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We study the problem of identification of a proper state-space for the stochastic dynamics of free particles
in continuum, with their possible birth and death. In this dynamics, the motion of each separate particle is
described by a fixed Markov process M on a Riemannian manifold X. The main problem arising here is a
possible collapse of the system, in the sense that, though the initial configuration of particles is locally finite,
there could exist a compact set in X such that, with probability one, infinitely many particles will arrive at
this set at some time ¢ > 0. We assume that X has infinite volume and, for each a > 1, we consider the
set ©,, of all infinite configurations in X for which the number of particles in a compact set is bounded by a
constant times the a-th power of the volume of the set. We find quite general conditions on the process M
which guarantee that the corresponding infinite particle process can start at each configuration from © ., will
never leave ©,, and has cadlag (or, even, continuous) sample paths in the vague topology. We consider the
following examples of applications of our results: Brownian motion on the configuration space, free Glauber
dynamics on the configuration space (or a birth-and-death process in X), and free Kawasaki dynamics on
the configuration space. We also show that if X = R<, then for a wide class of starting distributions, the
(non-equilibrium) free Glauber dynamics is a scaling limit of (non-equilibrium) free Kawasaki dynamics.
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1. Introduction

In this paper, we study the problem of identification of a proper state-space for the stochastic
dynamics of free particles in continuum, with their possible birth and death. In this dynamics,
the motion of each separate particle is described by a fixed Markov process M on a Riemannian
manifold X.

A classical result by J.L. Doob [8] states that, if the initial distribution of free particles is
Poissonian, then it will remain Poissonian at any moment of time ¢ > 0, see also [7]. In [23,24],
D. Surgails studied an independent infinite particle process as a Markov process whose generator
is the second quantization of the generator of a Markov process in X. Following Surgailis’ papers,
equilibrium independent infinite particle processes have been studied by many authors, see e.g.
[22]. However, the problem of identification of the allowed initial configurations of the system was
not addressed in these papers.

Let us explain this problem, in more detail. When speaking about an infinite system of particles
in continuum, we should consider such a system as an element of the configuration space I" over X.
This space is defined as the collection of all locally finite subsets of X. Now, consider, for example,
a system of independent Brownian particles in R?. Then, one can easily find a configuration v € I'
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such that, if v is the initial configuration of Brownian particles, then at some time ¢ > 0, with
probability one, the system will collapse, in the sense that there will be an infinite number of
particles in a compact set, i.e., the system will not be a configuration anymore. Thus, generally
speaking, the configuration space I appears to be too big and cannot serve as a state-space for the
process.

Thus, to study the non-equilibrium stochastic dynamics independent Markovian particles, one
needs to identify a subset © of I" such that the process starting at © will always remain in ©
with probability one. (We note, however, that, for a fixed independent infinite particle process,
such a set © is not uniquely defined.) Next, if the underlying Markov process M has cadlag paths,
then it is only natural to expect that the corresponding infinite particle process also has cadlag
sample paths in © with respect to the vague topology. Again, this problem was not addressed in
the above-mentioned papers.

In our previous paper [13], we considered the case where M is a Brownian motion in a com-
plete, connected, oriented, stochastically complete Riemannian manifold X of dimension > 2. We
explicitly constructed a subset 'y, of the configuration space and proved that the corresponding
infinite particle process can start at any v € I',, will never leave I', and has continuous sam-
ple paths in the vague topology (and even in a stronger one). In the case of a one-dimensional
underlying manifold X, one cannot exclude collisions of particles, so that a modification of the
construction of ' is necessary, see [13] for details.

As we mentioned above, the aim of this paper is to consider the case of general Markovian
particles. The interest in such particles, rather than just independent Brownian motions, is, in
particular, connected with the study of the Glauber and Kawasaki dynamics on the configuration
space, see [3,5,12,14].

For simpler notations, we assume that the underlying process M is symmetric. However, this
condition can be easily omitted. Instead of trying to generalize (quite complicated) arguments of
[13], we propose a new, simpler approach to the construction of a state-space of the system (which
was ' in [13]), and to the proof that the process indeed has got the above discussed properties.

So, we fix a system of closed balls B(r) of radius r € N, centered at some zy € X, and for each
a > 1, define ©, as the set of those infinite configurations for which the number of particles in
each B(r) is bounded by a constant times the a-th power of the volume of B(r). The ©,’s form
an isotone sequence of sets, and we also define © as the union of all the ©,’s. Note that the sets
O, are “big enough”, in the sense that already the smallest set ©; is of full Poisson measure with
any intensity parameter z > 0.

We find quite general conditions on a Markov process M which guarantee that the corresponding
stochastic dynamics can start at each v € O, (or even at each v € 0), will never leave O,
(respectively ©), and has cadlag (or, even, continuous) sample paths. We then consider the following
examples of applicability of our results:

e Brownian motion on the configuration space, i.e., the case where the underlying process M
is a Brownian motion on X. Compared with [13], our result here also covers the case of
manifolds which are not stochastically complete;

e Free Glauber dynamics on the configuration space, or a birth-and-death process in X, com-
pare with [5,12,14];

e Free Kawasaki dynamics on the configuration space, cf. [14].

We also show that, in the case where X = R¢, for a probability measure p on © which is trans-
lation invariant and has integrable Ursell functions, the (non-equilibrium) free Glauber dynamics
having g as initial distribution may be approximated by (non-equilibrium) Kawasaki dynamics.
Note that, in the case of equilibrium dynamics, such an approximation can also be shown for
interacting particles, see [10].

The paper is organized as follows. In section 2, we construct a Markov semigroup of kernels on
the space ©, and prove that it corresponds to the second quantization of the
(sub-)Markovian semigroup of the underlying process M. In section 3 we derive conditions which
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guarantee that the corresponding infinite particle process can be realized as a Markov process on
©, with cadlag (respectively, continuous) sample paths. In section 4, we discuss the above menti-
oned examples. Finally, in section 5, we prove the result on approximation of the Glauber dynamics
by the Kawasaki dynamics.

We would like to stress that this paper should be considered as a first step towards a construc-
tion of a non-equilibrium dynamics of interacting particles, compare with [2,12,14,16], where the
corresponding equilibrium processes were discussed.

2. Markov semigroup of kernels for the stochastic dynamics

Let X be a complete, connected, oriented C°° Riemannian manifold. Let B(X) denote the Borel
o-algebra on X. Let dz denote the volume measure on X, and we suppose that f y dr = oco.
The configuration space I' over X is defined as the set of all infinite subsets of X which are
locally finite:
I:={yC X ||y| =00, |7a| < o0 for each compact A C X}.

Here, | - | denotes the cardinality of a set and 4 := v N A. One can identify any v € T with the
positive Radon measure Z;cE'y eg € M(X). Here, €, denotes the Dirac measure with mass at x
and M(X) stands for the set of all positive Radon measures on B(X). The space I" can be endowed
with the relative topology as a subset of the space M (X)) with the vague topology, i.e., the weakest
topology on I' with respect to which all maps

P37 (pa) = [ e@rdn) =Y @, pea),

rey

are continuous. Here, Cy(X) denotes the set of all continuous functions on X with compact support.
We shall denote the Borel o-algebra on I" by B(T'). If = is a subset of I', we shall denote by B(E)
the trace o-algebra of B(T") on E.

Let us fix any o € X and denote by B(r) := B(xg,r) the closed ball in X of radius r > 0,
centered at xg. For each a > 1, we define

On:={y€T|IKeN: VreN: |yp| < Kvol(B(r)* },
where vol(B(r)) denotes the volume of B(r). We evidently have that ©,, C ©4, if ag > ag > 1.
Denote also
O .= U O..

a>1

It easy to see that ©, € B(T") for each o > 1, hence © € B(T).
For each z > 0, let 7, denote the Poisson measure on (I', B(I')) with intensity measure zdz.
This measure can be characterized by its Laplace transform

/Fe<‘/”7> m.(dy) = exp </X(e“”(z) -1 zdx>, v € Co(X). (1)

We refer to e.g. [15] for a detailed discussion of the construction of the Poisson measure on the
configuration space. By e.g. [19], we have, for each z > 0,

7rz(6)1) =1

(in fact, by [19], the Poisson measure 7, is concentrated on those configurations v € T' for which
lim, o |[YB(r)|/ VOI(B(r)) = 2).
Using multiple stochastic integrals with respect to the Poisson random measure, one constructs
a unitary isomorphism
L F(L*(X, z2dz)) — L*(T, 7.),
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see e.g. [23]. Here, F(L?(X, 2dz)) denotes the symmetric Fock space over L?(X, zdx), i.e.,

F(L*(X, zdx)) = @ Fu(L*(X, zdx)),

n=0

where
Fo(LA(X,zdx)) == L*(X, zdz)®"n!,

® standing for symmetric tensor product.

Let us recall the following result of Surgailis [23]. Let A be a contraction in L?(X,zdz), and
let Exp(A) denote the second quantization of A, i.e., Exp(A) is the contraction in F(L?(X, zdx))
given by

Exp(A) | Fo(L*(X, zdx)) =1,
Exp(A)f®" = (Af)®", fe L*(X,zdx), n€N.

We shall keep the notation Exp(A) for the image of this operator under the isomorphism 7.
In the following, we shall restrict out attention to the case of a self-adjoint A (though the
general case may be treated by an easy modification of the results below).

Theorem 2.1 (Surgailis [23]) Let A be a self-adjoint contraction in L*(X,zdx). Then the op-
erator Exp(A) is positivity preserving if and only if A is sub-Markov. In the latter case, Exp(A) is
Markov.

We recall that A being sub-Markov means that 0 < Af < 1 a.e. for each 0 < f < 1 ae.,
f € L3(X,zdz). If, additionally, Af, / 1 a.e. for some sequence f, /1, f, € L*(X,zdx), then
A is called Markov.

Let (T%)i>0 be a Markov semigroup in L?(X, zdz), and let pi(z,-), t = 0, z € X, be a corre-
sponding Markov semigroup of kernels. Consider the semigroup (Exp(T})):>0 in L*(T, m,), which
is Markov by Theorem 2.1. Note that each operator Exp(T}) is defined only 7,-almost everywhere.
We are now interested in an explicit point-wise realization of a Markov semigroup of kernels which
would correspond to the semigroup (Exp(7%)):>o0-

We consider the infinite product X with the cylinder o-algebra on it, denoted by C(XY). Let
us recall the construction of a probability measure on I' through a product measure on XY, see
[13,25].

We define A € C(XY) as the set of all elements (v,)5%; € X" such that x; # x; when i # j,
and the sequence {z,}52 ; has no accumulation points in X. Let

D :={(z,y) € X*: z =y}
Let v, n € N, be probability measures on (X, B(X)) such that
Un ® U (D) =0, n # m.

Consider the product measure v := @, v, on (XY, C(XY)). Then, by the Borel-Cantelli lemma,

n=1

v(A) =1 if and only if, for each r € N,

> vn(B(r) < .

In the latter case, we can consider v as a probability measure on (A,C(A)), where C(A) denotes
the trace o-algebra of C(XY) on A. Define the mapping

A3 (zn)pZy = E((Tn)nz) = Z €z, €T, (2)
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which is measurable. Thus, we can define a probability measure p on (I', B(T')) as the image of v
under the mapping (2). Evidently, the measure p is independent of the order of the v,’s.
Assume now that

pt(x7)®pt(y7)(D):07 x#ya t>0a (3)
and let v € I be such that
> pi(,B(r)) <oco,  t>0,r€EN. (4)
xey

Then, for each ¢ > 0, we define P(~, -) as the probability measure on I" given through the product

measure
o)

Pt((ﬂfn)ff:p )= ®pt(xm ')7

n=1

where {x,}22 ; is an arbitrary numeration of the elements of ~.
In what follows, we will always assume that the manifold X satisfies the following condition:
there exist m € N and C' > 0 such that

vol(B(pr)) < Cp™ vol(B(r)), r>0, f>1. (5)

By e.g. [6, Proposition 5.5.1], if X has non-negative Ricci curvature, then (5) is satisfied with C' = 1
and m being equal to the dimension of X.

Theorem 2.2 Let (pi)i>0 be a Markov semigroup of kernels on X satisfying (3) and let o > 1.
Assume that

(oo}
Je>0: Vte (0,e)V6>0: Z sup py(z, B(z, on'/ @™)e) < oo, (6)

p— zeX

Then, each v € O, satisfies (4), so that P¢(v,-) is a probability measure on I for each t > 0, and
furthermore, (Py)i>0 is a Markov semigroup of kernels on (©4, B(04)).
Additionally, for each z >0 and t >0 and F € L*(T,7.), the function

Ou 57 /@ F©)P4(y, de)

is a T, -version of the function Exp(T})F € L*(T, 7).

Remark 2.1 Under the assumptions of Theorem 2.2, if the condition (6) is satisfied for all « > 1,
then (P;)¢>0 becomes a Markov semigroup of kernels on (0, B(0)).

Proof of Theorem 2.2. For any © € X, denote |z| := dist(zg, z), where dist denotes the Riemannian
distance.

Lemma 2.1 Let the conditions of Theorem 2.2 be satisfied. Then, for any v € O, and t € (0,€),

> pile, Bla,|2]/2)°) < oo.

xEY

Proof. Fix any v € ©, and choose any numeration {x, }2% ; of points of v such that |x,11| > |2,/
n € N. Since v € 0, there exists K € N for which

|’}/B(7')| < KVO](B(T‘))O‘, reN. (7)

Define
r(n) := max {z €Zy: i< (n)(KC vol(B(1))a))1/<am>} ,  neN, (8)
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where C' is the constant from (5). By (5), (7), and (8),

< Kvol(B(r(n)))®

< KC%(n)*™ vol(B(1))~
<n, mnéeN,

IVB(rn))

Therefore, x,, € B(r(n)). Hence, by (8),
20| > r(n) > (n/(KC*vol(B(1))*))/(em — 1.

Therefore, to prove the lemma, it suffices to show that
> pi(@n, B(wn, ((n/KC* vol(B(1))*)"/ (™) — 1) /2)¢) < o0,
n=1

which evidently follows from (6). O
Fix any (2,)%2, € £71(0,), where the mapping & is given by (2). Denote

An 31{(%)2‘;1 e X"y, € B(wzy, |z,]/2) }7 neN. 9)

By Lemma 2.1, (9) and the Borel-Cantelli lemma,
P, ((:cn)ff:l,liminf.An) =1,  te (0. (10)

Next, define
A" = liminf A, N {(yn)2, € XN gy £y, if i #4, 4,5 € N)}.
n—oo
By (3) and (10),
]P)t((xn)zo:hA/) =1, te (0,6). (11)
We evidently have
|xn| — 00 as n— oo,

and therefore A" C A. Hence, condition (4) is satisfied for v = £((z)52 ;).
Let us show that
E1O,) C A (12)
Indeed, fix any (y,)52, € A’ and define k € Z, as the number of those y,,’s which do not belong
to B(Zn,|zn|/2). Then
[E((n)nzi) B | < 1E(@n)nZi)Ben | + k. (13)
Then, by (5) and (13), we have, for each r € N,

1E((Yn)oZ1) By | < K vol(B(2r)* + k
< K(C2™ vol(B(r)* + k
<

for some K’ € N which is independent of r (note that vol(B(r)) — oo as r — oo since X has
infinite volume). Hence E((y,)22 ;) € O,.
Thus, by (11) and (12),

Pe((2n)521,€71(0a)) =1, (2n)7ly €E71(Oa), € (0,6). (14)

Then, it easily follows from (14) and the construction of P;((x)5%, ) that (P:):>0 is a Markov
semigroup of kernels on £71(0,,). Therefore, (P;):>¢ is a Markov semigroup of kernels on 0, .

The proof of the last statement of the theorem is quite analogous to the proof of [13, Theo-
rem 5.1], so we only outline this. Let

D:={peCy(X): -1 < ¢ <0} (15)
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Then, for any ¢ € D, v € ©,, and t > 0, we easily get from the definition of P(vy,-):

/@ expl{log(1 + ), &) Py(3,d) = [ / 1+ () pi(e, dy)

xEey

= [[( + (o) (2)) = exp[(log(1 + Tup),m)].  (16)

xey

Next, it is well known (see e.g. [23, Corollary 2.1]) that, for any ¢ € D,

I exp[(log(1 + ), )] = exp [/X p(x) 2 dx] ((1/nhe®") - (17)

Since [y (Trp)(x) zdx = [y ¢(x) z dz, it follows from (16), (17) and the definition of Exp(T;) that
the statement holds for F' = exp[{log(1l + ¢), )], ¢ € D. Hence, analogously to the proof of [13,
Theorem 5.1], we conclude the statement in the general case. [

Let us now outline the case where the semigroup (T3);>0 is sub-Markov, but not Markov. We
shall assume for simplicity that

inf X . 1
nf p(, X) >0, >0 (18)

Let X := X U {A} be a one-point extension of X, and, as usual, consider (p;)¢>0 as the extension
of (pt)i>0 to a Markov semigroup of kernels on X. Let conditions (3) and (6) be satisfied. Consider
the mapping

XN 5 ()22, — E((zn) le Tp)eq, -

Then Py ((2,)°%1, ) := >, Pt (Tn, ), t > 0, is a Markov semigroup of kernels on £71(0,,) (notice
that condition (18) guarantees that, for P((2,)%,,)-a.e. (yn)22, € XV, an infinite number of
yn's belong to X).

Set Py(v,-) to be the image of Py((x,)52,,-) under &, where v = {,}°%, € O4, t > 0. Then,
(f’t)t>0 becomes a Markov semigroup of kernels on ©,,.

Next, we denote by m,, the Poisson random measure over X with intensity measure (1 —
pe(x, X)) zdz (notice that 7, is concentrated on finite or infinite configurations in X, depending
on whether the integral [ (1—p;(z, X)) z dz is finite or infinite.) Define P ; (v, -) as the convolution
of the measures P;(v,-) and 7 4, i.e.,

P. (v, 4) = / P, (v, dé1) / T (€)1 A6 + E2). (19)

Note that P, ;(7,-) is indeed concentrated on I', since for any fixed & € T, the 7, probability
of those &» which satisfy & N & # @ is equal to zero. Furthermore, we have P, (v, 0,) = 1 for
each ¢ > 0 and v € ©,. Indeed, for each t > 0, 7, is either concentrated on finite configura-
tions or 7, .(©,) = 1, the latter being a consequence of the estimate 1 — p;(z,X) < 1 and the
support property of a Poisson measure [19]. Now, the equality P, :(v,0,) = 1 follows from the
definition (19).

Next, for any ¢ € D (see (15)), v € O, and t > 0, we have

/@ expllog(l + ¢), &) P+ (7, d§)
— [ explllog(1 + ). €)1 Py, de) [ expllon(1 + ), 2] moelda)

(T (1= w30+ [ @t etommtean) Jexw | [ ot - mie.x)sd0

ey

= exp [(log(1 + Typ), 7)] exp [/X(q?(x) — (Tip)(x)) 2 dw] : (20)
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From here we conclude that ©, 3 v+ f(% F()P,+(y,dE) is a m,-version of Exp(T})F.
Finally, using (20), we have, for any ¢ € D, t,s > 0, and v € O,,

/ / exp[<10g(1 + ‘P)a §2>] Pz,S(fh dés) PZ,t(% d&) = / eXp[(log(l + ), f>] P, st (77 dg),
On /O4 (S]

from where it easily follows that (P, ;);>0 is a Markov semigroup of kernels on 6.

Remark 2.2 Note that, in the case where the semigroup (7%):>0 is Markov, the construction of
the Markov semigroup of kernels (P):>¢ is independent of z, whereas in the case where (T}):>0 is
sub-Markov, the (P, ¢):>0 does depend on z.

3. Non-equilibrium independent infinite particle process

Our next aim is to study the Markov process corresponding to the Markov semigroup of kernels
(P¢)t>0, respectively (P ¢)i>0-

For a metric space E, we denote by D([0,00), E) the space of all cadlag functions from [0, co)
to E, i.e., right continuous functions on [0, c0) having left limits on (0, 00). We equip D([0, c0), E)
with the cylinder o-algebra C(D([0,0), E)) constructed through the Borel o-algebra B(FE).

In what follows, we will assume that a Markov process on X corresponding to the semigroup
(Tt)>0 has cadlag paths. The latter, in particular, holds if the kernels (p:)¢>0 determine a Feller
semigroup (see e.g. [9, Chapter 2, Theorem 2.7]).

We first consider the case where the semigroup (7%):>0 is Markov. For each x € X, let P*
denote the law of the Markov process (X¢)¢>o corresponding to (T3):>0 which starts at z. By our
assumption, each P? is a probability measure on D([0, 00), X'). We will also assume that

Pro P (X, Xm0 [ >0: XV =X =0, z+#y, (21)

i.e., two independent Markov processes starting at  and y,  # y, will a.s. never meet. (If this
condition is not satisfied, all the results below remain true, but for a corresponding space of multiple
configurations.) Notice that condition (21) is stronger than (3).

For each » € X and r > 0, denote by Tp(, ) the hitting time of B(x,r)%:

D([0,00), X) 3 w = T(g,rye(w) == inf{t > 0: w(t) € B(x,r)}.
Let @ > 1 and assume:
Je>0: V6>0: Z sup P*(Tg (5 sn1/(@m)ye > €) < 00. (22)
n:lxeX

Condition (22) is evidently stronger than (6).

Consider the space D([0,00), X)Y  equipped with the cylinder o-algebra
C(D(]0,0), X)N). Denote by Q.1 the set of those (w,)2>; € D([0,00), X)N which satisfy the
following conditions:

(i) for all t > 0, w;(t) # w;(t) if @ # j;
(i) {wn(0)}7Z1 € Oa;
(iii) there are only a finite number of w,’s for which 7p(,, |2,|/2)c (Wn) < €, where € is as in (22).

It is easy to see that Q41 € C(D([0,00), X)N).
Fix any (x,)22; € £71(0,) and consider the product measure

(o)
PEn)nz .— ®pwn
n=1
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on D([0,00), X)N. Absolutely analogously to the proof of Theorem 2.2 we conclude from (21) and
(22) that
PEn=1(Q, 1) = 1. (23)

Furthermore, it follows from the proof of Theorem 2.2 that, for each (w,)5%; € Qq,1, we have
{wn(t)}22, € O, for all t € (0, €.

For each k € N, we now recurrently define 2, 111 as the subset of Q,  consisting of those
(wn)$2; which satisfy the following condition: there are only a finite number of w,,’s for which

TB(wn (ek),|wn (k)| /2)e (Wn (€k 4 -)) < e

Since under P*, X;(w) = w(t), t > 0, is a time homogeneous Markov process starting at z, x € X,
we conclude, analogously to the above, that

P@)nz1i(Q, ) =1, keN.

Therefore,
]P)(l‘n)z,ozl (Qa) =1, Qg = ﬂ Qa,k.
keN

Hence, we can consider P(*»)n=1 as a probability measure on 2, equipped with the trace o-algebra
of C(D([0,00), XN) on Q.

Fix any (w,)2; € Q4. Then, we evidently have {w,(¢)}>2, € O, for all ¢ > 0. Furthermore,
for any compact A C X and for any T > 0, there are only a finite number of w,,’s which meet A
during the time interval [0, T]. Therefore, {w,(-)}52; € D(]0,00), O, ), where O, is equipped with
the relative topology as a subset of I'. Thus, the following mapping is well-defined:

Qa2 @a()pZy = D €un( € D([0,00), Oa). (24)

n=1

Furthermore, it easily follows from the definition of a cylinder o-algebra that the mapping (24)
is measurable. Thus, we can consider the image of the measure P(*=)n=1 under (24). This proba-
bility measure on D([0,00), 0,) will be denoted by P{n}n=1i (note that this measure is, indeed,
independent of the numeration of points of {z,}2°, € O,).

Next, it is easy to see that the finite-dimensional distributions of P7, v € ©,, are given
through the Markov semigroup of kernels P(v, ) on 6, (see Theorem 2.2). Hence, analogously to
[13, Theorem 8.1], we get the following

Theorem 3.1 Let (p1)>0 be a Markov semigroup of kernels on X and let (21) and (22) hold.
Then there exists a time homogeneous Markov process

M = (Qa F; (Ft)t>07 (0t)t207 (P’Y>’Y€@; (Xt)t>0)

on the state space (O, B(0)) with cadlag paths and with transition probability function (Py)i>o.

Remark 3.1 In Theorem 3.1, M can be taken canonical, i.e., @ = D([0, 00), 0,,), X(t)(w) = w(t)
fort >0and w e Q, F; = o{X;,0< s <t} fort >0, F =0{X;,t >0}, (:w)(s) = w(s+1) for
t,s = 0.

Remark 3.2 From the proof of Theorem 3.1 we see that the Markov process M is a realization
of the independent infinite particle process.

Remark 3.3 If the underlying Markov process on X has continuous sample paths, then the
Markov process M in Theorem 3.1 has continuous sample paths in ©,,.

Remark 3.4 Analogously to Remark 2.1, we note that if, under the assumptions of Theorem 3.1,
condition (22) is satisfied for each o > 1, then O, can be replaced by © in the statement of this
theorem.
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Corollary 3.1 The statement of Theorem 3.1 remains true if, instead of (22), one demands that
the following stronger condition be satisfied:

oo

Je>0: Vo>0: Z sup sup py(z, B(z, on'/@™)e) < oo, (25)
n—1t€(0,e] zeX

Proof. For any z € X, r > 0, and € > 0, we have:

P*(TB(a,rye > €) <2 sup sup py(z, B(x,r/2)°). (26)
te(0,e] xeX

This estimate follows by a straightforward generalization of (the proof of) [18, Appendix A, Lemma
4] (see also [13, Lemma 8.1]) to the case of an arbitrary Markov process on X with cadlag paths.
Now, by (26), condition (25) implies (22). O
Let us consider the case where (p:)i>o is sub-Markov. We will assume that, for each z € X,

pe(x, X) is continuously differentiable in ¢ € [0, 00) and there exists 6 > 0 such that

0
&pt,x(X) <C, tel0,6], v € X, (27)
for some C' > 0.

We set
0

g(x) = —Epm(X)’ reX, (28)

)
t=0

which is a bounded non-negative function. Using the semigroup property of (p:)¢>0, we then con-
clude from (27) and (28) that

gpt,x(X) = — /X 9(Y)pe. . (dy), t>0, zelX. (29)

ot
We will now assume that (18), (21), and (22) hold. Analogously to the Markovian case, for each
v € O, we define a probability measure P on D([0, ), ©,) through the mapping

Qa3 @a())oZs = Y Ix(Wal-)ew, () € D([0,00),04), (30)

where ), is a corresponding subset of D([0,00), X)N (compare with (24)).

Let I, denote the Poisson random measure over X x [0, 00) with intensity measure g(z) z dz dt.
Since the measure dz has no atoms in X, II, is concentrated on the set of those configurations &
which satisfy the following condition: for any different (z1,t1), (z2,t2) € &, we have x; # x2. Any
such configuration can be represented as the disjoint union

= fj ¢,
k=1

where each £€(®) is a configuration in X x [k—1,k), and to each £ there corresponds a configuration
~®*) in X that is obtained by taking the X-components of the points from &*).

Denote O, := O, U 'g,, where I'g, is the set of all finite configurations in X. We endow O,
with the vague topology. We note that, since the function g(z) is bounded, we have II,-a.s. that
v € 8,.

For each £(*)| we now construct a probability measure M<¢™ on D([0,00,0,). This measure is
defined in the same way as the measure ISV(M, but only, instead of (30), one uses the mapping

(Wn())nz1 Z l[tn,oo)(')lX(wn(' - tn))gwn(_tn)’

n>1
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where €% = {(zn,tn)}n>1, so that ) = {zn}n>1.
For each v € O, we now define a probability measure P7 on D([0, o00), ©,) by setting, for each
C e C(D([0,00),04),

PO = [P [mag | (éMﬁ“))(dw<1><->,dw<2><->,...>1C(§w<k><->).

k=1 k=0

We note that Y o ,w® () indeed a.s. belongs to D([0, 00), ©,), since for any K € N and ¢ < K,
we have Y77 w®(t) = 0.

Let us show that the finite-dimensional distributions of P} are given through the Markov
semigroup of kernels P, 4(7y,-) on O,. For 0 = tg < t; <te <--- <tp,n €N, and any ¢1,...,¢, €
D (see (15)), we have

/Hz(dg)/(éMf“‘))(MU() dw® () Hexp l<1og 1+ ¢ Zwm >]

k=1 k=1

- [@g I [P Hexp (log(1 + 1), Loy (b)Lx (@t — 7))ewies )]

(z,7)€E

exp[/de:cg(x)/OoodT<1+/px(dw('))

X Hexp[(log(l + i) Lt,00) (t:) L x (w(t; — T))Ew(ti,r)>]):|

i=1

:exp[i:/dexg(x)/:j dT(—1+/P”(dw(-))

j—1

X Hexp[(log(l + i), Lx(w(t; — T))Ew(ti7)>]):|

i=1

= exp [é/dea:g(x) /t:jld7<1+(1ptjr(!C,X))Jr/Xpt,-r(ﬂf,dy)(1+90j(y))
< [ Pty Hlexp fog(1-+ ) Lttt ewt-1)] )| (31)

Denote

Fy(x) = —1+(1+npj(a:))/P”(dw H expl{log(l + 0), L (@(ti — £5))ewieso)]
=541

where x € X. Then we can proceed in (31) as follows:

rn ti—tj—1
—ep |} / 2z g(z / S EER ML)
- X
ti—tj—1
= exp Z/ dT/ zd:vFj(:v)/pt,-tjlT(x,dy)g(y)}
L=
= exp Z/ Fj(x ptjtjl(x,X))zdx}, (32)
Lio /X

where we used (29).
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On the other hand, by (19),

/Pz,tl(%d’Yl)/Pz ta—t: (71, d72) - /Pz tn—tn_1 (Yn—1,d7m) HGXP (log(1 + i), 7:)]

=1

n
:/Pm(%d%)/Ptz (71, dy2) - / tn—tn—1(Yn—1,dVn) HeXp (log(1 + ¢:),7)] [T A
i=1 j=1

(33)

where

Ay = [ ety iy, 065 explflog(1 + ). 6,)

X /lstﬂrtj (ej;dnj+1)'"/]-A)tnftnfl(nnfladnn) H exp((log(1 + ¢x), nx)]

k=j+1
= Fz,tj_tjfl(dej) (1+¢;(2)) Atj+1—tj(m’d D) [ Pt (o1, dyn)
Jro (1o
X H exp[(log(l+tpk)71X(yk)5yk>])

k=j+1

— exp UX Fy@)(1 —ptj_tjl(a:,X))zdx]. (34)

By (31)—(34), we conclude that the finite-dimensional distributions of P} are indeed given through
the Markov semigroup of kernels P, +(v, -)

Thus, analogously to Theorem 3.1, we obtain a time homogeneous Markov process M, on the
state space ©, (or O, provided (22) holds for all @ > 1) with cadlag paths and with transition
probability function (P, ¢)i>0.

Remark 3.5 Analogously to Remark 2.2, we see that, in the case where (p;):>0 is Markov, the
process M from Theorem 3.1 has any Poisson measure 7., z > 0 as invariant measure, whereas,
in the case of a sub-Markov (p;);>0, only the measure 7, is invariant for the process M. .

4. Examples

4.1. Brownian motion on the configuration space

Assume that (T3):>0 is the heat semigroup on X with generator %AX , the Laplace-Beltrami
operator on X. We will denote by p(t, x,y) the corresponding heat kernel on X (see e.g. [6]). We
recall that the corresponding Markov process on X is called Brownian motion on X. In the case
where the manifold X is not stochastically complete, we will assume that condition (27) is satisfied.

Theorem 4.1 Assume that the dimension of the manifold X is > 2. Assume that (p:)i>o s either
Markov, or (18) and (27) hold. Further assume that the heat kernel p(t,x,y) satisfies the Gaussian
upper bound for small values of t:

dist 2
p(t,z,y) < Ct™"/? exp {— %} te(0,¢, myelX, (35)
where n € N, € > 0 and C' and D are positive constants. Then the corresponding independent
infinite particle process exists as a Markov process M® on (©,C(©)) with either continuous paths
if (p1)e>0 s Markov, or cadlag paths if (p)e>o is sub-Markov.
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Remark 4.1 According to [1] and [13], the Markov process M in Theorem 4.1 may be interpreted
as a Brownian motion in the configuration space over X.

Denote by FC°(Cg°(X),0O) the set of all real-valued functions on © of the form F(y) =
gr({(©1,7), .-+, {en,7)), where gr € C°(R), ¢1,...,o8 € C§°(X), N € N. Assume first that
(pt)t>o0 is Markov. Then, the L?-generator of the process MPE has the following representation on
the set FC°(C§°(X), ©) (which is a core for this operator):

LPF)() = 5 3 AN F().

where
AFF(y) = AFF(y\ {yyu iz} _, .

see [1,13] for details. In the case where (p:):>0 is sub-Markov, one can analogously show that the
L%-generator of MB is given on the set FC°(C5°(X), ©) by

(LPF)(y) = % YoASEE\{zy uly)) — FO\ {2}, + /X(F(v Ufz}) — F(7))g(x) da.

Proof of Theorem 4.1. Since the dimension of X is > 2, (21) is now satisfied, see e.g. (8.29) in [13].
Next, by [13, Lemma 8.2], (35) implies that there exists C' > 0 such that

sup sup p(x, B(z,r)¢) < Ce™", r>0.
te(0,e] zEX

It follows from here that (25) is satisfied. Now, the theorem follows from Corollary 3.1. O

4.2. Free Glauber dynamics on the configuration space

Let a : X — [0,00) be a bounded measurable function. Consider a Markov process on X with
a finite lifetime that corresponds to the semigroup (T} f)(z) = e~ %(®) f(z). Thus, the process stays
at a starting point for some random time and then dies away, with

pt(iﬂ,{fﬂ}) :pt(va) :efa(x)t’ re X, t>0.

The function g is now equal to a. Note also that p:(x, B(x,r)¢) = 0 for each r > 0. Thus, all the
above conditions are evidently satisfied and the corresponding infinite particle process exists as
a Markov process M© on (0,C(0)) with cadlag paths. This process can be interpreted as a free
Glauber dynamics on the configuration space, or a birth-and-death process in X, see [3,12,14] for
details. The L2-generator of the process M is given on its core FC°(C§°(X),0) by

LOF)(y) =D al@)(F(y \ {z}) = F(7)) + /X a(x)(F(yU{z} = F(y))dz,

xEY

see [12,14].

4.3. Free Kawasaki dynamics on the configuration space

We now consider a Markov jump process on X. The generator of this process has the following
representation on the set of all bounded functions on X:

(Lf)(x) = /X (F(y) — F(@))e(z,y) dy, (36)

and we assume that
x: X% —[0,00)
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is a measurable function satisfying

w(x,y) = x=(y,x), =zyeX, (37)
and
A= sup/ x(x,y)dy € (0, 00). (38)
rzeX JX

Following [9], we can explicitly construct this Markov process as follows. For each zg € X, let
{Y(k), k=0,1,2,...} be a Markov chain in X starting at z(, with transition function

) = (15 [ ot oo an) + 5 ot

Let (Z:¢)i>0 be an independent Poisson process with parameter A. We now define the Markov
process (X¢)¢>0 starting at zg by

Xt = Y(Zt), t 2 0.
By [9], this process has generator (36).

Theorem 4.2 Assume that (37) and (38) hold and assume that there exist C > 0 and o > m (m
being as in (5)) such that

C
sup / s(w,y)dy < —, r > 0. (39)
z€X JB(z,r)c r

Then the corresponding independent infinite particle process exists as a Markov process MX on
(a0, B(©y)) with cadlag paths.

Remark 4.2 According to [14], the Markov process M¥ can be interpreted as a free Kawasaki
dynamics on the configuration space. The L2-generator of the process M¥ has the following rep-
resentation on FCP°(Cg°(X),0):

w<F)) = |

X

+(dz) /X dy (2, ) (F(7 \ {2} U {}) — F(7)),
see [14].

Proof. By construction, the process (X;):>o has cadlag paths in X. Furthermore, as easily seen,
condition (21) is now satisfied. In a standard way, the process (X;);> leads to a Markov semigroup
(Ty)t>0 in L*(X,dx). Using (37) and the construction of the process, we see that each T} is self-
adjoint.
By Theorem 3.1, it suffices to prove that condition (22) is satisfied. By using (39) and the
construction of the process (X¢)t>o0, we get, for any 6 > 0.
oo

Z sup P (Tg(y sn1/mye > 1)
n—1TEX

Il
Nk
8 w
%5

3
I
—

Pm(TB(x,énl/'ln)c >1, 7, = k‘)

(]2 12

P¥(Zy =k, e {l,... .k} dist(Y (i —1),Y (i) > on*/™/k)

n
hgE
8 wm
0

3
Il
N
B
Il
—

e*’\A—kPx(Eli e{1,...,k}: dist(Y (i —1),Y(i)) > on*/™/k)

ol
WE

up
n=1%€X 12, k!
o - A¥ g T (13 . . 1/m
<> D ol > sup P(dist(Y (i — 1), Y(i)) > on'/™ /k)
n=1 k=1 =1 TEX
Ak

ol
hE

27 sup #(x,y)dy
E'A zex /B(ac,zinl/’"/k)C ( )

3
I
—
=~
Il
i
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since o > m. O

5. Free Glauber dynamics as a scaling limit of free Kawasaki dynamics

Let p be a probability measure on (I', B(I")). Assume that, for any n € N, there exists a non-

negative measurable symmetric function kfﬁ) on X" such that, for any measurable symmetric
function (™ : X — [0, o0],

1
f(”)(xl,...,acn)u(d'y):— f(”)(xl,...,xn)kz(")(ml,...,mn)dml---dacn. (40)
r n! Jx .
. ' Jxn

L1,y @n JCY

Then, the functions kfﬁ), n € N, are referred to as the correlation functions of the measure pu.
Via a recursion formula, one can transform the correlation functions k‘fﬁ) into the Ursell func-

tions u&") and vice versa, see e.g. [21]. Their relation is given by

ku(n)zzuu(nl)"'uu(%’)a nely, (41)

where
Iop:={ncC X :1<|n < oo},

for any n = {z1,...,2,} € I
ku(n) == kl(t”)(xl, cey ), uy(n) = U,(f)(ﬂfl, cey X)),

and the summation in (41) is over all partitions of the set 7 into nonempty mutually disjoint subsets
M,...,n; Cnsuchthat ny U---Un; =n, j € N. Note that kf}) = u&l).

Let now X = R% We fix an arbitrary function £ € S(R?) such that £(—xz) = £(z) for all z € R,
Here, S(R?) denotes the Schwartz space of rapidly decreasing, infinitely differentiable functions on
R?. We define

%(377?/) = f(x—y), JfaQERd-
It can be easily checked that, by Theorem 4.2, the corresponding Kawasaki dynamics exists as a

Markov process M¥ on (0, B8(0)) with cadlag paths.
Let p be a probability measure on (6, B(0)) that satisfies the following conditions:

(i) u has correlation functions (kfﬁ))neN, and there exist 0 < v < 1 and C' > 0 such that

VneN, Y(a1,...,2n) € RY™ : k[ (21,...,20) < (n1)7C™. (42)

(i) p is translation invariant. In particular, the first correlation function kf}) is a constant.
(iii) u has decay of correlations in the following sense: for each n > 2 and 1 < i< n

X1 Z;
uL”) (?,...,f,xi+1,...,xn>—>0 as ¢ —0, (43)
where the convergence is in the dz; - - - dz,-measure on each compact set in R<.

For example, any double-potential Gibbs measure in the low activity-high temperature regime
satisfies the above assumptions, see [4,17,21]
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Let us assume that the initial distribution of the Kawasaki dynamics is u. We denote this
stochastic process by Mff We scale this dynamics as follows. Instead of the function £ used for
the construction of Mff, use the function

() = e¥(ex), r € RY

K

e We are

and denote the corresponding Kawasaki dynamics with initial distribution p by M
interested in the limit of this dynamics as € — 0.
As in subsection 4.2, we construct the Glauber dynamics M¢ using a(z) := (£) and z = k‘fbl).

Here and below, for any f € L*(R%, dx), we denote

1= [ s

We assume that the initial distribution of the Glauber dynamics is 4 and denote this stochastic
process by MS

Below, we will use I to denote the space of multiple configurations over R? equipped with the
vague topology, see e.g. [11] for details. We have © € B(T).

K
e’

cesses taking values in I'. Then, MffE — ME’ as € — 0 in the sense of weak convergence of
finite-dimensional distributions.

Theorem 5.1 Under the above assumptions, consider M e >0, and MS as stochastic pro-

Proof. Let (pt,)i>0 denote the semigroup in L?(R9, dz) with generator

(LeH)@) = [ (1) = el =) dy.

Let F and F~! denote the Fourier transform and its inverse, respectively, which we normalize
so that they become unitary operators in L2(R? — C,dz). As usual, we denote f = Ff and
f=F"1f.

We easily have:

(pe,ef)(@) = e f(z) + (Ko, o f) (@), (44)
where
(Kief)w)i= [ Gilela ) ) dy, ¢ >0, (45)
Rd
Here
Gi(z) := e " (exp[t(2m)V2€] — 1), 2z e R (46)

We note that, since £ € S(R?), we have £ € S(R?), and therefore explt(2m)¥/2¢] — 1 € S(RY).
Hence, for each t > 0, Gy € S(R?). Furthermore, since £(—x) = &(x), we get Gy(v) = G¢(—x).

We fix any n € N, 0 =tg < t; <tg < --- < tpn, and po,P1,...,0n € Co(RY) with —1 < ¢; <0,
i=0,1...,n. We denote by (P$(7,-))t>0,~co the transition semigroup of the e-Kawasaki dynamics
for ¢ > 0 and that of the Glauber dynamics for £ = 0. We also denote by (pf(x,-))i>0, zere the
transition semigroup of the one-particle e-dynamics, £ > 0.

By (40), we have:

/ u(dyo) / PS (10, d) / PS (7, dya)
C) C) C)

n
NI, /@P;—tn,lwn—l’ dvn) HeXp[(log(l + @), 7i)]

=0
— [ wan TT O+ o) [ v, Godo) [ 57y, (o, doe)
e 2Cry R¢ R
S /R Vo (onerodan) (1 + 0i0))
i=1
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xey
1
=1+ — S(x1) - g5 ()™ (21, . 2m) Aoy - Ay, - 47
3 oty ) K ) (a7)
Here,
9°(2) = po(z) + f°(2) + po(2) [ (2) (48)
with

ECIENED DR ¥ AL

1<i1<ia< <1y <n, k=1

[ P o) oo, L, s dann (@) (o). (49

tk—1

We easily have from (48) and (49):

sup lg°(x)| dz < 0.
e>0 JRA

Hence, by (42), in oder to find the limit of (47) as € — 0, it suffices to find the limit of each term
in the sum.
By (44)-(46), (48), and (49),

9°(x) = po(x) + (1 + o (x)) > (e + Ky )My,

101 <io < <ip<n, k>1
X (ef(tiQ*ti1)<‘£> + Kt-;27ti1,€)Mtp-;2 X e X (e_(tik _t7rk—1)<§> + Ktik*tikfl,E)sDik , (50)

where My denotes the operator of multiplication by a function f.
By (41), for each m € N,

/ 0 (@1) - g (@)K (1, . ) day - - e,
(RI)m

/Rd . e ge(@p ul " (@, g ) da -y, (51)
{7711 777]}1 1 i

where the summation is over all partitions {n:,...,n;}, j > 1, of the set {1,...,n} into nonempty,
mutually disjoint subsets n1,...,1; C 7.
We next have the following

Lemma 5.1 Let the above assumptions be satzsﬁed Letk,n e N, k< n, ly,....lx €N, tgj) > 0,
j=1,. 0 i=1,.. k Let f,. . f% e CoRY), i = 1,....k. Let F : (RY)" — R and
fis-oy fr : R — R be measurable and bounded, and fiy1, ... fn € Co(RY). For any e > 0, set

I, := / dzy - --dzy, F(z1,...,2 H (fz T; / del)Eth(U (e(x; — xz('l)))fi(l)(xz('l))
(RE)™ ey a i
< [ a1 o el o) £ 0l?)
. {
X / defVe’G o (e ™ = ")) £ @) ) 1T 7. (52)
R4 i ikt

We then have:
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(1) If at least one l; > 2, then I. — 0 as € — 0.

i) Ifnz2,li=-=l=1 andF:u,(Ln), then I. — 0 as e — 0.

(iii) Ifly =--- =1y =1, F =1, and at least one f; € Co(R?). Then. I. — 0 as e — 0.
(iv) Ifly=---=lp=1, fi=---=fr=1, and F =1, then for each & > 0,

k n
= (M=) < 11 00

i=1 j=k+1
Proof. In the right hand side of (52), make the following change of variables
z; = e(z;), (a:§j))’ = 5m§j), j=1,....; —1, i=1,...,n.

Then by the dominated convergence theorem and (43), we get the statements (i)—(iii). In the same
way, in the case of (iv), we get

k n
I = <H<Gtg>><f§”>> < [T -
i=1 Jj=k+1

By (44), we have, for any ¢t > 0:
(Gt> =1- e_t@,

from where the lemma follows. [J
By (41), (50), (51), and Lemma 5.1, and taking into account that each Ursell function u,(tn) is
bounded, we have:

/ ga(xl)...ga(xm)k‘(jﬂ)(xh...,’J)m)dgjl...dxm
(Rd)m

l

eg(T) [ (SRR N DR L CRPRIER

9! j=1 1< <io<---<ip<n, k>1
m—1
X kg)(:cl, L. ,:Cl) dxq -+ -day Z k;(tl)(]‘ _ e ta <E>)e7(tik7ti1)<£> <<p1.1 Ce 50%>
1< <ip < <ip<n, k=1
(53)

Therefore, by (40), the left hand side of (47) converges to

10 <ig < - <ip<n, k>1

x [ expl(log(1 + o). ] [T [ 1+ > et (g, -0 ) (@) | pldy)  (54)
©

xEy 1< <ip < <ip<n, k=1

ase — 0.
We next have the following
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Lemma 5.2 For each v € O and any 0 < t; <t9, -+ <ty, n €N,

n
/e P (v, dy) /@ PO, (y1,dna) x -« x /e PY (ot dym) [ [ explflog(1 + 1), )

i=1

= exp Z kD (1 — e~ t@)em e —tin) @ (o oy )

1< <ia < <ip<n, k=1

X H 1+ Z e lik () (901'1 .. %k)(ﬂf) . (55)

zEy 1<iy <ig < <ip<n, k21

Proof. By section 2 and subsection 4.2, for n = 1, we have:

/@eXP[(log(l 1), ] P, (7 dm) = exp (KD (1 — e~ @) (o) T (1 + 7 O (a),

xEY

which is (55) in this case.
Now, assume that (55) holds for n € N, and let us prove it for n + 1. We then have:

n+1
LPoen [P Gdn) s [ PE L G [] exollos(1-+ 2).20)
=1
— [ Ph ) expliog(1 + ). )
<ML (v > T )@
TEYL 2<i1 << <n+1, k21
X exp Z kf})(l — oty *h)(ﬁ))e*(tik —tiy ){§) (Qiy = Qi)
2<i1 < <ip<n+1, k21
= H e t(&) 14+ pi(x)) [ 1+ Z e~ (ti, —t1)(&) (@i, @i ) (@) | +1— e—t1(8)

zEy 2<iy < <ip<n+1, k>1

X/@”(Hefmg)kw(dmH(lm(x)) L+ > e (g )(@)

zeT 2<i < <ip<n+tl, k>1
X exp Z kf})(l — oty *h)(ﬁ))e*(tik —tiy ){€) (Qiy Qi)
2<i1 < <ip<n+1, k21
— H ]_ + Z eitik <§> (8011 e g@zk)(gj) exp (1 _ eft1<‘£>)k£1)
zEY 1<i <ip<--<ip<n+1, k=1

><<1+(1+901) 1+ > e i =t (i, -y ) () >

2<i1 << <n+1, k21

n ) B (1 — et =t )o— (b~ (5, o, )

2<i1 < <ip<n+1, k21
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I {1+ > e (i, - 3 ) (2)

zEy 1<i1 <ig < <ip<n+1, k>1

X exp > RO — et et O o, gy, )
1<y <ig<---<ip<n+1,k>1

Thus, by induction, the lemma is proved. [
Let 0 <to <t1 <---<tlp,andlet pg ,  ; ,€ >0, denote the joint distribution of the process
Mfia at times tg,t1,...,t, for € > 0, and respectively that of the process MS’ for e = 0.

By (54) and Lemma 5.2, for any g, @1 ..., ¢n € Co(R%), ¢; <0,i=0,1,...,n,

n

n
/ [T expliei, vl dugy v, o (Y0715 -5 90) — / L LT ewllen vl dug, oy, (o755 9m)
F F‘VL :0

+1 7
T i=0

(56)

as ¢ — 0. By (56), we, in particular, get, for any ¢ > 0 and any ¢ € Co(R?), ¢ <0,

[ expleiani ) — [ explon) et
r r

as ¢ — 0. Hence, by [11, Theorem 4.2], ¢ — u9 weakly in M(I') as ¢ — 0. Here, M(I') denotes
the space of probability measures on I, see e.g. [20] for details. Therefore, the set {u | 0 <e <1}
is tight in M(T") . This implies that, for any 0 <to <t <--- <ty, theset {uj , , |0<e<1}

is tight in M(F"'H) Hence, by (56), Hig oyt — Mgo,thm,tn weakly in ,/\/l(f‘”"‘l) as € — 0. Thus,
the theorem is proved. O
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HepiBHOBaXkHa cTOXacTU4HA AUHAMiKa B KOHTUHYYMi: BUNapok
BiJIbHOT cuctemm

l0.Konapatbes'22, € JlutsnHos*, M.PbokHep '3

1 dakynsTeT MaTemMaTukn, YHiBepcuteT M. Binedensa, HimevunHa

2 IHcTUTYT MaTtematuku, Kuis, YkpaiHa

3 JocnigHuubknin ueHTp BiBoS, YHiBepcuTeT M. Binedenba, HimevwunHa

4 ®dakynsTreT matemaTtuku, YHiBepcuteT M. CyoHci, CyoHci, BennkobputaHis

OTpumano 31 ciyHg 2008 p.

Mwu pocnigxyemo npobnemy ineHTUdIkauii BiANOBIAHOro NPOCTOPY CTaHIB AJ1si CTOXACTUYHOI AUHAMIKM
BiJIbHNX YACTUHOK Y KOHTUHYYMIi 3 iX MOXJ/IMBUM HAaPOIXKEHHAM i 3HULLEHHSM. B Ui gnHamiui pyx okpemoi
YaCTUHKM OMUCYETLCS 3a JOMNOMOro GikcoBaHOro MapkiBCbkOro npouecy M Ha piMaHOBOMY MHOMOBUAj
X. lTonoBHoto NpobnemMoto TyT € MOXJIMBUIA KONAnc CUCTEMUN Y HACTYNMHOMY CeHci. HeaBaxalouu Ha Te, Lo
no4YaTKOBUIA PO3MOAiN YACTUHOK € JIOKANbHO CKIHYEHHMIA, MOXE ICHYBaTM B X Taka KOMMakTHa MHOXWHA,
O 3 MMOBIPHICTIO 1 B MOMEHT Yacy ¢ > 0 y L0 MHOXMHY NOTpanuTb 6e3MexHa KiflbkKicTb 4acTMHOK. Mu
BBAXaEMO, O X Mae 6e3MexHui 06’eM, a TakoxX, AJi KOXHOro « > 1, po3rnagaeMo MHOXUHY © ,, BCix
6e3mexHnX KoHdirypauii B X, a4Nia k1x YMC0 YaCTUHOK B KOMMAKTHIA MHOXWHI € oOMexeHe f00yTKOM
NeBHOI CTanoi i a-ro cteneHs 06’eMy Li€i MHOXMHWU. My 3HAALWAN LiNKOM 3arajibHi yMOBU Ha npouec M,
3a SKMX BiANOBIAHWI 6€3MEeXHO-4aCTUHKOBWUI NPOLLEC, CTAPTYIO4M 3 AOBiIbHOI KOHOIrypaLii © o, Hikonu He
3anunTb O, Maloun npu Lbomy cadlag (abo, HaBiTb, HEMEPEpPBHI) TPaeKToOpIi B yNbTpa-cnabkii Tonono-
rii. MoxnuBi Taki 3aCTOCYBaHHS HaLUMX Pe3ynbTaTiB: OPOYHIBCbKMI PyX Ha KOHIrypauiiHHOMy NpPOCTOpi i
BiflbHa AvHamika MMaybepa Ha KoH®IrypauiinHOMy NpoCTopi (NPOLLEC HAPOOXKEHHS-3HULLEHHS Ha X ): Biflb-
Ha auHamika Kasacaki Ha KoHdirypauiiiHoMy npocTopi. Mu Takox nokasyemo, Lo y sunagky X = R<,
0151 LUMPOKOTrO Klacy CTapToOBMX PO3KnagdiB (HepiBHOBaxHa) BiflbHa AvHamika Mmaybepa € ckeiniHroBoto
rpaHuLLEIO (HePIBHOBAXHOI) BiIbHOI AvHaMikm KaBacaci.

Knio4oBi cnoBa: npouecy HapoaXeHHsI-3HULLEHHS, BPOYHIBCbKUI PYX Y KOHQIrypaLiiHoMy rnpocTopi,
HernepepBHi cuctemu, guHamika naybepa, amHamika Kasacaki, mipa MyaccoHa

PACS: 02.50.Ey, 02.50.Ga
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