian La-
grangian [31]

:%Zma(v +av)+ szamb
a a b#a Tab
(rabva)2 L mg + my

1+ Bhv2 + va,(Vave) + Oy + ou ]
rab Tab

+T Y gy, e e (39)

a btactab TabTac

where vj, = . = 0loy = pluy = 0, obeys the conditions:

1 2
—0ap + =Yap = 0, 40
2 b+3’7b (40)

1
Blas) + 55[(16} =0. (41)

Deriving from (39) the Euler-Lagrange equations and imposing on them the re-
quirement of the Poincaré-invariance by means of the previously described tech-
nique, we have the following conditions which are necessary and sufficient in the
adopted approximation:

1 1 1
ag = =, Vap +5{Lab} =Ty Eap T 5{Lab} =Ty (42)

4

Ofary = —Blany- (43)
Conditions (42) and (43) conform to the results of papers [19]-[21] and [38], in
which relativistic Lagrangians are derived, respectively, from the condition of
quasiinvariancy of the Lagrangian and from the manifestly invariant Fokker-type
action. We must emphasize that the existence of a Lagrangian (39) in the case of
the Poincaré-invariant description is conditioned by an approximate character of

the problem [20,38].
In our present investigation of the single-time Lagrangian description, as in the

previous one [31], we are widely guided by the fundamental results of papers [4],
[18]-[28], [38,39).

ﬁab -
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5. Conclusions

Free or almost free from some of the basic difficulties of the field-theoretical
description (see Introduction to this paper) the action-at-a-distance point of view
has seen a revival in the recent years. One of the threads of this revival, namely,
dealing with a single-time formalism, is in our opinion quite suited for the analysis
of high-precision solar-system tests which may prevail in the coming decade and for
the analysis of the frameworks for testing the relativistic gravity. The importance
of this analysis is clear: although there are many new experimental possibilities,
the cost of carrying each one out in terms of manpower and money is very high. For
this reason it is crucial that we have as good a theoretical framework as possible
for comparing the relative values of various experiments—and for proposing new
ones which might have been overlooked [34]-[36].

In this paper we continue the earlier proposed [31]-[33] phenomenological de-
scription of relativistic gravity. The main attention is paid to single-time methods
of investigations. The reasons for this are evident: an introduction of a unique time
parameter allows us to bring the theory based on the field-theoretical description
closer to the form of the classical non-relativistic mechanics and to establish its
relationship with other approaches to the theory of direct interactions (see [4,38]).

The generalized Poincaré-invariant approximate equations, as we believe, are
very convenient in the analysis of the basic gravidynamical experiments in the
Solar system. The knowledge of the Lagrangian makes it possible to obtain a
complete description of a system (at least classical) by means of more or less
standard methods. In the present paper we study the connections of the derived
equations with those of the Lagrangian description.

Further, one may hope to obtain a deeper connection between the distinct
threads of RDIT and to view different models for relativistic interacting particles
from a common perspective.
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Relativistic gravity dynamics

NMpo oaHo4YacoBi GOopMM PeNnaTUBICTUYHOT ANHAMIKUN
r'paBiTylO4MNX 4YaCTOK

O.A.OnaHactok

HaujoHanbHWIi TexHIYHWI yHIBepcUTEeT YKpaiHm “Kniscbknin
MonitexHivHum iHcTuTyT”, 252056 M. Knie, npocn. Nepemoru, 37

OTpumaHo 4 6epesHa 1998 p.

MopaHo cTncnuii ornag po3sunTky lNyaHkape-iHBapiSHTHUX METOLIB ONu-
CY MEXaHi4YHOT CUCTEMMU, L0 IMPYHTYIOTBCS Ha CyYaCHi KOHLEenLUii Npsamoi
B3aemogii. O6roBOpIOETLCSA NEBHWI NiOXia, 40 NPO6AEMUN PyXy B PENATU-
BICTMYHIM Teopii rpasiTauii. Migxin CyTTEBO BUKOPUCTOBYE MeTOAU Npe-
OVKTUBHOI (3 EgUHMM NapamMeTpOM eBOIOLT) PENATUBICTUYHOT MEXaHIKMN
i3 3a/Ty4EHHAM NMEeBHUX GEHOMEHOSIOMYHUX MPUMYLLEHb LLOAO XapakKTe-
py penatmBicTUYHUX “cun”. [JoBegeHo HeobXidHi Ta 4OCTaTHI yMOBWM Anst
nobyaoBuM B Mexax 06roBoproBaHOro nigxoay HabnmxeHnx (y AoBiIbHO-
My NopsaKy) po3B’a3kiB piBHAHb Kappi-Xinna. Ansa 3amkHyToi cuctemum N
r'paBiTyloUNX 6€3CTPYKTYPHUX TOHKOBUX YACTOK Y MOCT-HLIOTOHIBCbKOMY
HabMXeHHI 3aNPONOHOBAHO y3arasnbHeHi [NyaHkape-iHBapiHTHI PIBHSIH-
HS1, SIKi MOXYTb 32aCTOCOBYBATUCS NPW CTBOPEHHI HOBOTrO, GinbLu 3aranb-
Horo, popmaniamy Bepudikauii pensaTUBiCTUYHNX TEOPIN TSXKIHHA. O6ro-
BOPIOIOTbCS B3aEMO3B’S13KM 3aNpPONOHOBAHUX PiBHSAHb Ta PiBHSHb, LWO
BUHMKAIOTb Y NarpaHxesomMy GopMyNioBaHHI PENATUBICTUYHOI AMHAMIKN.

Knio4oBi cnoBa: pessgtuBicTnyHa MexaHika, npsiMma B3a€MOoAisi, TSXKIHHS

PACS: 04.25.-g, 04.80.Cc, 11.30.Cp
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