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A perturbation theory modification of the Flory-Huggins polymer solution
theory is presented. The proposed perturbation equation utilizes the re-
sults by Tukur et al [J. Chem. Phys. 110 (7), 3463, 1999] for hard-sphere
binary mixture at infinite size ratio. The resulting perturbation theory equa-
tions are used to predict properties of three different polymers with differ-
ent molecular weights in different solvents. Comparison of the proposed
perturbation calculations with those of the Flory-Huggins theory and the
experimental data indicate that the proposed perturbation method appre-
ciably improves the prediction of polymer solution properties especially at
large polymer/solvent size ratios.
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1. Introduction

Various statistical mechanical theories of polymer solutions have been developed
during the last half a century. The original and one of the best known of these the-
ories is the Flory-Huggins theory [1,2]. It is shown that the Flory-Huggins theory
is a rather crude approximation for polymer solutions when the polymer to solvent
size ratio increases [3]. There have been several attempts to improve the predic-
tive capability of the Flory-Huggins theory [4-9] by empirical modification of its
interaction parameter (). In the perturbation modification of the Flory-Huggins
theory presented here the original expression of the polymer solution theory and
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its interaction parameter are retained. However, additional terms are added to the
Flory-Huggins equation correcting its asymptotic value at infinite size ratio and at
infinite temperature.

According to the Flory-Huggins theory [10] for the mixture of a polymer and a
solvent the following expression holds for the Gibbs free energy of mixing AGy:

AGY = RT (nyIn ¢y + ngIn g + x1m1¢09) (1)

where n; and ¢; are number of moles and volume fraction of component i, respecti-
vely, and x; is the Flory-Huggins interaction parameter. According to equation (1),
the expressions for activities of solvent (1) and polymer (2) are as follows:

1
In agH = lnps— (r—1)(1—¢9) +xar(1 — @2)2 ) (3)

In the above equations af'™ and ¢; are activity and volume fraction of component

7
1, respectively, and r is segment fraction which is the ratio of molecular volume of

polymer to molecular volume of solvent i.e. :

r = (/1) = (02/01)?, (4)

where, v, 15 are molecular volume and o; and o5 are molecular diameters of solvent
and polymer, respectively. The Flory-Huggins interaction parameter (x;) has the
following definition:

X1 = zAwr KT, (5)

which is a dimensionless quantity [10] that characterizes the interaction energy per
solvent molecule divided by k7. In equation (5) z is coordination number and Aw;y
is interchange energy.

From the expressions of the activities, equations (2) and (3), the following equa-
tions for the excess Gibbs free energy over an ideal solution, entropy of dilution and
enthalpy of dilution of the polymer and solvent for the binary polymer plus solvent
mixture are derived:

i _ gy + (1= + X195 — 1
RT T1 [In¥ , P2 T X1 — M Ty

+ X9 [lncpg—I—(r—1)<p1+)(1r<p%—lnx2} . (6)
According to equations (2), (3) and (5) :
oFH 1
ASI = —R |:1H ©®1 -+ (1 — ;) g02j| y (7)

ASTH = —R [lngpz —(r— 1)%] (8)
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and also:
AHM = RT@3xq, (9)
AR = RTrody, . (10)

In the above equations ASFH and AHF™ are entropy of dilution and enthalpy of
dilution of component 1.
Considering the equation (1) it can be shown that:

lim (W) — 0.
aai T,P,O‘j#i

This equation indicates that according to the Flory-Huggins theory the partial
derivative of the excess Gibbs free energy of the mixture at the hard sphere limit
(T' — o0) and at infinite size ratio limit (o; — 0) diminishes.

Recently Tukur et al [11] showed that for a binary hard sphere mixture of infinite
size difference the following expression is rigorously valid for partial derivative of the
excess Helmholtz free energy, A", of the polymer+solvent mixture with respect to
the molecular diameter of solvent when the solvent diameter approaches zero:

OAE /RT _ 7™/2- Napriz;o’
Jdo; TViosss 1-7/6- NApxjajg» ’

(11)

ag;—0

lim (12)

o;—0
where p, Na, z;, 0; and T are mixture density, Avogadro’s number, mole fraction of
component ¢, molecular size of component ¢ and absolute temperature, respectively.
This expression can be applied for the excess Gibbs free energy, G, assuming the

excess volume of the mixture is negligible, i.e.

lim (aGEs/RT> _ /2 NApxixjajz’
do; T.Pojsi 1—7/6- NAP%’U?

o;—0

for v =0. (13)

In the following section we utilize equation (13) in a perturbation correction of the
Flory-Huggins theory of polymer solutions.

2. Perturbation modification of the Flory-Huggins theory

Considering that the infinite temperature limit is practically equivalent to the
hard-sphere limit and comparing equations (11) and (13) it is obvious that the
hard-sphere limit (I — oo) at the infinite size ratio (o0; — 0) as predicted by
the Flory-Huggins equation is not correct. This indicates that the Flory-Huggins
expression for excess Gibbs is the first term of the double perturbation expansion of
excess Gibbs with respect to powers of (o) and (1/7),

(3
9(7)

o1=0 T=o00

e an  (2(%)
RT  RT oy

co1+

1
: (?> + higher order terms. (14)
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Now, by integrating equation (13) with respect to oy and (1/7") and replacing for
the second and third terms in equation (14) and neglecting the higher order terms,
of the orders of O[o1]?, O[o1(1/T)], O[1/T]? and higher, the following expression for
the perturbation modification of the Flory-Huggins excess Gibbs free energy will be
derived [12,13]:

G" GE
o7 = e {31/ =m0~ D/ + /(1= m)s™ - /)
1
+ [a(m(Es — 1) /z1 +ma(s™! = 1)/22)] ﬁ} T1%o . (15)
In this equation
O[:fé-fg, E:€2/€1. (16)
s represents the ratio of molecular diameters of polymer to solvent, i.e.
S—Ug/Ql_T = (v /Vl) ) (17)

and 7; is the packing fraction of component ¢ in the mixture,

N = %NApxiaf’, (18)
equation (15) can predict the exact asymptotic value given by equation (13). In
what follows equation (15) is used to calculate the properties of various polymer
solutions with different polymer/solvent size ratios and comparisons are made with
the Flory-Huggins theory. It is shown that the proposed perturbation expression is
capable of predicting polymer solution properties more accurately than the Flory-
Huggins theory when the size difference between the polymer and solvent increases.
Starting with equation (15), expressions for the other thermodynamic properties of
polymer solution can be derived:

The expressions for the activity of solvent, a; = x17;, and activity of polymer,
as = Iy7e, are derived as follows [12]:

— lngfH m/xi(s —1)  mofza(s™h = 1)(1 —na/x2)
In ay 1 1 +{3( (1_771)2 + (1_772)2 )

o O/ (s = 1)+ (57 = D) | (19)

and

11’1&2 =

vt L (o0 = /e =) | (s~ )
1 +{3( 1) T )

o On(Es = Dy + (o™ = ) b (20

since Invy; = (6 (nGE/RT) /ani)TP ) and a; = 7;7;. In these equations a}™ and
A5 £4
as™ are the Flory-Huggins solvent and polymer activities, respectively as given by
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equations (2) and (3). Expressions for activities of solvent and polymer and equa-
tion (5), can be used to derive the following equation for the entropy of dilution,
AS; = —R[0(TIna;)/0T]p,,, of solvent due to addition of the polymer:

Asy:Ast_gg(”Mfﬂs—l) nﬂmxus—1x1—nﬂ¢g>x2 o

(1—m)2 (1 —mp)? ’
and
& AGFH m/ri(l—m/a)(s —1)  m/z2(l/s—1) 72
AS, = AS! :m( T + TErE >2. (22)

Also from the expressions for the activities the following equations for the heat
of dilutions, AH; = —RT? (1Ina;/9T)p,,,, are derived:

AH, = AH™M +a[(1/s — D)ny/xy + (Es — 1), /z1] 22 (23)

and
AHy = AH;R 4+ o [(1/s — D)y /xy + (Es — 1)y /o] 22 (24)

In the following section, the above equations are used to calculate properties of
various polymer solutions and the results are compared with the calculations based
on the Flory-Huggins relations and experimental data.
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350 | = = = = Flory-Huggins ",'.
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250 e

Heat of Dilution( cal.mol")

-50

0 0.2 0.4 0.6 0.8 1
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Figure 1. Solvent (1) heat of dilution versus volume fraction of polymer (2) for
the solution of benzene (solvent) in PDMS3,850 (polymer) at 25°C. The solid
circles are the experimental data [12], the dashed lines are the calculations based
on the Flory-Huggins theory and the solid lines are the calculations based on the
present perturbation model.

3. Calculations and discussions

In order to test the present perturbation theory model three different poly-
mer+solvent systems with various (solvent/polymer) size ratios, for which experi-
mental data are available [14-16], are used. These systems (Benzene-+PDMS3,850,
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Figure 2. The same as figure 1 Figure 3. The same as figure 1
but for the system toluene (sol- but for the system MEK (sol-
vent) in PS290,000 (polymer) vent) in PS290,000 (polymer)
and the experimental data is and the experimental data is
taken from [12]. taken from [12].

Table 1. Parameters used for the present study.

group-cont. method | Flory-Huggins Perturbation model
system o1 [nm] E[-] oy nm] x1 [ | o2 [nm] x1 [[]  «[J/mol]
x 1073
Benzene+PDMS 3,850 | 0.535 1.620 1.895 0.809 | 1.500 0.426 —36.271
Toluene+PS 290,000 0.574 1.602 7.797 0.343 | 6.300 0.114 806.077
MEK+PS 290,000 0.539 1.480 7.732 0.725 | 6.800 0.149 693.142

Toluene+PS5290,000 and MEK+PS290,000) are identical to those used in the origi-
nal paper of Flory [10]. In the first stage parameters £ and 7; of the polymers are
calculated [12] using a group contribution method [17,18]. Parameters xi, o; and
« are determined [12] using experimental solvent activity data using equation (19).
Similarly parameters y; and o, of the Flory-Huggins theory are calculated from the
experimental activity data. Numerical values of all these parameters for the three
polymer-solvent mixtures are reported in table 1.

The enthalpy of dilution of the solvents in polymer solution systems are calculat-
ed using equations (9) and (23). The results of calculations are shown in figures 1-3.
According to these figures the proposed perturbation modification generally im-
proves the predictions. As the size difference between polymer and solvent increases,
the improved predictions by the perturbation model are more pronounced.

The entropy of dilution of solvents in polymers of the same three systems are
predicted and the results are reported in figure 4 based on the present perturba-
tion model and the Flory-Huggins theory. According to this figure, the entropy of
dilutions predicted by the Flory-Huggins equation is not in agreement with the
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Figure 4. Solvent (1) entropy of dilution versus volume fraction of poly-
mer (2) for three different solvent+polymer mixtures (Benzene+PDMS3,850,
Toluene+PS290,000 and MEK+PS290,000) at 25°C. In this figure predictions
by the present perturbation model are compare with the Flory-Huggins theory
and the experimental data [12,13].

experimental data specially for high molecular weight polymers while the calculati-
ons by the perturbation model are in very good agreement with the experimental
data both for low and high molecular weight polymers. The entropy of dilutions
predicted by the Flory-Huggins theory, for high molecular weight polymer soluti-
ons (Toluene+PS290,000 and MEK+PS290,000) are in error, nearly constant, and
independent of the polymer under consideration.

The results reported in this paper demonstrate the major improvement in pre-
dicting polymer solution properties using the proposed perturbation modification of
the Flory-Huggins theory. The improvement becomes more appreciable for polymer
solutions with large size difference between the polymer and solvent.
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Mokpal,eHHA Ha OCHOBI Teopii 30ypeHb Teopil
®dnopi-XarriHnca ang noniMepHUX po34mnHiB

l"A.MaHcypi

IniHoncbkuin yHiBepcuteT Yukaro, Yukaro, CLUA
OtpumaHo 11 nnuctonaga 2004 p.

MpencTaBneHo NoKpalleHHsa Teopii noniMepHux po3duHia Pnopi-Xar-
riHca Ha OCHOBI Teopii 30ypeHb. 3anponoHOBaHE PIBHAHHA 30ypeHHs
BUKOPUCTOBYE peaynbtath Tykyp Ta iH. [J. Chem. Phys. 110 (7), 3463,
1999] ona GiHapHOi cyMmiwi TBepamx chep o 6e3MeXHO BENUKOro
cniegigHoLWeHHS po3mipie. OTpMMaHi piBHAHHSA Teopii 30ypeHb BUKOPUC-
TOBYIOTbCS ANs nependayeHHss BaCTUBOCTEN TPbOX Pi3HUX nonimep-
iB 3 PI3HOID MOMEKYNSPHOIO Barolo i y pi3HUX po3dmHHMKaX. [MopiBH-
SIHHS OTPUMaHMX pe3ynbTaTiB 9 pedynbratamu Teopii Pnopi-XarriHca i
eKcrnepuMeHTanbHUMM JaHUMW NOKa3Yye, L0 3anpOrnoOHOBaAHUM MeTon
30ypeHb CYTTEBO MOKPALLYE PO3PaxyHOK BIACTMBOCTEN MNOiMEPHNX
pPO34MHIB, 0COBNMMBO Yy BMMAAKY BEAUKMX CMiBBIOHOLIEHb PO3MIpIB
nonimepa i PO34MHHUKA.

KniouoBi cnoeBa: reopis 36ypeHb, Teopis Pnopi-XarriHca, piBHIHHS
TBEPANX Chep

PACS: 61.25.Hq, 64, 64.10.+h, 64.60.-1, 65
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