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Spin excitation spectra for possible molecule-based magnetic structures are evaluated
semiempirically. A simplest spin-flip model with singly-excited configurations (SF-CIS) is
used. While only a small amount of electron correlation is captured by the SF-CIS scheme,
it turns out to be practically useful tool for computing quasi-magnon spectra in large
polyradicals. We study examples of three different structural types (graphene nanoribbon
with methylene edges, triangulene and Mataga-type model organic ferromagnet). We dem-
onstrate that these systems show different behavior of the spin excitation spectra and
different spin heat capacity temperature dependences. It is also shown that the same
SF-CIS technique can be useful for describing high-spin states in nanodiamonds with
defects.
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polyradicals, nanodiamond.

ITonysMmupryecKUM METOJOM PACCUMTAHBI CIEKTPHI CIUHOBBIX BOB3OYKIEHWIT ANA BO3-
MOJKHBIX MOJEKYJIAPHBIX MATHUTHBIX CTPYKTYpP. Vcmoab3oBaH TpOCTeHIMIN crnuH-QINT
meton SF-CIS, yumTbiBaromuii OAHOKPATHO BO30Y:KIeHHBIE KoHpurypammu. XoTd ¢ TOMO-
uibio SF-CIS yunThIBaeTCs TOABKO Majasf OIS dJNEKTPOHHOHM KOppPeaaIny, MeTOA OKashIBa-
eTCA MPaKTUUeCKU MPUTOTHBIM A pacyeTa KBa3UMATHOHHBIX CIEKTPOB B OOJBITNX MOJIUPA-
mukanax. HsydeHbl TpU TUTIa CTPYKTYP (rpadeHoBas HAHOMOJIOCKA, TPUAHTYJEH U OPTaHU-
yecKkuit (eppomarametrur mo Marara). Ilokasamo, UTO JaHHBIE CHCTEMBI JTeMOHCTPUPYIOT
PasJMUHBIN XapakTep CHeKTpa CIUHOBBIX BO30YIKAeHWI M PasiNYHOE TOBEJeHME CIMHOBO
TEMI0OEMKOCTH, TTOKAa3aHO Tak:Ke, 9ToT MeToa SF-CIS mMoiKeT OBITHL MOJIE3HBIM AJSA OTMUCAHUSA
BEICOKOCTITHOBBIX COCTOSHUIT HAHOAIMASHBIX CTPYKTYD € AeeKTaMu.

Cupommeni o6uncieHHA CHiHOBHX 30yIKeHb BHCOKOCHIHOBMX BYIJICIIEBHX HAHOKJAC-
TepiB Ta cnopignenux cucrem. A.B.JIysanos.

V maniBemmipuuHuii crmoci6 o6UMCIIEHO CIEKTPH CIIiHOBUX 30yIKEHb Y MOMKJIMUBUX MOJE-
KYJISAPHUX MArHiTHUX CTPYKTypax. BukopucroBaHo mHalimpocriiny cuin-¢urin moxeas SF-CIS,
IO BpaxoBy€ OZHOKpaTHO 30ymxeHi KoH(pirypamii. Xoua 3a merogom SF-CIS obumciroerbsesa
JUIle HeBeJHKa 4YacTHHA eJeKTPOHHOI Kopesasdlii, MeTox BUABJSAETHCI IMIPAKTHUYHO JHO-
HiIbHUM [IJIA POSPAXYHKIB KBasiMarHOHHMX CIEKTPIB Yy BeIHMKHUX IIOJipagukKaiax. BupueHo
Tpu pisHi THOU CTPYKTYP (rpadeHoBa HAHOCTPIYKA 3 METHJIEHOBUMM KiHIIBKamMu, TPUAHTY-
JIeH Ta MOAeJNbHUU opramiunumii dpepomaraerur 3a tumom Marara). [lokasano, mio i cucremu
IEeMOHCTPYIOTHL BigMIiHHMI xapakKTep CHeKTPiB cHniHoBux 30yaiKeHb Ta PisHYy TeMIepaTypHY
3aJIeKHiCTh CcriHoBOI TemnoemHuocTti. Beranosaieno, mio meir meron SF-CIS moxxHA 3acTOCOBY-
BATH [JA ONKCY BHCOKOCIIHOBUX CTAHIB y HAHOAJIMA3HHUX CTPYKTypax 3 medexTaMu.
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1. Introduction

Molecule-based magnets is an active area
of modern material science, and the main
topics of it have been well reviewed in the
recent literature [1-4]. A special interest is
given to polyradicals and molecular ferro-
magmetics, and particularly organic ferro-
magnetics and organic spin clusters [5-9].
The first theory of high-spin states in the
conjugated systems, at a simple m-electron
(Huckel) level, was presented long ago in the
pivotal paper [10]. Afterwards, several impor-
tant m-magnetic structures were designed by
Mataga [11] and Ovchinnikov [12].

An essential advance in our understanding
of high-spin radical states is achieved when
we go beyond the usual one-electron schemes
(such as the Huckel one), and take into ac-
count electron correlation effects (see, e.g.,
[18-15]). In particular, the Lieb-Ovchinnikov
[12, 16] rule usually yields a correct descrip-
tion of the ground state spin in alternant
hydrocarbons, that is in the conjugated sys-
tems with bipartite structure.

During the last decade, a lot of works
were devoted to the study of ferromagnetic
and antiferromagnetic states in graphene
nanoclusters ([17—22] and many others). Ob-
viously, simplified and crude models are the
only available tools to describe such com-
plex polyatomic systems. For example, the
UHF (unrestricted Hartree-Fock) and EHF
(extended Hartree-Fock) models can be used
for organic polyradicals [23, 25]. Neverthe-
less, one does not forget to verify, at least
for less complicated systems, the reliability
of the models used. Sometimes, investiga-
tions in this field suffer from the lack of
such analysis.

Thus, the main purpose of the present
paper is to study typical high-spin carbon-
based structures, in particular, graphene
nanoclusters with radical spins at edges. In
our investigation, we employ the so-called spin-
flip technique which was used for m-electrons
even in [26].

Notice that the spin-flip (SF) method,
quite popular now, has a long history, start-
ing with the celebrated Bethe ansatz in Ref.
[27] where the one-dimensional antiferro-
magnetic Heisenberg spin chain was solved
exactly. In the Bethe approach the starting
state is a fully ordered ferromagnetic state
from which the sought antiferromagnetic
state is obtained by successive spin flip
transformations (see a clear discussion in
[28]). The important was Nagaoka’s paper
[29] where the single spin flip approach is
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used to suggest a model for the charged
ferromagnetic system (for a further devel-
opment [30, 31]).

Seemingly, spin flip transformations
(spin-flipping operators) have been first ap-
plied in quantum chemistry [26, 32] within
m-conjugated system theory. Then ab initio
spin-flip methods were independently devel-
oped [38-35], producing more and more in-
teresting results in this direction. In our
study we will use a rather simple SF version
(with a single spin flip) which follows from
the general consideration in [26, 36, 37]. This
is the so-called SF-CIS, i.e., a spin-flip coun-
terpart of configuration interaction singles
(CIS) method. At the non-empirical level, it
was firstly described and investigated in [33].

In the present paper we start with check-
ing in detail the validity of the used m-elec-
tron SF-CIS method. This will be done by
invoking the results of the m-electron full
configurational interaction (n-FCI) computa-
tions on small tetraradical hydrocarbons.
Then we describe SF-CIS computations for
selected high-spin systems. The technical
details of the applied method are described
in Appendices. In particular, we examine
the possibility to employ SF-CIS for model-
ling high-spin states in relatively small
nanodiamond structures with defects.

2. Spin-flip technique for radical
systems

Let us recall basic equations of the spin-flip
technique for SF-CIS states. Following [36], we
start with a high-spin Slater (reference) deter-
minant |®.) with the given numbers, N, and
Ng, of spin-up and spin-down orbitals, respec-
tively. Evidently, the quantity

S.=(Ny—Np)/2 (1)

determines the spin z-projection wvalue of the
reference. In practice, determinant |®.) is taken
as a spin-pure state computed within the ROHF
(restricted open-shell Hartree-Fock) scheme.
Then the total spin value equals to S:, and the
squared spin of the reference is S«(S. + 1).

In order to obtain a SF-CIS state [¥(5* Dy,
that is the solution with the total spin value S.
— 1, we apply the one-electron transformation:

[PSDy = M), @
1<i<N

where T is a one-electron transition density
matrix for |®.) — [P5*D), and 1(i) is the
conventional notation for t acting on the
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Table 1. Lowest quintet-triplet excitation energy A[@ — T] (in eV) and spin density distribution for
the ground quintet state in small conjugated tetraradicals within n-FCI.

A[Q —» T]
Ne

SF-CIS  mt-FCI S

Spin density

S5=2

| 0202 0.152

II | 0229 0.165

I | 0313 0.251

L R
/
Al T

O 2,

brown

green

i-th electron. A simple spin-flip structure of
the t-operator, in the form

T=ts = tB)(ol, 3)

with ¢ being a spin-free one-electron ampli-
tude matrix, guarantees a spin projection of

state (2) to be S: — 1. Recall that |o) and

IB) are the standard spin-up and spin-down
eigenkets, respectively.

In what follows, we will use the conven-
tional Pariser-Parr-Pople (PPP) approxima-
tion for the full many-electron mn-shell
Hamiltonian. For further formal and algo-
rithmic details we refer to Appendix A. It is
important that the SF-CIS computations can
be easily made with the direct use of
atomic orbital (AO) matrices, and without
constructing explicitly the configuration in-
teraction Hamiltonian matrices.

As mentioned in the introduction, before
applying SF-CIS to large polyradicals, we
must first compare the SF-CIS and n-FCI
results for small m-radicals. This is done
here for some typical conjugated tetraradi-
cals. Table 1 shows the "spin gap” (energy
M® — T] of the lowest quintet-triplet tran-
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sition). In this Table we designate by I the
tetraallyl structure, by II the symmetric
tetraradical C4gH44, and by IIT the 1,3,6,8-
naphthoquinotetramethane. The carbon
backbones of these systems are displayed in
the last column where atomic spin-density
diagrams are presented. We see that the
SF-CIS model satisfactorily estimates the
quintet-triplet transition energy A[Q — T]
(recall that n-FCI is the exact theory in the

adopted m-methodology). At the same time
other approximations, such as UHF and
EHF schemes, give unsatisfactory results.
For instance, we find that at the EHF level,
M@ —>T]1=0.54 eV in II, and A[@ —> T]=
0.76 eV in III. Notice that our (n-FCI result
for A[@ — T1] in IT is very close to that com-
puted in [14], where it is shown that the
lowest triplet state of II lies 0.16 eV higher
than the ground state quintet.

The spin-density distributions shown in
Table 1 also reflect interesting features of
high-spin systems. In all spin-density im-
ages given in Tables, the brown color corre-
sponds to the positive spin density values,
and the green color to the negative ones.
The spin distributions will be discussed in
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Table 2. The first five energies 7\,]- (in eV) of spin excitations S; — S, — 1 and spin density distribu-
tion for the ground state in large polyradicals within SF-CIS. N is a number of carbon atoms, and

Sy is the ground state spin.

N | N, | S, | 2}

J

Spin Density

0.024
0.137
IV | 212| 4 0197
0.275
0.352

0.095
0.283
V |222| 6 |0352
0.471
0.582

0.033
0.065
VI | 246 | 15 |0.088
0.093
0141

more detail later. We only mention that the
SF-CIS atomic spin densities reasonably ap-
proximate the exact (n-FCI) ones. In whole,
the obtained results show the good perform-
ance of SF-CIS for small polyradicals, so we
have a sufficient foundation for using this
method in studying large polyradical systems.

3. Large spin states in
carbon-based clusters

All the systems treated in this paper (ex-
cept for Appendix C) are referred to as the
so-called alternant hydrocarbons (the term
was coined by Coulson and Rushbrooke
[38]). More general is the graph-theoretic
term "bipartite graphs” (e.g., see references
in our recent paper [39]). For characterizing
alternant hydrocarbons we must divide their
carbon atoms into two disjoint sets (starred
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and unstarred) in such a way that no two
atoms in the same set are directly linked.
Let m. be the number of starred atoms and
mq the number of unstarred atoms, and by
definition m. = mgy. Then the remarkable
Lieb theorem [16] states that the quantity

is the ground state spin of the bipartite
lattice treated in the framework of the Hub-
bard many-electron theory (the counterpart
of the m-FCI model with the one-center ap-
proximation to two-electron repulsion inte-
grals). Ovchinnikov’s rule [12] is of the
same form since an infinite limit of one-
center repulsion integrals leads to the spin-
Hamiltonian model used in [12]. The exam-
ples of tetraradicals from the preceding sec-
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tion, rule evidently, Lieb-
Ovchinnikov (4).

After this preliminary, we consider typi-
cal nanographene molecules with the Klein-
type edges [40, 41]. The previously given
system IIT in Table 1 is a simplistic example
of the Klein-type edges in a small acene. In
this section we study large polyaromatic
structures of this type, that is the graphene
nanoribbon with methylene edges and other
polyradical structures (Table 2). Unlike [41]
where only an indirect qualitative descrip-
tion (by non-bonding Huckel orbitals) is
given for the related polyradical graphene
ribbons, we base our study on approximate
quantitative estimates of their spin excita-
tion energies.

Let us now turn to Table 2 and see how
SF-CIS works on the selected large polyradi-
cals with different topology and spin. In the
Table we give excitation energies kj for spin
transitions with lowering spin value, that is
for S; — S¢ — 1. Spin-gap energies, i.e., en-
ergies of the lowest spin excitation, are un-
derlined in the Table. The first example in
Table 2 is the nanographene polyradical
cluster IV. In this case, due to eight
methylene groups and in accord with Eq.
(4), Sg = 4 is the spin of the ground state.
It would be expected that the atomic spin
densities would be predominantly localized
on the corresponding CHy-decorated edge (at
the top of the system). However, calcula-
tions show the well marked spin densities at
the bottom as well. As a result of delocali-
zation, the spin gap is very small in IV. The
next interesting system is triangulene V.
Paper [12] was the first where the trian-
gulene structures were proposed as organic
magnets with large (microscopic) numbers
of unpaired spins. The recent publication
[42] provided a detailed account of the hard
DFT computations of a sufficiently long se-
ries of such triangular molecules, but with-
out giving spin excitation spectra. Our re-
sult concerning the spin density distribu-
tion are in concordance with those from
[42]. As in the above cited work, the spin
density is more preferably localized on the
peripheral starred atoms, although the rest
atoms slightly participate in the distribu-
tion as well. It is interesting that in the
studied triangulene molecule the spin gap is
about four times larger than in the system
I having a comparable size and spin. Appar-
ently, this peculiarity is a result of less
symmetric structure in I. At last, let us
consider the high-spin structure VI which
gives a model of the Mataga-type polymer

satisfy the
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magnet from [11]. It is characterized by a
small spin gap energy and significantly de-
localized spins over all starred atoms of this
system.

4. Spin excitation spectra and
heat capacity

Here we analyze the spin excitation spec-
trum in the same polyradicals IV-VI. The
first five excitation energies for them are
given in the fourth column of Table 2. We
see that in the case of IV there is a sharp
difference in the values of the first spin
excitation energy (i.e. the spin gap) and the
rest part of the spectrum. Such a difference
is not so significant in the case of V and
VI. This peculiarity is clearly reflected in
the results for the magnetic contribution,
C,, to the total specific heat capacity. The
corresponding contribution can be easily
calculated using standard expressions from
statistical mechanics, namely

C, = (A2> — >2)/T2. (5)

Here T is the absolute temperature (in
K), and <A> and <A2> are found by averag-
ing excitation energies {A;} (measured in K)
and {A2;} over the canonical Gibbs distribu-
tion. When computing C, for spin systems,
one must take explicitly into account level
degeneracy (in our case, 2s+1 for the
ground state, and 2s—1 for all excited
states). We must also not forget that this
specific heat is the magnetic contribution
alone, which is superimposed on the vibra-
tional heat capacity.

The results of computing C,, from Eq. (5)
are shown in Fig. 1. We see that the tem-
perature dependence of C, in IV gives a
very asymmetric two-humped curve, and in-
deed this behavior is essentially different
from that of the other two systems. This pe-
culiarity can be easily explained. To this end,
let us first consider a two-level system allow-
ing only the ground state and single excited
state with the given excitation energy A, = A,
(Ay > 0). Then it is easy to find that [43]

¢ (6)
C,=e ,
v {1-&ng

where { = Ay/T. Its plot is displayed in the
first panel of Fig. 2. We see that C,, has a
single maximum point (C, = 0.439 at A=
0.417), and this type of the C,, temperature
dependence is called the Schottky anomaly
(the Schottky peak) [43, 44]. The situation

Functional materials, 22, 4, 2015
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Fig. 1. Magnetic contribution to heat capacity
C, of polyradicals IV (the red-color (1) line), V
(the green-color (2) line) and VI (blue-color
(3) line) versus temperature (in K).

becomes more complicated when new energy
levels are involved.

Thus, we next consider a simplest three-
level model. In it, in addition to the first
excited state with excitation energy A, we
include the second (doubly-degenerate) ex-
cited level with excitation energy kA,
where coefficient £ > 1. After manipulations
over Eq. (5) we arrive at the following ex-
pression:

Cv = 7
= (C/Z)Z(e‘§ + 2(k — 1)2e~(k + 1T 4 2k2e—kC),

where Z=1+eS+ 2%, A plot of this
function for k=5 is shown in the second
panel of Fig. 2. Notice that for £ < 4 we find
no qualitative difference with the above given
case of the single Schottky peak. In the our
three-level model, a second more broad peak
starts its appearance when k > 4. Returning
to Fig. 2 we see that the second plot of this
figure is just very similar to that given in
Fig. 1 for IV (the red-color line). Then, a
significant gap between the first excitation

Single excited state

Two excited states

and the remaining part of the excitation
spectrum (as in IV) can be a main cause for
the observed two-humped peak anomalies in
the temperature behavior of heat capacity.

It is also sensible to consider an elemen-
tary many-level model with equidistant
spectrum. Unlike the harmonic oscillator,
the system in study is assumed to have a
finite number of energy levels. Thus, the
excitation spectrum is taken as A; = jhg,
where 1 <j<j .., with j, .. being a num-
ber of the excited states involved. The sta-
tistical sum and <A> for this problem are
trivially evaluated, but the end result for C,
is a cumbersome expression, and here is not
given explicitly. For a specific case when
Fmax = 40, the resulting C, plot is displayed
in the third panel of Fig. 2. It is interesting
that this plot is rather like the C, curve for
polyradical V in Fig. 1 (the green-color
line). As to possible causes for differences
in spectra of IV—-VI, we can give only a
presumable explanation. Really, the consid-
ered systems have a comparable amount of
carbon atoms, and they all are m-conju-
gated polyradicals. With this, spin value S
of the ground state does not correlate with
the spin gap energy. Judging from our re-
sults in Table 1 and 2, the minimum spin
gap is obtained when unpaired spins (they
are localized on starred atoms) are situated
as close as possible to each other (as in I
and IV). However, this suggestion needs
checking with more examples.

5. Concluding remarks

In this paper we considered molecular
high-spin model magnets which are of inter-
est for their possible application to micro-
electronics and nanoscience. By using the
known SF-CIS technique, we could examine
polyradicals having m-conjugated system on

40 excited states

Cv Cv Cv
1
0.5 05
0.25 0.25 05
T Theo T/
(1=%) hi=%o s hy=5M) (hj= A”"u)

Fig. 2. Heat capacity C, for twolevel (the left panel), three-level (the middle panel), and multi-level
(the right panel) models vs scaled temperature T/A.
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the their backbone. It was found that the in-
vestigated systems demonstrate various types
of spin excitation spectrum, and these vari-
ations can manifest itself in thermodynamic
properties of these molecular magnets.

There are some additional interesting is-
sues which we leave for further study. One
is an extension of the SF-CIS technique to
very large polyradicals when the appropri-
ate polymeric polyradical can be cast as a
translation-invariant problem. For this
problem we must produce a spin-flip coun-
terpart of the m-electron exciton model from
[45], and modify the existing program codes
described in [45, 46].

Another concerns the magnetic behavior of
charged high-spin systems. In this case we
cannot directly use SF-CIS for m-electron
polyradicals with bipartite graph structure.
Indeed, within m-electron theory, the charged
states of these polyradicals involve degener-
ate open-shell reference wave functions, for
which the conventional SF-CIS method is not
applicable. However, there are special ap-
proaches (SF-CIS-2h,p from [36] and others)
which allows us to obviate the problem. It
seems that studying spin-excitation spectrum
in charged molecular magnets will lead to
intriguing magnetic effects.

At last, there are similar problems of
predicting magnetic properties of carbon-
based nanostructures with saturated bonds.
For instance, it was observed that ion irra-
diation of mnanosized diamond particles
(nanodiamonds) with N and C shows a sig-
nature of ferromagnetism [47]. The spin
cluster structures can be also produced in
diamonds with a higher concentration of
color nitrogen-vacancy (NV) centers [48].
Such defect-induced magnetism is another
promising area for future research; see also
the interesting review paper [50] where
authors shortly discuss the magnetism of
surface-induced localized spins in nano-
diamonds (from o-dangling bonds). In Ap-
pendix C, using the same SF-CIS technique
as in above, we report our preliminary re-
sults of the study of NV centers in the
model nanodiamond system.
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Appendix A: Working matrix
equation

Here we sketch the basic equations of the
SF-CIS approach and give some additional
useful details. Following Ref. [86], we first
write down the variational SF-CIS equation
for spin-flip amplitude matrix ¢. The equa-
tion takes the compact form:

I - ppfit - tfy — K@®)lp, = M. (A1)

Here p,* and pB"’ are the symmetric idem-
potent matrices projecting onto subspaces of
spin-up and spin-down reference orbitals,
respectively; matrices fa* and fg* are the
corresponding Fock matrices, and K(¢) the
standard Roothaan exchange operator ma-
trix. In this equation, Al is an eigenvalue,
and it has a meaning of a spin-flip energy.

The full set {}»#} determines a branch of
So = Sy — 1 transitions in the full spin ex-
citation spectrum. Recall that the spin-flip
procedure in Eq. (2) generates as well
states with the same spin S, as in the refer-
ence determinant |®.), but these states have
spin projection S,=S3— 1. In ferromag-
netic polyradicals, minimum spin-flip en-
ergy {}»mmﬂ is just related to this type state
with spin Sj. Therefore, the low-lying tran-
sition energies, Kj, corresponding to lower-
ing spin (Sg — Sy — 1) are obtained as dif-
ferences A; = }»]-¢ - }»min¢. Possible problems
with spin contamination are briefly touched
upon in Appendix B. In passing, we mention
a very recent paper [60] where SF-CIS and
related spin-flip approaches are efficiently
used for computing ab initio exchange inte-
grals needed for the Heisenberg spin-Hamil-
tonian theory of molecular ferromagnets.

The main advantage of Eq. (Al) is that
to solve it, we do not need using molecular-
orbital representation. Instead, one can di-
rectly work with matrices computed in AO
representation. It is especially effective
when dealing with semiempirical approxi-
mations. To be more specific, consider the
conventional m-electron PPP scheme. The
corresponding AQO representation of pa"’ and
pﬁ* and the Fock matrices f(x* and fB"" are
given in [51]. For instance, non-diagonal
matrix elements of fa* are very easily com-
puted to be

(f?x)uv = BMV - (pa)HV’YMV’ (A2)

with Bw being the resonance integrals, and
Yu the two-center electron repulsion inte-
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gral for the given atomic m-centers u and v.
Thus, all matrices are of one-electron type,
and it makes computations on Eq. (Al)
much more easy than in respective ab initio
(more rigorous) theories. Such efficiency be-
comes crucial when solving the eigenvalue
problem (Al) by iterative methods of Kry-
lov subspace type.

In our specific calculations, we take for
BMV the usual nearest-neighbor approxima-
tion with the C-C resonance integral P =
—2.4 eV; furthermore, integrals v,, are com-
puted by the standard Ohno formula with
one-center repulsion integral yo = 11.13 eV.
Molecular geometry was simplified to a

regular honeycomb structure with 1.4 A for
all C—C bond lengths.

Appendix B: Evaluation of spin
density within SF-CIS

In [36] we presented the working for-
mula for the average total squared spin,
<82>, of the SF-CIS (and more general SF)
wave function. This formula (Eq. (562) in
[36]) provides a correct identification of cal-
culated states. For our purposes here the
spin density matrix is important as well.
The needed expression can be straightfor-
wardly obtained by using a general relation
[62] which expresses the one-electron spin
density matrix, @, in terms of spinless
(charge) two-electron density.

The final result of our computations is

Q=Qy -ttt — 't + AQ, (B1)

where @y = p(x* - pB"’, and AQ makes a cor-
rection depending of the <S2> value. When
<82> = 8§48+ + 1) or around it, that is, the
target state has the same spin as the refer-
ence determinant |®.), we have

~ (R)? - 2Qy + 3ttt +tTt + L (B2)
B S, +1 ’

AQ

where
L = (t50)pf; + PR — (41, — pl(et) +
+ (Tro)(t + th). (B3)

When <82> = §.(S:— 1) or around it,
that is, the target state has a lower spin
S — 1, the working formula for AQ is modi-
fied, as follows:

AQ = (Q0)2 — QO + 2ttt + L/S*, (B4)
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and Eq. (B3) remains untouched. From the
above equation one can reproduce <S2> by
tracing the @-matrix in Eq. (B1):

<8§%>= (S, - 1)% + (B5)
+ i (Q)?/2 + (t)pf = (t6)pg | + [T,

This is just Eq. (52) Ref. [86]. In practi-
cal computations, as usual the low-lying SF-
CIS states have a correct value of <S2> or
the value near it. However, the spin con-
tamination of SF-CIS states is typically
large for higher excited states. For the lat-
ter, the spin projected SF-CIS methods
should be used instead (see [36] for more
detail).

Appendix C: SF-CIS for triplet
states of NV color centers in
nanodiamond

Before starting we would like to mention
recent papers and reviews on nanodiamonds
and NV color centers [53-59]. In case of
nanodiamonds and diamondoid molecules
(condensed adamantanes), there are certain
difficulties in obtaining reliable spectral
data by conventional methods of quantum
chemistry (e.g., see [54, 59]). In particular,
we have sufficient reasons to believe that in
nanodiamond molecules we should not be
able to accurately predict electronic transi-
tions without accounting for vibronic ef-
fects [54, 56]. That is why, in practice, even
simple and rough models can be in use for
restrictive semi-quantitative description of
large, nanosized clusters. Our aim in this
Appendix is to examine one very simple
model of NV defects in nanodiamonds.

In the proposed model we start with the
standard idealized geometry (as in the pure
diamond lattice) and take a certain finite-
size carbon cluster terminated by hydrogen
atoms. In our computations below we used
the cluster CyggH7o of the Dg,; symmetry.
To produce the usual NV color center, we
must replace one carbon atom by the nitro-
gen atom, and, additionally, make a vacancy
at the nearest-neighbor site. If we restrict
ourselves by the charged NV~ defect, then
the target states will be the ground triplet
state, Ty, and the first excited state, T'.
The problem is how to compute such many-
electron states in a non-sophisticated fash-
ion. Here, we invoked a slightly simplified
CNDO (complete neglect of differential
overlap) scheme. The CNDO semiempirical
parameters were taken from [60] (except for

CNDO resonance parameter B2, for which we
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take —16 eV). This parametrization is quite
suitable for saturated hydrocarbons and
diamondoids, in particular. The correspond-
ing CIS estimations made for example of
adamantane CqgH4g, give us the lowest exci-
tation energy, A,;,, equal to 7.83 eV (com-
pare this with the most reliable theoretical
estimation A,,;, = 7.86 = 7.49 eV in [54]). In
case of the color center, we made a further
simplification by ignoring difference be-
tween resonance integrals of C—N and C-C
bonds. A similar simplification was made
for one-center electron repulsion integrals,
i.e., Yy = Yc in the standard notation. With
this, the orbital electronegativity parame-
ters for nitrogen were assigned the values
of 1.25 times larger than those of carbon.

In order to obtain the NV~ lowest triplet
states we employed the SF-CIS procedure
based on the ROHF quintet reference state
(see Section 2). The obtained results are dis-
played in Table 3. The main conclusion from
the computations is that, in the model used,
the finite-size cluster with center is of a
triplet nature, as it should be [59]. Further-
more, a rather strong absorption from this
ground state to the first excited triplet
state is predicted by this model, and it is
also in agreements with experiment.

In our computations, the lowest excited
triplet state is found to be, in fact, quaside-
generate. The average value of the two low-
est excitation energies from Table 3 (i.e.,
2.44 eV) approximates well the experimen-
tal value of 2.2 eV for the 3A2 — 3E verti-
cal excitation energy observed for the dia-
mond NV centre [53]. Notice that we used
an asymmetric finite-size cluster model of
the NV center, so the model does not pos-
sess the required trigonal symmetry as the
single defect in real diamond erystals does.
Rather, our asymmetric model is more rele-
vant to the case of subsurface defect in
nanodiamond.

Overall, the model describes main fea-
tures of the NV~ -center more or less satis-
factorily. In particular, the three nearest-
neighbor carbon atoms to the vacancy bear
the majority of the spin density (see Table
3). These atoms are shown in the image by
green color. At the same time, there is no
spin density on the nitrogen atom (blue
color ball in the image). This is in concor-
dance with EPR experiments and other
theories [55, 57].

The same type model gives reasonable re-
sults in the case of the neutral color center
NVO for which we found the estimate
M2E — 4A,] = 0.66 versus another theoreti-
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Table 8. Lowest triplet-singlet, A[T; — Sj],
and triplet-triplet, A[T; — Tj], transition en-
ergies (in eV) for color center modeled by
nanodiamond cluster [CggNH,,]", and atomic
spin density distribution in the ground (I;)
state of the cluster. Oscillator strengths are
given in parentheses.

AT, > 8,1 | AT, ->T)] Spin Density

0.70 242 (0.12)
0.81 2.46 (0.06)
227 2.72 (0.25)

cal values of 0.86 and 0.68 from [61] and
[55], respectively. Obviously, the above
CNDO-like approximation allows for calcu-
lations to be carried out on sufficiently
large nanodiamond structures whose size
prevents the application of high-level quan-
tum chemistry methods.
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