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The effect of the layered crystal intercalation on the functional dependence of the carrier den-
sity of states is analyzed. The conditions of thermodynamic stability of intercalation process de-
pending on Fermi energy and microscopic parameters are studied.
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Introduction

It is well known that density of elementary excita-
tion of states p(w) is widely used in calculating the
physical quantities observed in experiments. Two ap-
proximations can be distinguished which result from
utilizing p(®). On the one hand, p(®) is widely used
in the search for the mean value of energy characteris-
tics. The result of the integration process in the whole
range of frequencies is determined by the functional
dependence of p(w) in the region of integration. As an
example, we can take the use of p(w) for calculations
of the indirect interaction between adatoms on a
tight-binding solid [1]. On the other hand, a number
of examples can be presented when this or that physi-
cal characteristic is determined by the value of p(w) at
a certain energy point. For instance the critical tem-
perature of the transition to the superconductor state
according to BCS theory is determined by density of
states at the Fermi energy ¢  [2]. The second example
of the benefit of knowledge of p(®) can be the 2%

type Lifshitz transition. Such a transition is realized in
a layered crystal due to the peculiarities of its struc-
ture [3]. The layered crystal can be represented as a
set of packed «sandwiches» tied by weak Van der
Waals forces. Each sandwich is a set of monatomic
layers with covalent or ion—covalent bond. Small but
nonzero electron overlap between layers is much better
described by a strongly anisotropic three-dimensional
dispersion law with different effective masses within
the layer plane and normal to it (m; y << m,) [4]. In
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our paper the layered crystal will be described by a
model dispersion law which is distinguished from the
isotropic and anisotropic ones by a much smaller elec-
tron overlap integral ¢, across the layers than within
the layer plane a.. It was first written by Fivaz [5]

e(r k) =ax’ +t,(1 - cosk), (1)

where all the quasi-momenta y = (ky,k,), k, =k are
written in units of the lattice constant, a, =1/2m .,
mic is the electron effective mass within the layer
plane, ¢, = 1/ 2m|TC, mic is the electron effective mass
across the layer plane, and 7 = 1. As much as the pa-
rameters o .,t, are determined by effective masses,
they will be taken from the experimental data. In
terms of the density of states, the Eq. (1) corresponds
to po(w) as follows:
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po(w) =

As follows from (2), at the point = 2¢, the deriva-
tive dpg /0w is discontinuous, and the value o = 2¢, cor-
responds to the topological 2% type Lifshitz transi-

tion, which characterizes the transition from the open
to the closed isoenergy surface of a layered crystal.
Descrimination in chemical bonds causes a number
of phenomena specific to layered crystals. One of
them, i.e., intercalation, which consists in introducing
the guest atom into the gaps between sandwiches, the
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so-called Van der Waals gaps. We define host material
as the recepient of the guest species, the intercalate as
the guest species resident in the host material, and the
intercalant as the guest species substance [6].

In intercalation of the transition metal dichalco-
genides MX, (where M is atom of a metal of a transi-
tion group, X = S, Se) with various electron-donor
species, the changes observed in the electronic proper-
ties can be satisfactorily explained by the charge
transfer resulting in the gradual filling of the host lat-
tice band without any appreciable change in its shape
or its mutual position — a model known as the ri-
gid-band approximation [7]. Firm evidence for the va-
lidity of this model is available for the cases where the
intercalate is an alkali (or alkaline-earth) metal, a no-
ble metal, or a first-row transition metal. So, by
changing the carrier concentration during the interca-
lation process, the Fermi energy can be raised up to
the topological 21/ type Lifshitz transition. The
rigid-band model satisfactorily describes effects in
which the factors of importance are the integral devel-
opments of band structure and population of the band
(like kinetic properties) rather than the details of the
band structure. Naturally, this model can be regarded
as a crude approximation.

As is shown in [8], intercalation of TIGaSy (space
group cc, with lattice constants ¢ = b = 10,31 A, ¢ =
= 15,16 A and the thickness of Van der Waals gap is
3,64 A [9]) by Li increases the degree of anisotropy of
electro-, photo-, and x-ray-conductivity anisotropy
via the diminution of interlayer mixing. In this case an
intercalated crystal has a more expressed «two-di-
mensionality». However, this effect is most conve-
niently achieved by the intercalation of organic mole-
cules, in particular, the long-chain amines and related
macromolecules. For example, in a solid such as
2H-TaS9 (trigonal structure with lattice constants a =
=3,36 A, ¢ =5,89 A and a thickness of Van der Waals
gap of nearly 3 A [10]) intercalated with n-octadecy-
lamine, the layers can be separated by a bilayer of
octadecylamine molecules with a dimension approaching
60 A where the thickness of the single layer is ~ 6 A.
Since the interaction between the layers is now consid-
erably weakened, this also makes the crystal more
close to «two-dimensional» [11]. All these facts con-
firm that the rigid-band model is not capable of de-
scribing the phenomena concerned with the change of
lattice parameters and thus with the energy parame-
ters such as electron overlap.

That is why it seems interesting to study i) the
boundaries of the rigid-band model applicibility,
ii) the effect of the host—guest interaction on the
shape of the density of states, particularly, in the top-
ological 2% type Lifshitz transition, iii) the change
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of free energy of the electron subsystem depending on
intercalant and carrier concentration at different mi-
croscopic parameters.

The goal of this paper is to analyze p(®) in the in-
tercalated layer due to the insertion of foreign atoms
within the framework of a model with the following
peculiarities. Intercalants locate only in the Van der
Woaals gap. The guest—guest interaction causes split-
ting of the intercalant energy level g into a band with
a dispersion law similar to (1). We restrict ourselves
to the virtual crystal model, i.e., when N impurities
occupy each cell equiprobably with the equal proba-
bility p = Ny/N, where N is total number of cells.

Electron density of states in intercalated layered
crystal

The carrier density of states in the intercalated
layered crystal will be calculated below as a function
of the intercalant concentration in a wide region of
energy, and, particularly in certain energy regions like
the band bottom and energy corresponding to the 2 y
type Lifshitz transition. Two different descriptions o
such a problem exist: i) change of the chemical
potential at unaltered dispersion law or, in other
words, unaltered energy states (the rigid-band mo-
del), ii) change of the dispersion law caused by
intercalation at unaltered chemical potential. In fact,
the importance of choice (i) or (ii) depends on the
concrete problem, namely, chemical bonds and the
degree of anisotropy, i.e., the energy characteristics of
the host and degree of host—guest interaction.

The case of an interacting host—guest system at un-
altered chemical potential will be considered. Let us
construct the Hamiltonian of the electron subsystem
of the host with N foreign atoms intercalated into it.
We will use operational functions

P(r) = Zén\vn(r) + Zp(n)éncpn(r)y (3)

where the summation is over all cells; v, (r) is a wave
function of electron on the site of layered crystal with
weighting coefficient ¢, ¢, (r) is a wave function of
an electron on the site of the intercalant with weight-
ing coefficient p(n)a@,: p(n) is the probability

1, if the intercalant is in the n-th cell

p(n) ={

0, otherwise
(4)
In the case of a one-electron description, in the sec-
ond-quantization representation on the unary
Hamiltonian and operational functions (3) Hamilto-
nian will have the form
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o =Yt epey + Y ppn)t; (nn agay +
n,n’

n,n’

+Zp(n)goa;{an + {Zp(n)voa;{cn + h.c} +
n n

J{Zp(n)V(n, n')agcy + h.c.]. (5)

n,n’

Here, the first term describes electron mixing on the
host sites in n,n’ cells (cp,cq are Fermi operators of
annihilation and creation, respectively); the second
and the third ones are an analogous mixing in the
guest subsystem (g is the energy level of the inter-
calant, a,,a,; are Fermi operators of annihilation and
creation of the intercalant, respectively). The remain-
ing terms describe an electron host—guest mixing in
the same and in the nearest cells, respectively. Elec-
tron overlap in the guest subsystem ¢; (n,n’) and elec-
tron host—guest overlap V(n,n’) satisfies the condi-
tion of translational invariance, i.e.,
t;(n,n’) =t;(n-n'), V(nn')=V(n-n").

In the virtual crystal approximation in the momen-
tum representation equation (5) takes the following
form

H = Zs(k)cltck + pzz“éi(k)a;ak +
k k

+p2806li:clk + pZV(k)c;ak +h.c.,  (6)
k k

where g(k)is the dispersion law of the host subsystem
1), clt ,ck are Fermi operators of creation and annihi-
lation in the host subsystem, respectively, a;{r ,dj are
Fermi operators of creation and annihilation in the
guest subsystem,

Ei(k):aix2 +1t;(1 = cosk) 7

is the dispersion law of the guest subsystem, a;,¢; are
the electron overlap integrals of the nearest guest at-
oms within and normal to the layer, respectively. The
second and the third terms in (6) can be combined
into one. Then the Hamiltonian (6) will have the
form

H = ;s(k)c;{rck + p2;si(k)a;ak +

+pZV(k)cltak + h.c. (8)
k

with the dispersion law ¢;(k) =€, (k) +¢q/p, mea-
sured from gq/p, and the Fourier transform of
Vo + V(n,n') is equal to V(k). The change of inter-
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calant concentration p governs the value of the
constants before the second and third terms in (8),
ie.plo;, pit;, pvVk).

Let us use method of two-time retarded Green’s
function and calculate the carrier density of states. For
the system described by Eq. (5) the Green’s functions
for the intercalate and host subsystem are [12]

<<‘lk a >> - 5 _zg(k) 21,2 (9)
[ = e(k)][e - p7e; (k)] - p7V (k)
and
A+ pe; (k)
<<Ck o >> "o - e(0 o - pZe; (0] - pzvz(k)’(m)

respectively. The density of states p, (@) js defined
from the corresponding Green’s function <<am a, >>

by [13]
P (o) = S <<¢r+n 61;1>>w+i8 ' (11)

T >0

Then, we obtain

_ 1 lj'z © - pe;(qy) ~
2021)2 ; |2bK(q1) +cleqq + d)|
1

pe(®)

1 T o-p’e;(gy)
2(21)2 ; 126K (q3) + clcqy + d)|
3

dk,  (12)

ky
1 J’ o —&(qy) ~
2(27)? ; 126K (q1) + c(cqy + )|
]

pi (o) =

- T @ g,) (13)
2021)2 ; |2b]<(q2) +cleqy + d)|
3
o, +pla; o, - plo;
where the notation b = —¢ ) Lo oc==¢ ) L
— 2 . — —
J- (t —p°t; )1 = cos 2) — pgy is used, and K(q)

2
with ¢; =y7 is

K(g) = {100 = pe, GO + 42V GO . (1

The regions of integration k; are determined by the
condition (2n)? > ¢; >0, and V(k) =V (the Fourier
transform of V;; + V(n,n’)) will be chosen to be con-
stant.

The total carrier density of states of the intercalated
layered crystal is of the form p(®) = p.(®) + p; (®). Re-
member that the goal of this paper is to find out the
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dependence and the tendency of p(w) to change in the
region of the topological 2 % type Lifshitz transition.
To this end it is necessary to know the change of the
behavior of the densities of states of the host p,.(®) and
guest p; (w) with increasing p and varying microscopic
parameters Vandt¢;. The results of calculations of
p.(®) and p; () performed according to (12), (13) for
different p,V are given in Figs. 1 and 2, respectively.

As calculations showed, at a small guest concentra-
tion p [12] its increase leads to the appearance of a
«tail» of the states density in the forbidden band and
to a certain undershoot in the p.(®) dependence.
There is also the region of energy where the depen-
dence p.(®) is quite similar to py(w) for the pure crys-
tal (p.(w) »> Ay + pg(®)). This means that the ri-
gid-band model is quite good for the description of
p.(®) in this case. The higher is p the greater is Ay and
the shape of p,(®) is not similar to that of py(®), and
the rigid-band model becomes unacceptable. An increase
of the guest concentration or of the host—guest interac-
tion V) smoothes the behavior of p,.(®) in the region of
the Lifshitz transition and shifts it in the direction of
higher energies. The behavior of p; (w) as a function of p
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Fig. 1. Spectral dependence of electron density of states
plo at gg =-02 eV, ap=05eV, V = 0.1 eV: different

p (@), at p = 0.2 and different V (b).
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Fig. 2. Spectral dependence of electron density of states
p;(@ at g =-02 eV, ag=05¢eV, V = 0.1 eV: different
p (@), at p = 0.2 and different V (b).

or V turns out to be opposite. The Lifshitz transition
becomes more precise and it shifts in the direction of
smaller energies. Only an increase of the guest—guest in-
teraction up to the case when ¢; — o ; leads to the elimi-
nation of the Lifshitz transition.

The calculated density of states will be used for
analyzing its integral development in the thermody-
namic stability of the electron subsystem of the inter-
calated layered crystal and of the intercalate.

Thermodynamic stability

Let us consider the change of free energy for
many-impurity problems at different guest concentra-
tions and g at various i) Fermi levels, ii) electron con-
centrations n. The Fermi level will be the parameter
which can be changed in a different way, particularly,
by different impurities in the same crystal or by
changing crystal energy parameters.

In our problem the ion—ion interaction was not con-
sidered. That is why the change of free energy is stud-
ied at low temperatures. Let us consider the limit case
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of T = 0 (at higher temperatures the Fermi distribu-
tion should be taken into account). In the case T = 0,
the free energy of the electron subsystem coincides
with its internal energy F = E [14].

At a small intercalant concentration the change of
free energy (AF) of the electron subsystem of the in-
tercalated layered crystal is similar to the interaction
between adatoms (or foreign atoms) on a tight-bind-
ing solid [1]. According to that paper [1] the chemical
potential changes incidentally uppon the introduction
of adatoms (in our case it is intercalant). Then the
energy change is determined by the change of the den-
sity of states Ap(w) caused by adatomic (or inter-
calant) states, i.e.,

eF eF
AF = I[pc(m) +p;(0]odo - Ipo(m)dm - Nygy,

—0 0 (15)

where p (o), p,(w), py(®), are, respectively, the elec-
tron densities of states of the host renormalized by in-
teraction with the guest, of the guest renormalized by
interaction with the host, and of the pure host; N 0 s
the number of the guest species, ¢, is a guest energy
level, and ¢ is Fermi level.

We calculate AF as a function of:

a) er and on g at various p (Ny/N) , (N is the
number of crystal sites),

b) electron concentration n and gj at various

The results of the many-impurity problem are ob-
tained in the case of pgy < g < 2t for localized (gy < 0)
and —pg( < g < 2t for resonance (gy > 0) levels, and
a.=1,t=0.1,a;=0.1, t; = 0.01 (all energy parame-
ters are given in eV).

Numerical calculations show:

i) At p < p¢r (pe; is an intercalate concentration de-
fined by AF(gr) = 0), the dependence AF(gp) is bro-
ken into two regions with AF > 0 and AF < 0 (Fig. 3),
within which AF in fact does not change both for lo-
calized (gy < 0) and resonance (g > 0) levels. The
higher is p, the larger is the interval between such
constant values. Here, the region of e¢x where the sign
of AF changes remains the same. For g5 < 0, the ther-
modynamic equilibrium state (AF < 0) occurs at
ep > aér, aér < 0, whereas for g, > 0 it takes place at
ep <&l el >0 (eh are Fermi energies wherein AF =
0 for localized and resonance levels, respectively). The
Fermi level, wherein AF(gr) = 0 is sensitive to the po-
sition of guest energy level, gy, namely g/, > aér. The
higher is o], the higher is the value of p., and still
more stable is the thermodynamic state of the system
both for localized and resonance levels.
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Fig. 3. The difference of free energy of intercalated
layered crystal AF(ep) at different energy level of the
guest and V =0.01eV.

As the guest concentration increases to p > p,,, the
dependence of AF(er) for localized levels is changed
(Fig. 4). Namely, in the vicinity of p., a minimum of
AF (gp) takes place. Moreover, at p > p.., AF > 0. For
resonance levels, the higher is the guest concentration
p (p > pe), the smoother is AF(gf) and, what is more,
the thermodynamic equilibrium region over Fermi
level is widened, and the difference between the maxi-
mum and minimum values of AF(gf) increases.

ii) In the case of different values of electron con-
centrations, the Fermi level may be determined from
the following equation

eF
n= J.[pc(oo) +pi (@]do. (16)

At small p (p < p,,), the AF(n) behavior is similar
to AF(gf) both for localized and resonance levels. The
higher is p, the narrower is the region of thermody-
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Fig. 4. The difference of free energy of intercalated
layered crystal AF(gp) at different guest concentration.
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namic equilibrium and the smaller is its stability (AF
value). The Fermi level corresponding to the mini-
mum of AF remains the same. As would be expected, an
integral characteristic like the change of free energy
does not vary in the region of the Lifshitz transition.

Experimental results

The measurements of the change of Gibbs energy
[15] were carried out by the e.m.f. method and its tem-
perature dependence. The position of the Fermi level
(Fig. 5, curve 1) was determined by electrochemical
analog of Mott—Shottky method, and free the carrier
concentration (Fig. 5, curve 2) was determined from
galvanomagnetic measurements (Hall effect).

The thermodynamic Gibbs potential
host—guest system is as follows [16]:

in the

AG =n,FE =AS + W + Aug +LZ—C+AO, 17)
X

where F is the Faraday number, n,is the number of
redox-electrons, E is the electromotive force, AS =
= kT In(x/x —1) is the configuration enthropy compo-
nent, and x is the number of the introduced guest rel-
ative to one formula unit of the host (similar to the
theoretical p). The other terms describe the enthalpy
component. Among them W describes the interaction
between guest component, i.e., the effect of inter-
calant concentration on the ion—ion interaction in the
guest subsystem, Ap g is the change of Fermi level po-
sition of electrons or holes, L is a coefficient, linear to
the potential Lennard-Jones function, 0C/dx is the
change of lattice units, A, is a constant which de-
scribes the host—guest interaction which is usually
taken to be independent of x [16]. As is seen in
Fig. 5, the region of chemical potential minimum cor-
responds to small intercalant concentrations (x = p is
near 0,2). It is this value of concentration at which the

0.4
0.3
3 0.2F

L0k K

0.0L

O
] /
-0.1L O\Q\O/Q'O ~o ]
_02 1 - ! 1 1 Il 0
0.0 0.2 04 06 038

X

T
~
1
—_
(¢)]

Fig. 5. Dependence of the difference of Fermi energy (1),
free carriers concentration (2) on guest loading x in
Li,BiyTes [15].
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enthropy component is already insignificant (enthropy
component is much higher than the enthalpy one at
small and large x: x - 0, x — 1), and the ion—ion in-
teraction (W) can still be neglected. Thus, the behav-
ior Ap(x) describes the change of the thermodynamic
Gibbs potential AG(x), which at low temperatures co-
incides with the change of free energy [14].

Comparing the obtained theoretical results (see
Fig. 4) with the experimental ones for intercalated
Li,BiyTes [15] one can see (Fig. 5) that at small guest
concentration (p = x < 0,15) Li intercalation shifts
the Fermi level down to the middle of the forbidden
band. As a result, the carrier concentration decreases,
meaning a decrease of the thermodynamic Gibbs po-
tential, caused by the electron subsystem contribu-
tion. As is seen in Fig. 4, the increase of intercalant
concentration at a certain Fermi level leads to a de-
crease of the change of free energy down to a negative
value, i.e., stabilization of the system under study.

The fact of the Fermi energy decrease suggests that
lithium in the Van der Waals gap did not release its
electrons, preserving its identity to a certain extent.
In terms of the calculation, the degree of guest iden-
tity is given by the value of V: the weaker is the
host—guest binding, represented by the parameter V,
the higher is the guest identity.

Conclusions

The analysis of a functional dependence of carrier
density of states in an intercalated layered crystal is
carried out by two-time retarded Green’s functions
considering host—guest and guest—guest interactions
within the framework of virtual crystal model, i.e.,
intercalants equiprobably occupy each cell (p <1). Tt
is shown that the concentration increase p causes the
appearence of a certain «tail» of the density of states
in the forbidden band. Its shape depends on the nature
of the guest, i.e., the intercalant energy level ;. Ei-
ther an increase of p and of the host—guest interaction
smoothes the Lifshitz transition, shifting it in the di-
rection of higher energies in the p.(®) dependence and
makes it more clear, thus shifting the transition point
in the direction of smaller energies in the p; (@) de-
pendence. The Lifshitz transition in the p; (w) depend-
ence disappears only if the anisotropy of the chemical
bonds in the intercalate subsystem decreases. Based on
the calculated density of states, the change of the free
energy of electron subsystem is found. The theoretical
results obtained indicate the tendency towards ther-
modynamic advantages or disadvantages caused by the
electron host—guest subsystem, depending on the guest
and carrier concentrations in the intercalation process.
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