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We study the measures on the configuration spaces of particles of two types. Gibbs measures on such spaces
are described. Main properties of corresponding relative energy densities and correlation functions are consi-
dered. In particular, we show that a support set for such Gibbs measure is the set of pairs of non-intersected
configurations.
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1. Introduction

The study of measures and related objects on the spaces of infinite configurations in Eucli-
dean spaces (or, more general, C*° manifolds) was started in the sixties. In 1979, in [13], several
approaches to the description of Gibbs measures on the configuration spaces were considered. Dif-
ferent aspects of the corresponding measure theory were revealed in [5-9,12,14,16] and others. For
the case of marked configurations, the Dobrushin—Lanford—Ruelle (DLR) approach was considered
in [10,11]. Nevertheless, the description of marked Gibbs measures via integral equations (so-called
Georgii-Nguyen—Zessin—-Campbell-Mecke equations) was not realized.

In this work we study these equations for the simplest case of the space of marks: {4, —}.
We extend the approach proposed in [2] to this marked (two-component) system. We concentrate
our attention on the properties of the Gibbs type measures without studying the existence and
the uniqueness problems. One may study this using Ruelle technique in the same way as in [2],
which we represent in the forthcoming paper. Another approach used for the purpose of proving
the existence and non-uniqueness was proposed in [4].

Let us describe the content of the work more in detail.

Preliminary constructions for the one-component case are presented in section 2. In section 3
we consider the main properties of a measure on the two-component configuration spaces which is
locally absolutely continuous with respect to the (w.r.t.) product of two Poisson measures. Note
that it is natural that these Poisson measures have the same intensities since they should not be
orthogonal. This is impossible for different constant intensities but for non-constant ones we need
some additional conditions (see, e.g., [15]). Hence, for simplicity we consider the same Poisson
measures. One of the main results of this section is the connection between correlation functions
of a measure and of their marginal distribution. In section 4 we describe the Gibbs measures in
terms of the so-called relative energy densities, which characterize the energy between the particle
of one type and configurations of the both types. The main properties of these densities allow us
to show that the corresponding Gibbs measure is the locally absolutely continuous w.r.t. product
of Poisson measures. As a result, we may study this measure only on the subspace of the two-
component configuration space which includes only pairs of configurations that do not intersect.

*This paper was written for the proceedings of the conference “Infinite Particle Systems: Complex Systems 1117
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This plays an important role in studying different dynamics on the two-component configuration
spaces. In particular, we have a useful support set for a big class of measures (see, e.g., [1,3]). In the
end we show an example of the pair-potential Gibbs measure which coincides with the studies in [4].
In this work we do not construct specifications of the Gibbs measure and the corresponding
DLR approach. This may be considered similarly to [2] as well as it possible to show the equivalence
between these two approaches (which goes back to [13]). All our considerations may be extended
to the case of the product of finite number of configuration spaces over different C'°° manifolds.

2. Preliminaries

Let X be a connected C'*° oriented manifold. The configuration space I' := I x over X is defined
as the set of all locally finite subsets of X,

I':={yC X | |ya| < oo for every compact A C X}, (2.1)

where |-| denotes the cardinality of a set and v, := yNA. As usual we identify each v € T with the
non-negative Radon measure ) ., € M(X), where d, is the Dirac measure with unit mass at
T, Y .ce 0x 18, Dy definition, the zero measure, and M(X) denotes the space of all non-negative
Radon measures on the Borel o-algebra B(X). This identification allows us to endow I' with the
topology induced by the vague topology on M(X), i.e., the weakest topology on I" with respect to
which all mappings

Doy ()= [ f@@ =Y f@),  Fea),

xEY

are continuous. Here C(X) denotes the set of all continuous functions on X with compact support.
By B(I') we denote the corresponding Borel o-algebra on T'.
Let us consider the space of finite configurations

To:= |j e,
n=0

where (") = I‘()?) ={y €T :|y|=n}for n € Nand I'® := {@}. For n € N, there is a natural
bijection between the space I'™ and the symmetrization ﬁ/Sn of the set Xm := {(z1,...,z,) €
X" :x; # x; if i # j} under the permutation group S, over {1,...,n} acting on Xn by permuting
the coordinate indexes. This bijection induces a metrizable topology on I'™), and we endow I'g
with the topology of disjoint union of topological spaces. By B(I'™) and B(I'y) we denote the
corresponding Borel o-algebras on I'™ and Ty, respectively.

Given a non-atomic Radon measure o on (X, B(X)) with 0(X) = oo, let A, be the Lebesgue-
Poisson measure on (FO, B(FO)), namely,

Ao ::io;J

| —

o™,

3

where each 0™, n € N, is the image measure on I'™ of the product measure do(z;)...do(x,)
under the mapping X" > (1, n) = {21, ..., 2} €T For n =0 we set 0O ({@}) := 1.
Let B.(X) denote the set of all bounded Borel sets in X, and for any A € B.(X) let I'y :=
{neTl :nCA}. Evidently I'y = |0, I’g\"), where Fg\n) =T, NT™ for each n € Ny, leading to a
situation similar to the one for I'y, described above. We endow 'y with the topology of the disjoint
union of topological spaces and with the corresponding Borel o-algebra B(I'y). Let pa : I’ — T'p
be a projection mapping: pa(y) = 7vya. Then if we define Poisson measure on (FA,B(I‘A)) as
7 = e\, (here we understand )\, as measure on I'y), it is well known that there exists a
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unique Poisson measure on (I',B(I')) such that 2 = 7, o le for any A € B.(X). Note that
(F,B(F), 770) is a projective limit of the family {(FA, B(Ty), ‘ AeB.(X )}

From the very beginning we assume that there exists a sequence {A, }men C Be(X) such that
Upen Am = X.

3. Measures on two-component spaces

Let It =T~ =Tx and I'> = I't x I'". We consider a topology of direct product on I'>. Then
B(I'?) := B(I't) x B(I'") is the corresponding Borel o-algebra. We denote a class of probability
measures on (I'2, B(I'?)) by M*(T?).

Let us consider a projection mapping pa+ A- : Iz — FX} x I'y_ such that

para-(vHy ) = (’Y/J\rw%;)'

Definition 1. We call a measure u € M (I'?) locally absolutely continuous w.r.t. m, X Ty if
uAﬂAf ‘= o pxi A— is absolutely continuous w.r.t. product of the Poisson measures 7rf,\+ x i~

on (Ty, x Ty, B(I't,) x B(I',_)).

In the case when A* = A~ = A we will write pa, u®,T'% instead of pa a, u™?, FX x I corre-
spondingly.

Proposition 3.1. For any u € MY(T'?) which is locally absolutely continuous w.r.t. T, X 7, the
set

1= {(yt,y) e [yt ny” =0} (3.1)
has full p-measure.

Proof. Take {Ap}men C Be(X) such that |J,,cy Am = X. Then we can decompose the set I'?\ I2

me
as
P\T?= | pit {(vF ) er}, |7 Ny #0},
meN
hence,
p(I*\I?) < Zu( *)EFimM*ﬂv’#@})-
meN

Since p*m is absolutely continuous w.r.t. A, X A it is sufficient to prove that
(o x M) ({(7F,77) €], |7 N7 £0}) =0.
But if we denote for any fixed 4t € I’Xm

Ay i={y €Ty ‘ yrny~ #0}

then one has

) < Z )\a({'yfef‘xm ‘xeyf}> =

zeyt
The remark that
O A ({6 ek, 770y 200 = [ Aan )
Am

fulfills the proof. O
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Proposition 3.2. Let u € MY (I'2) be a locally absolutely continuous measure w.r.t. T, X T, and
let A be a B(X)-measurable set such that o(A) = 0. Then the following set

B:={(v"77)el? |7y NnA#0}
has ZET0 [H-measure.

Proof. Using the same trick as in the previous Proposition one can show that it is sufficient to
prove that for any m € N

(Ao X )\g)({('y"’,'y_) €I}, | =€ Aforsomex e 7_}) =0.
But the left hand side is equal to
Ae(TX )As ({’y* el |ze Aforsomez e ’y*})

oo
= g7(Am) Z %0'(8 ({(:cl, o @p) € (Ap)"™ | ; € A for some z}) =0.
n=0

The statement is proven. O

Corollary 3.3. Let u € MY(T?) be a locally absolutely continuous measure w.r.t. T, X 5. Then
the set

{(vF, v ,2) el x X |zeqt}
has p X o-measure 0.

We define the marginal distribution of p in a usual way, namely,
(%)= [ dutrtor) (32)
rT

Hence, for example, u™ is a probability measure on (F+, B(F+)). Then one can consider the pro-
jection of u on T'{: (uT)» =t opy'. On the other hand, we may consider marginal distribution
of u®* which we denote by (u*)7.

It is easy to see that

(uH)h = (™). (3.3)

Indeed, let F : I'? — R be a measurable function such that there exists a measurable function
F*:T% — R such that F (yT,77) = F* (’y;\") Then

/F(’W,’y’)du(v*,v*) = / F(vin) de (i)
r2 1IN
= [P e [ at ton) = [P D) ().
ry " ry
On the other hand
/F(Wﬁ_)du(v*,v‘) = / Fr(y")dp (v y7)
T2 I+xI'—
= [ PN at 61 = [ D) 03).
r+ ry

Remark 3.4. Using (3.3) it is clear that if u is locally absolutely continuous w.r.t. 7, X 7, then
u* are locally absolutely continuous w.r.t. 7.
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Definition 2. We will say that locally absolutely continuous w.r.t. 7, X 7, probability measure p
satisfies local Ruelle bound if for any AT € B.(X) there exists Cy+ > 0 such that for A\, x \,-a.a.
(m*n7) € Fj\_+ x Iy

AT AT

T ) < ) (Ca ) (3.4

For the measure p from Definition 2 one can define a correlation function k,, namely, for
Ao X Agmaa. (nT,n7) € If, x Ty, A* € B.(X) we set

/r+ /— d(As X Ay) ("+U5+’7fUﬁ*)dka(ﬁ)dka(f’)- (3.5)

Clearly, 00
k. (0,0) = 1.

It follows from infinitely-divisible property of A, that r.h.s. of (3.5) does not depend on A*.
Also, from definition of A\, and (3.4) it follows that

ku(nt,n7) < eCardAD - (o Tl (oy ) (3.6)

We will denote the correlation function of the marginal distribution p+ by k:l‘f and define it as

it — dh L +
) = [ St UEa(e) (37)
for \,-a.a. nt € T} A € B.(X). Similarly, one can define &, .
Putting in (3.5) =, AT = A~ = A and using (3.3) we obtain
w0 = [ ([ o v e ) anie)
H ’ FX FX d()\g X )\o') ’ 7 7
- At L et +Y = g+t
= [ eI =) 38)
Similarly,
ki (n7) = ku(,m7). (3.9)

4. Two-component Gibbs measures

Definition 3. The measure p € M! (F2) is called a Gibbs measure if there exist non-negative
measurable functions r* : T2 x X — [0;4-00) such that for all non-negative measurable functions
hi2:T? x X — [0;4+00) the following partial Campbell-Mecke identities hold

/ > h(vhyT ) du (v )

zeyt

- /p /X hi(vP Uz @) rt (7,97 ) do(@)du (vF,97)
/F2 D b (7T y)du(vhaT)

yey~
/rz/xh2 (VP Uyy)r (T ) do (y) du (v

We denote the class of such measures by G(r™, 77, 0).
We will call the functions r* partial relative energy densities of the measure p. As required,
these functions have the following properties.
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Lemma 4.1. For p-a.a. (v©,7~) € T2 and for o-a.a. z,y € X the partial co-cycle identities hold
Tytud )t () = rT (v Uy ) et (v ), (4.1)
(YT UYLy () = T (T Uy T (), (4.2)

as well as the balance identity holds
Ty Uy (V) =T (T Uy T y) e (T ) (4.3)

Proof. 1. Using (4.1) for any measurable hy 2 : ' x X — [0; +00) we have

I = / Z hl 77 y L Z h’2 77 y L d,LL( ”77)

z€YT z/ eyt
= // h(YrUzaT2) Y he (vPUz T a) et (v ) do(a)du (v T)
=X z’'eytuUz

B /2/ hi (VP Uz 2) D0 he (v U )t (v x) do(@)dp (v )
T X

x/eyt

+/ /h1 (VFuz,yT @) he (Y Uz T ) T (v ) do(a)dp (v 0T)
T2

///h1 yrUuzUa v, 2)he (vt Uz U 7, 2)

2

(vtua,y7,2)rt (vF,97,2") do () do(z)dp (vF,77)
+/ /h1 YPUz,y ) he (Y Uy 2) et (v T ) do(x)dp (v ),
2 JXx

and, similarly,

///hl(7+U$U£C/,’}/7,x)h2(7+U£CU$/,77,IC/)
rzJx Jx
T(vtuayT )t (v e) do (f) do(@)dp (v )
// hi(YF Uz, @) he (YF Uy 2) rt (v 2) do(e)dp (v,77) -
rzJx

Comparing the right hand sides of these equalities we obtain (4.1). (4.2) is obtained in the same
way.
2. Using (4.1) and (4.1) for any measurable h : I'?> x X x X — [0; +00) we have

= [LZ T het ety

zeyt yey-

/F2/X Z h(vtua, vy~ z,y)rt (7,77, @) do(z)du (vF,77)
yey~

///h(7+Ux77_Uy7x7y)r+(Wﬁ_Uy,x)
mJxJXx

xr~ (y", 77, y) do (y) do(z)du (vF,77)

on the other hand,

:/112/)(/)(h(7+ux’77uy’x’y) e (’y*Ux,'y’,y) rt (’er,’y*,:c) do (y) do(z)dp (fy*,fy*),

Comparing the right hand sides of these equalities we obtain (4.3). O

10
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Corollary 4.2. As a result, we can define the relative energy density of the measure p as
r(y oy Tay) =t (T Uya) T (v Ty) =T (T Uy Ty e (Vo) (44)
and the following Campbell-Mecke identity holds

/Zzhv T my)dp (v 7)

zeytyey~

- /r2 /X /X h(vP Uy Ugz,y)r (v ay) do () do(@)du (vF,77) . (45)

The next Lemma shows that the function r also satisfies the co-cycle identity.
Lemma 4.3. For u-a.a. (y©,7v7) € I'? and for o-a.a. z,2',y,y' € X
r(ytua Uy ey r (v 2 y) =r (v Uay T Uy Y ) r (v e y) . (46)
Proof. First of all let us prove that for p-a.a. (y7,77) € I'? and for o-a.a. z,2',y,y € X
r(vyF Uz y)rt (v )
r(ytua T y)rt ()
T (ytua T Uya) e (vhaTaly) . (47)

T(ytuz,yuya)r (v, y)

Really, using (4.3), one has

+ (’)/Jr Uﬂ?,’}/7 Uy,JC/)T (’7+5777x7y)

= " (yTuz,y Uy a)rt (v, Uya)r (L)
= rF(vtuz,y Uy 2)r (v Ux,v ) rt (v )
= r(y"Uz 2 y)rt (T a);

similarly,
t(ytud vy uya)r (vt oy 2 y) =r (v ua e y) et (v, )
then, using (4.3) and (4.1),we obtain
r(yrua,yxy)rt (7, )
= 7 (’y*U:c’U:c v, )7"
= r (’y Uz Uz, v~ y)r
= ('y Ux,vy ,:c,y)r (

L)
)

(vrua, vy ) et (y
(vtuz, vt (v
+77 793)7

+
+

which fulfills (4.7).
In the same way we obtain

rm(ytuz,y Uy y)r (v Tey) = r(vhy Uyay)r (v w)
r(v*

= Uy y) T (v Y)
= r (7 Uz,yv Uy, y) (’yﬂvﬂx,y’). (4.8)
As a result, using (4.3), (4.7), (4.8), one has
r(vtua T Uy y)r (vl y)
= r- (’y+ uz' Uz,v U y’,y) rt (VJF Uz, vy U y’,ac) r (’yﬂ’yﬂx’,y’)
= r (yTua'uz,y Uy, y)r (vt Uz 2y )t (v )
= 7 ('yJr Uz, vy~ Uy,:c’,y’) r- ('yJr U:c,fy*,y) rt (’yﬂ’yﬂm)
= r(ytuz,y Uy y)r (v ey)

which proves the statement. ([l

11
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Co-cycle and balance identities allow us to construct more complicated objects that characterize
the energies between finite and infinite configurations.

Definition 4. Let us fix some order of finite “+”-configuration n* = {z1,zs,...,z,} and set
RY(vF,v7n%) = R (vF07 {a,2a,. . 20))
=t (yF T et (P U,y T me) et (T U {m e}y as)
+ ('7+ U {xlam% s 7xn71} 7’)/_71‘71) .

In [2, Lemma 2.3], it was shown, in fact, that this deﬁnition is correct (it does not depend on the
order of points in n*) and, moreover, for any 1", 13 :

RY (Y5 nf ung) = RT (Y547, n0) RY (vFunf v ,nd) (4.9)
(note that this fact does not depend on 7). Let us set, by definition,
R (y*, v~

0) =
Note that (4.10) is consistent with (4.9) if we put nf =0.

In the same way we may define function R~ (y*,77,n
and setting

(4.10)
~) fixing the order n~ = {y1,y2,- -, Ym}

R™ (v ) =r" (v v w) ™ (v Uynsge) o (757 Udnn w1t wn)
R (yF,77,0) =1 (4.11)
And again
R™(v"r . m Uny) =R™ (7507 m ) B (vF Ung v omy). (4.12)
Functions R* also satisfy the balance identities:

Lemma 4.4. For p-a.a. (y©,77) € I? and for Ay X A\y-a.a. (n*,n7) € I'2

RT(vfy un g )R (vt on ) =R (vTunt,y.n )R (vF v 0t (4.13)
Proof. Let |n~| =1,n~ = {y}. Then we want to prove that
R (", v Uy r (v w) =~ (T unt oy y) R (9T (4.14)

If [p*| = 1, then (4.14) holds due to (4.3). Suppose that (4.14) is true for any 7™, such that
[nT| = n. Then by (4.9), (4.3)

Rt (vt v Uy, ntu :c) “(vh )

= rt(yTunt,y Uy, a) R (vF oy Uyt r (L)

= P (ytunt,y Uy 2)r- (Vrunt T y) RY (v T

= r (Ytuntuaz,y,y)rt (vtunt v 2) RT (v oyt
(v* )R

r~ (ytuntuz,y,y) R (vF,v 0t Ua),

hence, (4.14) holds.
Suppose that we prove (4.13) for any 7, s.t. [~ | = n and consider
R* (v",y~Un”Uy,n)R™ (v,77,n" Uy)
= R*(v'y un uynt)r (T unTy) R (v Tn)
= (v"unt U y) R (v UnT ) R (v )
= (v"untymunTy) R (v untoyT ) RY (v
= R (v"Unt, T Uy) RT (v nh).

Hence, the statement of lemma, is proved. O

12
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Corollary 4.5. As a result, we can define

R(y" v ntn™) == RY(v", v un ,n" )R (vtv .n7)
= R (vtunt,yn )R (v nt). (4.15)

The next statement is similar to the properties (4.9), (4.12) for the function R.

Lemma 4.6. For p-a.a. (yr,77) € I’ and for Ay X \y-a.a. (nf,nf) , (7)3',772_) € I'Z the following
equalities hold

R(vF,v ,nfund,n™) = ROTund, v of.n)RT (T .n3),
Ryt y oty uny) = R(yY vy Ung,nt )R (v, ,n3),
Ryt vy onf UndomyUny) = R(yTund, v Uny,nfnr)R(vT v ndng).

Proof. By (4.15), (4.9) we obtain

R(yt, vy miUnd,n™) = R (yrunmiunf. v o0 ) RT (v, nf ung)
= R (y"unfunf, v .on)RT(vTung v onl) R (v, m)
= R(vTund,v om0 )R (v, m3).

The second identity may be obtained in the same way.
Next, using first and second identities one has

R(Y" v mf ung ny uny)
= R(y"unf,vnfmr Ung ) RY (v y7.mg)
= ROy Ung,y" Ungnl,m ) R™ (Y ung,yTLmg ) R (v T )
= R(y"uni, vy Ung,ntonn ) R(vEyondng)

which completes the proof. O

The next lemma shows that the values of the function R on some elements may be defined
directly via r.

Lemma 4.7. For A, X Ay-a.a. (n*,n7) € T with |n™| = |n~| one has

R(yT, v~ ntn) = r(v" v o) r (7T Uz, vy Uy, 22,92)
xr (vt u{zy,xa}, v Uy, v2}, 23, u3) - -
X r (nyr U{x1,x2,...,Tn_a},y" U{yl,yg,...,yn,g},xn,l,yn,l)
xr (vt U{z,za, o1}y Uy, v Yne1 ) T, Un)

for some fixed orders of points
’I7+:{$1,$2,...,$n}, n_:{ylay27---ayn}'

Proof. Let |nt| = |n~| =1, then the statement follows from (4.15), Definition 4 and (4.4).
Let us suppose that the statement is true for any 7,17, s.t. [n™| = |p~| = n. Then, using

13
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(4.15), (4.4), (4.14) and Definition 4, we obtain

r(vtuntoyunT e y) R(vH T ntonT)

= r(ytunt T UnTay) RT (YT UnT ) RT (v T, n)
= rt(yTunt T U Uy,) R (V7))

xr~ (yrunt,yTunTy) RT (v unT ')
= r+(’y+Un+,'y_Un_Uy,a?)R (+ )

XRT (yF, v U Uy,nt)r (v Un Y)

= RT (v oy un Uyt rt (T unt,yTUn Uy, )
XR™ (") r (v unTLy)

= R"(v', v Un UyntUz)R (v",7,n Uy)

= R(vH vt Uz Uy),

which proves the assertion. O

Next theorem present Ruelle-type identity for Gibbs measure p which also called “infinitely
divisible property”.

Theorem 4.8. Let u € G(r*,r=,0). Then for any non-negative measurable function F : T'? —
[0; +00) and for any AT € B.(X)

/F2 (v)dp (v /F+ /7 /F+ /7 (yrunt, U

Ate

X R (’y ,Y M 777_) du (’y ,'y_) dX, (77+) dAs (77_) . (4.16)

Proof. Set for x € X, n e N, A~ € B(I'") and for measurable non-negative measurable F’

(v w) = 1a- (V7)) Lgyraatj=ny las (@) F (Y5,77)

Since

/F2 S rt(vhyTa)du(vhyT) = n/F2 Lgjyrat =3 F (Y577 ) 1a- (v7) d (vF,77)

zeyt

and
[, [ 6 vea)r (707 a) detepd (1407)
= /F /A+ Lg(vruaynati=nyla- (V) F (3 Uz, ") rt (v5,97,2) do(e)dp (vF,77)
= /F /A+ Lgytnatjmn_nyla- (v7) F (v Uz ) (vF, 77, 2) do(z)du (vF,77),
then using (4.1) we obtain
/ Lpnasicmylas (7) F (750 7) die (v ,7)
/M/ Lgjytrati=n—131a- (V) F (7" Uz, y7)rt (v, 97, 2) du (7,77 ) do (y) do(x)

for any non-negative measurable F. Apply this formula for function

F(yty)=F@Htuz,y)rt (vhoy7,2)

14
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with fixed z,y. Then
/F2 ﬂmmAﬂ:n}lA— (V) F (v ) du(vFy7)
- n—l /A+2 /F2 La- ]1{W+|’WA+\ =n— 2}F (’}/ Uxg Uxe, v )

Pyt U,y @)t (v oy ae) dp (v, ) do (22) do (1)

As a result, repeating this procedure we obtain,
/2 Lyerati=nyla- (V) F(v5 77 ) du(vh,y7)
r
/+ /2 1a- 11{|,y+m\+| o F' (7 U{aﬁl,...,xn},q/_)
n F

x R* (’YJF,’Y*a {z1,... 7xn}) dp (’y+,’y*) do (z1)...do (z,).

Then
/ F(y" oy )du(vh,a7)
I+xA—
N /F+ /r+ /7 F(y"un® 7)) RT (v5y 7o) dp (77 77) dde (n7) - (417)
At Ate
Similarly, for any AT € B(I'")
/ F(yty7)du(vty7)
At xT—
- /m/, /, F(y oy un ) R™ (7597 n ) du (v ™) das (n7) . (4.18)
A= T A-e

Putting A~ =T'~ in (4.17) and applying (4.18) to the r.h.s. of (4.17) with A* =T}, xT'f,.
we obtain

/ F(yty7)du(vt,y7)
I'+xI'—
=/+ /+ /7 /7 F(yTunty~un)
FA+ FA+C A~ A—C

X RY(vFyun )R (v 0 ) dp (v ) dde () dAe (n7) -
Hence, the statement follows from (4.15). O

The next proposition shows that any Gibbs measure (in the sense of Definition 3) is a locally
absolutely continuous w.r.t. 7, X 7.

Proposition 4.9. Let u € G(r*,r~, ). Then for any AT € B.(X) there exist

dph A (A+)+o (A7) + +
_.c o - )d B 4.19
A )(77 ) =e / /7 (Vo) du(vtT)  (419)
for 727 x 7 —a.a. (ntn7) € L. xTy .
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Proof. For any measurable non-negative function F such that F(yT,y7) = F(fy/@,'yx,), using
(4.16), we obtain

/+ PO ) de N (v ) =/ F(y)du(v*,77)
D XTI r2
:/+ /7 F(n*m‘)/+ /7 ROy ™ n ) du (v ™) dhe (n) dAs (n7),
FA+ A~ FA+C FA*C

which fulfills the statement. O

In particular, for any pu € G(r™,r~,0) Propositions 3.1 and 3.2 as well as Corollary 3.3 hold.
As we mentioned above, using (3.3), the measure pu* is locally absolutely continuous w.r.t. 7,

and for any A € B(T'}), A € B.(X)
()R (A) = (1) (4) = u (A x T}).

Therefore, using (4.15) and(4.17)

drh
[ [ men o
ry Jrt. Jry.
= o / / RY (v5 v Un ™) R (vFyn ) du (v ) dAb o)
ry Fj;c Lye
_ ea(A)/+/ Rt (7+,7_,77+)du(7+7’7_) (4.20)
Lie /I~
A

for 7T0+—a.a. nt e I’X+.
In the next proposition we find formulas for the correlation functions of the Gibbs measures.

Proposition 4.10. Let € G(r*,r~,0) and (3.4) holds. Then

ky(ntn™) = /F?R(v*ryin*’n’)du(v*,’f), (4.21)

o~
+
—~
3
+
~—
I

/F2 R (v", v ) dp(vF,77) . (4.22)

Proof. Using (3.5), (4.19), Lemma 4.6 and (4.16) we obtain

k(o)
L[ L R ueta ve)aulan) anleane)
= /F+ /F /F+ /F R(yTughy U mtn)

xR (v, 60,67 ) du (v ) dAg (€7)dA (€7)
/F? R(y" v~ 0", n7)du(y™,77).

The second formula one can obtain in the same way or just putting n~ = @ in the previous one
and using (4.15), (4.11). O
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Measures on two-component configuration spaces

At the end of article we consider examples of partial relative energies densities 7+ which satisfied
(4.1)-(4.3).

Let 11,2 be Gibbs measures on (I, B(I')) with relative energies densities 1,2 in the sense of [2].
Namely, let for any measurable b : T' x X — [0; 00)

/;h x,y)dpr2(y) = /F/Xh(x,»y Uz)ria(y, 2)do(@)dps o (7).

Let ¢ : X2 — RU {oco} be a symmetric function. Then on can construct an example of r* which
heuristically corresponds to the following formal “pair-potential perturbation” u € M (T'?) of the
product pp X pa:

antr ) = e~ 3 6y m () dus ().

{z,y}Cv
Namely, let
ro(7, ) —eXP{ > dla,y }
yEY
then one can set
T+(7+a777x) = To(’}/i,x)rl(’er,l‘),
(v Ty = (Y y)ra(v ).

The partial co-cycle identities (4.1), (4.2) hold since for 71 2 the co-cycle identities hold (see [2]).
One can easily check the balance condition (4.3):

Ty U (YT y) = re(y Uya)r(v e (v w)ra (v, w)
= (v ) (v @) (v y)ra (v, )
= ro(v ,a)ri(vF 2)ro(v Uz, y)ra (v, y)
= (") (T Uy y).
The simplest examples of 12 are also pair potential densities: let ¢t 1 X2 — RU {oo} be
symmetric functions and

nivho) =ep{- Y ot@a)}, ey =en{- Y 6w}
z’'eyt Yy ey~

Then 4112 are classical pair-potential Gibbs measures and p is a measure of the type considered in
[4]. As a result, in this case

ity e = en{= Y dley) - Y ot@a)},

yEY— z' eyt
Ot = en{= Y sy - D e )},

reEyT y'ey—

and, therefore,

r(v 7,2, y)
= eXP{—<Z>(x,y)— S ey = D day)— D o) - Y ¢_(y,y')}-
z'eyt y ey z' eyt y' ey
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Mipu Ha ABOKOMMNOHEHTHUX NpocTOopax KoHdirypauin

A.J1.DiHkenblTEenH

IHcTUTYT Matematurkm HauionanbHoi Akagemii Hayk YkpaiHu,
By”N. TepelyeHkiBcbka, 3, Kuie-4, 01601, YkpaiHa
OTpumaHo 4 rpyaHs 2008 p.

Mwu BrBYaemMo Mipn Ha npocTopax KoH@irypaui ABox Tunie. OnucaHo ribCcoBCbki Mipn Ha TakmMx NPOCTO-
pax. PO3rnsgHYTO OCHOBHI BNACTMBOCTI BIGHOCHMX €HEPrili Ta KopenauiHnx GyHKui. 3okpema, nokasaHo,
Lo Taki ribcoBCbKi MpW 30CepexeHi Ha napax KoHdirypauii, ski He NnepeTNHaTLCS.

Knio4yoBi cnoBa: 4BOKOMMIOHEHTHI MpocTopu KOH®Irypauiv, mipu IMi66ca, kopensuiviHi yHKu i,
CTartnCTNYHa MexaHIka HernepepBHUX CUCTEM, BIAHOCHI eHeprii

PACS: 02.30.Cj, 05.20.-y, 82.20.Sb
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