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We communicate the results of numerical studies of acoustic turbulence in a system of slightly
dissipating, nonlinear second sound waves in superfluid He II. It is shown that at sufficiently high
amplitude of the external driving force the power-like energy distribution over frequency is formed
in the system of second sound waves. This distribution is attributed to formation of the acoustic
turbulence regime in the system. The interval of frequencies in which the distribution has a
power-like form is expanded to high frequencies with increasing the amplitude of the driving
force. The distribution of the energy inside this interval is close to E� �~ 2. It is shown that the
distribution of energy E� depends on the value of the nonlinearity coefficient of the second sound,
but does not depend on the sign of the coefficient, i.e., the coherent structures (shock waves) do
not contribute to the statistical properties of the turbulent state.

PACS: 05.20.Dd, 47.27.Eq, 67.40.Pm

1. Introduction

We report on observations in numerical experiment
of Kolmogorov type spectrum of turbulence in a sys-
tem of one-dimensional weakly dissipating sound
waves. Studies of turbulence of sound waves (acoustic
turbulence) is of importance due to many applications
in physics: nonlinear waves in superfluid He II [1–3],
phonon turbulence in perfect crystals [4], waves in an
interstellar space [5], etc.

Traditionally the theory of weak, or wave turbu-
lence could be used as an appropriate basis for under-
standing the turbulent phenomena in system of inter-
acting waves (see the monograph [6] and references
therein). For example, recent studies of turbulence of
capillary waves at the surface of liquid hydrogen
[7–9] and of water [10–13] have demonstrated that
the experimental observations are in good accordance
with the predictions of the theory [6,14] and with the
results of numerical computations [15] based on this
theory.

In case of the turbulence in a system of sound
waves with the dispersion law

�k uk� (1)

the approach based on the ideas of the weak turbu-
lence theory meets difficulties due to divergence in

the perturbation theory series [18] (here �k is the fre-
quency of the linear wave with the wave vector k, u is
the sound velocity). These divergence appears owing
to degeneration of the resonance manifold for
three-wave interaction in k space in case of the linear
dispersion law (1): only waves whose k vectors are
collinear with each other could interact efficiently.
Due to this fact the peculiarities of the nonlinear and
turbulent behavior of such a system could differ from
that of the system of waves in dispersive media.

Numerical calculations provide a nice opportunity
to study from the first principles the peculiarities in
turbulent behavior of a systems of acoustic waves, by
integrating numerically the equations of motion of
liquid. The results of similar studies made for
dispersive systems — the gravity and capillary waves
at the free surface of liquid have been published
recently in [15–17].

The present paper addresses the numerical studies of
acoustic turbulence in a system of sound waves with
small damping. Theoretical estimations have shown
that strongly anisotropic turbulent patterns could be
formed in a system of sound waves [6]. In order to
avoid additional difficulties related to the pattern for-
mation we consider here the simplest model case, in
which the one-dimensional sound waves in He II are
considered. We suppose that the medium in which the
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one-dimensional sound waves propagate, is restricted
from both sides by reflecting walls (waves in a resona-
tor of finite size). This consideration corresponds in
general to the conditions of the experiments [1,2] with
one-dimensional nonlinear second sound waves in
superfluid He II. The results of our calculations can be
used, also, for qualitative treatment of the experiments
[7–9] with capillary waves at the surface of liquid hy-
drogen in a cell of small dimensions.

Our calculations show that at high amplitudes of
the external driving force, a power-law distribution of
the amplitudes of the sound waves over the frequency
is formed at frequencies higher the driving frequency.
This distribution can be attributed to formation of the
wave turbulence regime in a system of sound waves,
and it is similar to the Kolmogorov spectrum of turbu-
lence [20]. The range of frequencies in which the
power-law distribution is established expands to high
frequencies with increasing amplitude of the driving
force. The power-law spectrum is violated at high fre-
quencies due to transition from the regime where the
nonlinear wave transformation plays the essential role
in the energy transfer through the scale to the regime
where the viscous damping dominates.

2. Basic equations

In this paper we study the turbulence in a system of
second sound waves in He II as an example of a non-
linear wave system. It is known that the second sound
waves in He II demonstrate a highly nonlinear beha-
vior, and they are a nice test object for studying the
dynamics of nonlinear waves [1,2].

It is convenient to use in numerical calculations the
Hamiltonian formulation of superfluid hydrodyna-
mics. The Hamiltonian formalism in hydrodynamics of
superfluid He II has been developed in the paper [21].
This approach has been generalized for superfluid
4He–3He mixtures in paper [22].

For the sake of convenience of the readers and for a
statement of the notations used in the subsequent cal-
culations we write down the known [22,23] basic
equations of motion for nonlinear waves of second
sound in He II in the Hamiltonian representation for
planar (one-dimensional) second sound waves in a re-
sonator. This representation is a classical limit for
superfluid helium hydrodynamics formulated in terms
of the first and second sound quanta. Such classical
limit can be used, obviously, if the occupation number
of the corresponding states is sufficiently large,

| |bn
2 �� �, (2)

where bn is the canonical amplitude of the second
sound, see below. Moreover, the term «second sound

quantum» itself is correct only if the wavelength of
the second sound is much larger than the mean free
path of the quantum excitations lf [23,24],

klf �� 1, (3)

where k is the wave vector of the second sound wave;
see (6). We suppose in this paper that both condi-
tions (2), (3) are satisfied.

An arbitrary flow of superfluid He II can be de-
scribed by three pairs of conjugate variables ( , )� � ,
( , )� S and ( , )� f [21]. Here � is the superfluid velocity
potential, � is the density of the liquid, S is the en-
tropy of a unit mass, � is the phase variable conjugate
to S, and � and f are the Clebsch variables. The
Hamiltonian function of the system is given be the to-
tal energy of the liquid

H d p E Ss s� 	 	


�
�
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r v v p� �( , , ) . (4)

Here E S0( , , )� p is the energy of a unit of volume of the
liquid in the reference frame moving with the velocity
v s of the superfluid component, and p is the momentum
of the relative motion of the normal component.

In the subsequent analysis we neglect the oscilla-
tions of the density � in the second wave due to the
fact that the thermal expansion coefficient of the liq-
uid helium is small ( )( )T/ / T� �� � �� 1 if the tempera-
ture of the helium bath is not very close to the
temperature of the superfluid transition T�. In this ap-
proximation the oscillations of the two variables� and
S are nonzero only in the second sound wave propaga-
ting through the unperturbed superfluid. The equa-
tions of motion in this representation are

� , �S
H H

S
� � �
�
��

�
�
�

, (5)

with the Hamiltonian (4). The momentum of relative
motion of the normal component is

p � �S �.

If the sound waves are propagating in unrestricted
superfluid the Hamiltonian variables � and S could be
expressed via the normal coordinates — the ampli-
tudes bk of the sound waves with the wave vector k
[21]. In the case under study (waves in a superfluid
helium in a resonator) the corresponding normal vari-
ables are given by the amplitudes bn of standing sec-
ond sound waves. The frequencies of the standing
waves are equal to the resonant frequencies
�n nu k� 20 , where u20 is the second sound velocity,
and the wave number kn corresponding to the nth reso-
nant frequency is

k n/Ln � � , (6)
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L is the length of the resonator. The number n � 1 will
correspond to the lowest resonant frequency of the
cell.

Oscillations of the variables � and S in the one-di-
mensional second sound wave are expressed via the
normal coordinates as follows

� �( , ) cos( )( )x t k x b bn
n

n n n� �� � , (7)

�S x t S k x b bn
n

n n n( , ) cos( )( )� 	� � , (8)

where the normalization factors are
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The equations of motion to be integrated are pre-
sented by the Hamiltonian equations for the normal
coordinates bn ,

ib
H

b
i b fn

n
n n n

� � � 	
�

�

�
� . (10)

The dissipation and the interaction with the external
driving force are included phenomenologically in these
equations, H is the Hamiltonian function of the sys-
tem, � n is the damping coefficient of the nth standing
wave, fn is the driving force acting on the nth reso-
nance, a dot denotes the derivative with respect to
time t, and a star denotes the complex conjugate.

The standard way to describe the dynamics of the
system of interacting waves is to use an expansion of
the Hamiltonian H in a series in the normal coordi-
nates bn

H H H� 	2 3. (11)

The term H2 is quadratic function of the normal
coordinates bn

H bn
n

n2
2� �� | | ; (12)

it describes the propagation of linear second sound
waves. The term H3 is cubic in the amplitude bn and
corresponds to mutual interaction of three second
sound waves — splitting of one wave into two waves
and confluence of two waves into one wave. The
higher order terms are omitted in the expansion (11),
so the nonlinear processes of fourth and higher order
are disregarded. These processes involve the interac-
tion of four or more of waves. They are important for
isotropization of the spectrum in the three-dimen-
sional case, and they should be taken into account in
a more general theory. The general form of the inter-
action Hamiltonian is

H V b b bn n n
n n n

n n n n n n3 1 2 3

1 2 3

1 2 3 1 2 3
� 	� � �, ,

, ,

* � c.c . (13)

Here Vn n n1 2 3, , is the amplitude of nonlinear interac-
tion of three second sound waves. It is supposed that
nonresonant terms in (13), for which the resonance
condition

� � �1 2 3 0� � � (14)

is not satisfied, are excluded from the Hamiltonian
function by canonical transformation (see [6] for de-
tails). For the second sound waves with the disper-
sion relation (1) it follows from Eq. (6) that the reso-
nance condition (14) is equivalent to the condition

n n n1 2 3 0� � � .

This corresponds to the presence of the Kroneker
delta in the right-hand side of Eq. (13).

The amplitude of interaction of second sound waves
in He II with wave vectors k1, k2 and k3 is equal to [22]

V k k k
/

u
k k ks

n
( , , )

( )1 2 3
20

1 2 3
2

� �
�  

� �

�

��!

�V k k k1 2 3 . (15)

Here � is the nonlinearity coefficient of the second
sound waves,  is the entropy per unit mass, � s and
�n are the superfluid and normal density, and u20 is
the second sound velocity. In case of interaction of
three standing second sound waves in a resonator the
amplitude of interaction acquires the form

V V n n nn n n1 2 3 0 1 2 3, , � , (16)

where V V/u /
0 20

3 2� . The sign of the amplitude of in-
teraction Vn n n1 2 3, , coincides with the sign of the
nonlinearity coefficient � of second sound and it could
be negative or positive, depending on the temperature
and pressure in the superfluid liquid. It is known [23]
that in superfluid 4He at saturated vapor pressure the
nonlinearity coefficient � of the roton second sound is
negative at temperatures T T T� �� � (where T� is the
temperature of the superfluid transition) and is posi-
tive at T T� � . At T T� �� 188. K the nonlinearity co-
efficient � is equal to zero. Increase of the pressure in a
superfluid, as well as introduction of 3He atoms into
He II, should lead to lowering the temperature T�
[2,22]. For example, in superfluid He II with 10% of
3He atoms impurity the temperature T� is lowered to
1.7 K at saturated vapor pressure. So both two cases
V0 0� and V0 0� in Eq. (16) have physical meaning.

The damping coefficient of the second sound wave
is chosen as � n Cn� 2. In a real experiment the value
of the constantC is determined by viscous damping of
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the sound waves in the bulk of liquid and, also, by the
energy losses at the walls of the resonator. The con-
stant C is estimated roughly as C /Q~ 1 , where Q is
the quality factor of the resonator. The typical value
of the Q factor in experiments [1] with second sound
waves was Q ~ 102–103. In the calculation reported
we put C � �10 2 (which corresponds to Q ~ 102 at
n � 1), so � n n� �10 2 2.

The basic system of equations (10) to be integrated
numerically is obtained by collecting the formulas
(10)–(13), (16):

ib V nn n b bn
n n

/
n n n n n

� ( ) (
,

� 	� � �0 1 2
1 2

1 2

1 2 1 2
�

	 � 	� �2
1 2 1 2

b b i b fn n n n n n n n
* )� � . (17)

The linear term �n nb , which arises in right-hand side
of Eq. (17) from the quadratic part H2 of the
Hamiltonian (11), is eliminated by the change of
variables b b i tn n n" �exp( )� . The simplest initial
conditions for the second sound wave amplitude is
used in this paper:

b tn ( )� �0 0.

We integrate numerically the equations of motion
(17) in two cases: a) the second sound in a resonator is
excited by the harmonic external driving force with a
frequency equal to one of the resonant frequencies,
and b) the second sound is driven by a quasiperiodic
force, the frequency spectrum of which contains se-
veral harmonics.

The distribution of the amplitudes of the second
sound waves

P n b tn( ) | ( )|� # $2 (18)

over the wave number n averaged over time t is calcu-
lated from the results of integration. The energy dis-
tribution over frequency can be found from Eq. (11).
In the present case of one-dimensional waves as a first
approximation it is equal to

E P nn� �� ( ). (19)

We evaluate the frequency dependence of the energy
distribution E� of the second sound wave system
from the calculated P n( ) dependence.

3. Results and discussion

Driving at a single resonance frequency

First, we consider the case where a periodic driving
force excites a standing second sound wave at the fre-
quency equal to the lowest resonant frequency �1 of
the resonator,

f t f i t1 0 1( ) exp( )� � � ,

f0 is the amplitude of the driving force. As it was
pointed above, the dependence on time t of the ampli-
tudes of second sound waves bn is determined by nu-
merical integration of the equations (10). At large
time (when the relaxation processes are finished) the
amplitudes bn tend to some constant values. This
means that we may omit the averaging over time in
the definition (18) in this case.

We calculate the spectrum P n( ) for given ampli-
tude f0 and study the evolution of the distribution
P n( ) with increasing driving amplitude f0. Figure 1
shows the distributions P n( ) calculated for three val-
ues of the driving force f0 0 01� . (circles), 0.1 (trian-
gles) and 1.0 (boxes). Lines connecting the symbols
are drawn as a guide to the eye. The straight line cor-
responds to the dependence P n n( ) ~ �3.

In the inset in Fig. 1 the dependences of the effec-
tive exponent

s n
P n

n
( )

log ( )
log

�
d

d
(20)

on the resonance number n are shown for f � 0 01. and
f0 1� . It is seen that in the case f0 1� there is an in-
terval of resonance numbers n in which the effective
exponent s is close to s � �3.

From Fig. 1 it is seen that at sufficiently high am-
plitudes of the driving force there exists a range of fre-
quencies higher the driving frequency, in which the
distribution P n( ) of the amplitudes of weakly
dissipating acoustic waves can be described by a
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Fig. 1. The spectrum P n( ) of second sound oscillations cal-
culated for the amplitudes of the monochromatic driving
force f0 001� . (�), 0.1 (�), and 1 (�). The driving is ap-
plied at the lowest resonance frequency. The straight line
corresponds to the power distribution P n n( ) ~ �3. The in-
set shows the dependence of the effective scaling exponent
s on the resonance number n for f0 001� . and f0 1� .



power-like function P n n( ) ~ �3. This dependence cor-
responds to an energy distribution in the frequency
scale (see Eq. (19))

E� �� % �const 2. (21)

The interval of frequencies, in which the power spec-
trum (21) is established, is enlarged to high frequen-
cies with increasing amplitude of the driving force.

Driving by a quasiperiodic force

In this Section we present the results of calcula-
tions in which the driving force is not monochromatic,
but the frequency spectrum of the force has several
harmonics (quasiperiodic force).

In the calculations it is assumed that the external
driving force excites the three lowest resonant modes
directly, and fn � 0 for n � 3. For each resonant mode
n (n � 1 2 3, , ) the corresponding driving force fn is the
sum of three periodic harmonics, the frequencies of
which are incommensurate with each other and with
the resonant frequency of the given resonance. The in-
tegral power that is pumped by the driving force into
the system can be characterized in this case by the ef-
fective dispersion

D f f
n

n n� # $� * ,

where the angle brackets denote averaging over time.
In the case of pumping of the system by a quasi-

periodic force the amplitudes bn do not tend to some
limiting values at large time but are fluctuating at all
t. In calculations the distribution P n( ) averaged over
time t is determined from the results of numerical inte-
gration of the equations (17). Figure 2 demonstrates
the evolution of the distribution P n( ) with increasing

D from 0.63 to 4.2. It is seen from Fig. 2 that at high
D the power-like distribution

P n n( ) ~ �3 (22)

is formed in some region of wave numbers, similarly
to the case of pumping by a monochromatic driving
force.

The observed power-like spectrum of oscillations
could be attributed to the formation of the acoustic
turbulent state in the system of second sound waves.
The range of frequencies (or the region of the wave
numbers), in which the scale-invariant distribution
(22) is established, can be called «the inertial range»
in analogy with the interval of frequencies where the
scaling law is valid in Kolmogorov’s picture of turbu-
lence. At low frequencies the inertial range is limited
by the characteristic frequency of driving, and at high
frequencies the inertial range is limited by the transi-
tion from the regime of nonlinear transfer of the en-
ergy of waves over scales to the regime where the vis-
cous damping dominates.

The calculations are performed for both positive
and negative signs of the nonlinearity coefficients �
(i.e., for positive and negative V0 in Eq. (16)). It is
observed that the phases of the high-frequency waves
generated due to nonlinearity are different in cases
V0 0� and V0 0� (with the same absolute value | |V0 ),
but the averaged distributions P n( ) are the same in
these two cases. This indicates that formation of the
coherent structures (like shock waves) did not affect
the turbulent distribution of acoustic waves in a reso-
nator. The physical sense of this fact is that the mu-
tual nonlinear interaction of the second sound waves
reflected from the resonator’s walls prevents the shock
front formation. This fact could be important for fu-
ture analyses of the acoustic turbulence in superfluid
helium, because earlier the sound turbulence has been
considered mainly as a statistic of shock waves propa-
gating in an unrestricted medium.

Note that in case of one-dimensional waves with the
nondecay dispersion law, for which the four-wave in-
teraction plays the main role, the coherent effects (the
wave collapse or the soliton formation) are quite im-
portant in a turbulent regime [19].

We should note that the scaling index of the turbu-
lent distribution s � �3 observed in these calculations
is distinguished from the index s0 2 5� � . which could
be calculated by using the kinetic equation of the
weak acoustic turbulence theory [1] in case of one-di-
mensional acoustic waves. This could indicate that the
high-order corrections to the standard kinetic equa-
tions are important in the case under study. So, appli-
cability of the kinetic equations (or some of its im-
proved variants) for description of turbulence in a
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distribution P n n( ) ~ �3.



system of one-dimensional sound waves could be a
question for further studies.

4. Conclusions

Numerical studies of the dynamics of the non-
linearly interacting one-dimensional sound waves
shows that a power-like distribution of energy is
formed at some range of frequencies if the amplitude
of the low-frequency driving force is sufficiently high.
In this inertial range of frequencies the distribution of
energy over frequency is close to E� �~ 2. This spec-
trum can be attributed to formation of a turbulent
state in the system of acoustic waves. The inertial
range is expanded toward high frequencies with in-
creasing amplitude of the driving force. At high fre-
quencies the inertial range is limited by a change of
the mechanism of energy transfer from nonlinear wave
transformation to viscous damping. The shape of the
energy spectrum depends on the absolute value of the
nonlinearity coefficient of the sound waves (does not
depend on its sign), which manifests the fact that the
formation of the coherent structures does not influ-
ence the energy distribution in this turbulent system.
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