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The effect of a local anisotropy of random orientation on a ferromagnetic
phase transition is studied. To this end, a model of a random anisotropy
magnet is analysed by means of a field theoretical renormalization group
approach. The one-loop result of Aharony about the absence of a 2nd order
phase transition for isotropic distribution of random anisotropy axis at space
dimension d < 4 is corroborated.
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1. Introduction

Even a weak structural disorder may have a crucial effect on the critical behaviour
of different materials, in particular magnets. It can alter not only non-universal
thermodynamic characteristics of a magnet but lead to a change of the universality
class or modify the low-temperature phase behaviour leading, for instance, to a spin-
glass phase. Here, one should discriminate between random site, random-field and
random anisotropy magnets. A weak quenched disorder preserves 2nd order phase
transition in three dimensional (d = 3) random site magnets [1] but can destroy this
transition in random field systems [2] for d < 4. Situation is not so clear for the
random-anisotropy magnets.

Typical examples of random-anisotropy magnets are amorphous rare-earth —
transition metal alloys [3]. Some of these systems order magnetically and to describe
this ordering it has been proposed [4] to consider a regular lattice of magnetic ions,
each of them being a subject to a local anisotropy field of random orientation. The
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Hamiltonian of a random anisotropy model (RAM) reads [4]:

=Y JrrSrSr — Do Y (irSr)%, (1)
R

R.R/

where §R is an m-component vector on a lattice site R, Jg r/ is an exchange in-
teraction, Dy is an anisotropy strength, and xg is an unit vector pointing in the
local (quenched) random direction of an uniaxial anisotropy. Note that randomness
is present in the Hamiltonian (1) only for m > 1: at m = 1 the second term equals
constant and leads to a shift in free energy of the resulting regular (Ising) model.

The model was investigated by a variety of techniques including mean—field
theory [5], computer simulations [6], 1/m—expansion [7], renormalization group e-
expansion [8-10]. Limiting case of an infinite anisotropy was a subject of a de-
tailed study as well [12,13]. However the question concerning the nature of low—
temperature phase in RAM is not completely clear up to now. Among the possible
low—temperature phases there are discussed ferromagnetic ordering [5,6], spin—glass
phase [6,7], quasi long-range ordering [14].

Note that the nature of ordering is connected with the distribution of random
variables Zg in (1). For the isotropic distribution, arguments similar to those applied
by Imry and Ma [15] for a random-field Ising model bring about the absence of
the ferromagnetic order for space dimensions d < 4 [10,11], whereas anisotropic
distributions may lead to a ferromagnetic order [16].

To get a correct description of critical behaviour it is standard now to rely
on a renormalization group (RG) results. Application of Wilson RG technique to
RAM with the isotropic distribution of a local anisotropy axis lead Aharony [§]
to conjecture about possible “runaway” solutions of recursion equations. Such a
behaviour was interpreted as a smeared transition. However this result was obtained
in the first order of e-expansion and remains to be confirmed within a more refined
analysis. Here, we apply a field theoretical RG technique and study RG equations
in two loop approximation in order to check the conjecture of Aharony [8]. The
paper is organized as follows: in section 2 we describe the model and obtain the RG
functions within massive field theory scheme. Fixed points and their stability are
analysed in section 3 by means of an e-expansion to order €2 and by resummation
of a d = 3 series. Section 4 summarizes our results.

2. The model and the renormalization

For a given configuration of quenched random variables Zg in (1), the partition
function of RAM may be written in the form of functional integral of a Gibbs
distribution with the effective Hamiltonian:

Hlin @) = — [ AR {3 [rldP+58] ~DatindP+uldie .}, @)

where Dy is proportional to Dy, ro and vy are defined by D, and familiar bare
couplings of an m-vector model, and gb ngR is a m~dimensional vector. The case
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of isotropic distribution of a local anisotropy axis we consider here corresponds
to the situation when the random vector g points with equal probability in any
direction of m-dimensional hyperspace. In order to deal with quenched averaging one
introduces n replicas of the Hamiltonian (2) and ends with the following effective
Hamiltonian [8]:

n n m

| ddR{%[u&wPﬂwﬂ TERTS LA 3y ¢g¢g¢f¢f}, 3)
a=1 a,B=14,j=1
where pg is bare mass and bare couplings ug > 0, vg > 0, wy < 0. Furthermore,
ug, wy are related to appropriate cumulants of the random vector Zg distribution
function and their ratio equals wqo/uy = —m. Note that the symmetry of ug and vy
terms corresponds to the random site m-vector model [17]. However the ug-term has
an opposite sign.

In order to study long-distance properties of the Hamiltonian (3), we use the
field-theoretical RG approach. We apply the massive field theory renormalization
scheme [18] performing renormalization at fixed space dimension d and zero external
momenta. For the g-functions in two-loop approximation in replica limit n = 0 we
get:

1 1
Bu = —5{u— 6 {SUZ+2(m+2)uv+20w+2(m+1)uw+3w2} +§ [44u3
+24 (m + 2) vu?4+2 (3m+6) uv*+2 (6 m+24) uvw+2 (12m + 12) wu?
2
+ (3m+45) uw?+2 (m + 8) vw? + 4v*w+(3m + 9) wg}il + 9 [ng

3
+2 (m+42) vu’+ (m+2)uv2%w2u+2 (m+2) uvw+2 (m+1)u2w}i2}, (4)

1 1
By = —¢€ v{l —3 [(m+8) v+12u+2 (m+5) w] + 9 [2 (5m+22) v2+24 (m+5) uv

+84u7+2 (14m+58) wo-+4 (9m-+33) uw-+ (17 m+67) w? iy

2 3
+§ {2u2+2 (m+2) uv+ (m+2) v2+%w2+2 (m+2) vw+2 (m+1) uw} i2}7 (5)

1 1
Buw :—5w{1 ~z [(m +4) w+ 12u + 4v] + 5{(5771—1—27) w? 4 4 (6m~+15) uw

+2 (5m+22) vw + 4 (3m+18) uv + 84u*+2 (m + 6) v° iy

2
+§ [2u2+2 (m+2)uv+ (m+2)112+m7+3w2+2 (m+2)vw+2 (m+1)uw} 2'2}. (6)

Here, u, v, w are renormalized couplings and i1, iy are two-loop integrals [19]. For the
space dimension d = 3 they equal i1 = 1/6, i, = —2/27 [20]. Zeroes of the S-functions
determine the coordinates of fixed points (FPs). The stable FP is defined as the FP
where the stability matrix B;; = 08,,/0u;, w; = {u,v,w} possess eigenvalues with
positive real parts.
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Table 1. Fixed points in e-expansion. Here, x4 = (m — 2 + /(m — 2)? 4+ 48)/8,
yr = (m—2—=2mz+/(m—2—-2mz)?+4(12 — 82))/8, z = (m + 6)/(m + 8).
The second order contributions u;, v;, w; are given in the appendix.

*

u v w
L. 0 0 0
6 3m+14 2
I1. 0 g€ T 18(m+8)35 0
IIL. S22 0 0
3(1—m) 2 3 2
IV. —%(m 1)5+uw5 2(m_1)€+vwe 0
Ty 2 6 2
V. 122 +m+4€ + uve 0 12x++m+4€ + wve
T _ 2 2
VL 12x6+m+4€ + uvie 0 oo tmTaC T Wvie
Y+ 2| _ 6z 2 6 2
VIL 12y+g4z+m+45 + uvne 1251 —4z+m+4° +ovne 1251 —4ztm+4° +wvie
% 20\ __ 6z 21 6 2
VIIL 3y —4z4midC T Uviné 5y —dormidt T OVINE” | o —a g T Wvme

3. Fixed points and their stability

g-expansion. As it was mentioned in the introduction the only known RG results
for RAM with isotropic distribution of the local anisotropy axis are those obtained
in the first order in € [8]. They can be reproduced from formulas (4)—(6) putting two-
loop contributions equal to zero. In particular, we get eight FPs with coordinates
given in table 1 (in order to recover the results of [8] we extract the value of one-loop
integral ~ 1/e from conventionally normalized couplings: see note [19]). In the first
order of e-expansion all FPs with u > 0,v > 0,w < 0 appear to be unstable for
e > 0 except for the “polymer” O(n = 0) FP III which is stable for all m. However,
the presence of a stable FP is not a sufficient condition for the 2nd order phase
transition. The FP should be accessible from the initial values of couplings and it
is not the case for the location of FPs shown in figure 1. Indeed starting from the
region of initial conditions (denoted by cross in the figure) for zero value of v one
meets a separatrix joining unstable FPs I and VI and will never reach the stable
FP III. As far as both FPs I and VI are strongly unstable with respect to v, FP
I1T is not accessible for arbitrary positive v either. Finally, one ends up with the
conclusion about the absence of the 2nd order phase transition in the model as
runaway solutions of the RG equations show.

Second-order contributions in € to the FP coordinates are displayed in table 1
as well. The main question of interest here is whether the above described picture
of the runaway solution is not an artifact of an e-expansion. To shed light on this
issue we will hereinafter use a more refined analysis of FPs and their stability.

d = 3 series. Another way of analysing the series for the RG functions (4)—(6)
is to consider them directly for the dimension of interest d = 3 [18]. As it is known,
the series of this type are asymptotic at best and a resummation procedure is to
be applied in order to obtain reliable data on their basis. Here, we will make use of
Padé-Borel resummation techniques [21] first writing the RG functions as resolvent
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Figure 1. Fixed points of the RAM with isotropic distribution of a local
anisotropy axis. The only fixed points located in the octant v > 0,v > 0,w < 0
are shown. Filled box shows the stable fixed point, cross denotes typical initial
values of couplings.

series [22] in one auxiliary variable and
then performing resummation. Numer-
ical values of the FPs are given in ta-

Table 2. Resummed values of the fixed
points in two-loop approximation for

d=3. ble 2. Resummed two-loop results qual-

itatively confirm the picture obtained

m u* v* w* in the first order in e-expansion: sta-

I |[VYm 0 0 0 bility of the FPs does not change after

II 2 0 0.9107 0 resummation. This supports a conjec-

3 0 0.8102 0 ture of Aharony [8] about the absence

4 0 0.7275 0 of accessible stable FP for the RAM

T | Vm | 1.1857 0 0 with isotropic distribution of the local
IV [ 2 | 00322]09454| 0 anisotropy axis.

3 0.1733 | 0.6460 0 However the applied procedure of re-

4 | 0.2867 | 0.4851 0 summation fails to give a correct de-

VI 2 1.4650 0 —-1.6278 | scription of f-functions for large neg-

VIIT | 2 0.7517 | 0.7072 | -0.3984 | ative w. In particular, in the region of

3 | 0.8031 | 0.5463 | —0.3305 | couplings in the vicinity of FP VI we get

4 | 0.8349 | 0.4545 | —0.2888 | real values of the p-functions and solu-

tion for m = 2 only. This is caused by
the appearance of poles in integral rep-
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resentations of the resummed [S-functions. To deal with the poles one can take the
principal values of corresponding integrals but we will exclude such cases from our
analysis. Studying the evolution of FPs upon application of the resummation proce-
dure we have found one more FP, which is not present in the e-expansion analysis.
This one we consider as an artifact of the resummation procedure and do not display
it in table 2. In the other FPs we recover the two-loop results for O(m) (FP II),
polymer O(n = 0) (FP III) and diluted m-vector (FP IV) models. FP VIII contains
all three couplings but is both unstable and non-accessible from the initial values of
couplings.

4. Conclusions

In this paper we applied a field theoretical RG approach to analyse the critical
behaviour of RAM with isotropic distribution of a local anisotropy axis. The origin
of a low temperature phase in this model is not completely clear. General arguments
based on an estimate of the energy for the formation of magnetic domains [15] lead
to a conclusion about the absence of ferromagnetic order for d < 4 [10,11]. However,
these arguments do not take into account the entropy which may be important for
disordered systems [13].

In the RG analysis, the absence of a ferromagnetic second order phase transition
corresponds to a lack of stable FP of the RG transformation. However, in the case of
RAM with isotropic distribution of a local anisotropy axis the scenario differs. Our
two-loop calculation bring about the presence of a O(n = 0) symmetric FP which is
stable for any value of m. However, this FP is not accessible for the initial values of
couplings. We checked the location of the FP up to the second order in e-expansion
and by means of a fixed d = 3 technique refined by Padé-Borel resummation. Our
analysis supports the conjecture of Aharony based on linear in € results concerning
runaway solutions of RG equations for the RAM with isotropic distribution of a
local anisotropy axis.

It is worth mentioning here that anisotropic distribution of a local anisotropy
axis may lead to ferromagnetism by a second order phase transition scenario [16].
The analysis of effective and asymptotic critical behaviour in this case will be a
subject of a separate study.

Yu.H. acknowledges helpful discussions with Mykola Shpot. This work has been
supported in part by “Osterreichische Nationalbank Jubilaumsfonds” through the
grant No 7694.

Appendix

In this appendix, we perform the e-expansion for the RAM with isotropic dis-
tribution of a local anisotropy axis. A procedure allowing to obtain the e-expansion
from the RG functions written in massive scheme for a fixed d is well known. To this
end, one should substitute loop integrals by their expansions in € and proceed in a
common way (see e.g. [23]). In particular, substituting integrals i1,y in (4)—(6) by
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Table 3. Numerical values of coefficients at the contributions ~ 2 to the fixed
points coordinates for some m.

m urv Uy Ca%! Uvin UVIIT Urv

2 | -3.8906 | 0.2517 0.3525 -0.0242 —0.6352 | 3.2578
3 | —0.6665 | 0.2581 -8.6484 -0.4935 —0.5566 | 0.8346
4 1-0.2292 | 0.2654 | 27165.9534 —1.0550 —0.5558 0.5

UvII Vvl Wy Wy w11 WvIII

2 | -6.4311 | 0.8791 0.1889 -0.3313 4.7905 | 1.2583
3 | —7.8255 | 0.2024 0.1441 12.3348 5.6388 | 1.2962
4 1 -9.6584 | -0.1118 0.1105 —-39381.2980 | 6.6343 | 1.2650

their expansions i1 ~ 1/24¢/4+ ..., iy >~ —¢ /84 ... [24] we get the expressions for
the fixed point coordinates given in table 1 with the accuracy 2. We do not display
there the second order contributions u;, v;, w; as functions of m, because they are
too cumbersome. Instead in table 3 we list their numerical values for m = 2, 3, 4.
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LJocnigXxyeTbCa BNAMB NOKabHOI aHI30TPONii BUNaaKoBOi OpieHTaLi Ha
depomarHiTHUA paloBuii nepexia,. 3 Lieo MeToto 3a 0MNOMOr oo MeToay
TEOPETUKO-MONbLOBOI peHopMani3auinHoi rpynn NPpoBeAEeHO aHanis Mo-
heni MmarHeTvka 3 BUNagKoBOIo aHidoTponieto. MiaTeepaxeHo ogHoneT-
neBni pesynstaTt ArapoHi Npo BiACYTHICTb $a30BOro nepexony opyroro
poay Ass iS0TPONHOr0 PO3MOoAisly OCi BUNaaKoBOi aHi30TpoNii Npy BUMIp-
HOCTI NnpocTopy d < 4.

Knio4oBi cnoBa: BunazakoBa aHi3oTponis, peHopmManisadiiHa rpyna,
KPUTUYHI MOKa3HUKU
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