МАТЕМАТИЧНІ МЕТОДИ, МОДЕЛІ, ПРОБЛЕМИ І ТЕХНОЛОГІЇ ДОСЛІДЖЕННЯ СКЛАДНИХ СИСТЕМ

UDC 517.9

ON SOME TOPOLOGICAL PROPERTIES FOR SPECIAL CLASSES OF BANACH SPACES. PART 2

P. KASYANOV, V. MEL'NIK

We consider some classes of infinite-dimensional Banach spaces with integrable derivatives. A compactness lemma for nonreflexive spaces is obtained. However some main topological properties for the given spaces are obtained.

This work is continuation of [1].
Theorem 1. $W_{0}^{*} \subset C(S ; H)$ with continuous embedding. Moreover, for every $y, \xi \in W_{0}^{*}$ and $s, t \in S$ the next formula of integration by parts takes place

$$
\begin{equation*}
(y(t), \xi(t))-(y(s), \xi(s))=\int_{s}^{t}\left\{\left(y^{\prime}(\tau), \xi(\tau)\right)+\left(y(\tau), \xi^{\prime}(\tau)\right)\right\} d \tau \tag{1}
\end{equation*}
$$

In particular, when $y=\xi$ we have:

$$
\frac{1}{2}\left(\|y(t)\|_{H}^{2}-\|y(s)\|_{H}^{2}\right)=\int_{s}^{t}\left(y^{\prime}(\tau), y(\tau)\right) d \tau
$$

Proof. To simplify the proof we consider $S=[a, b]$ for some

$$
-\infty<a<b<+\infty .
$$

The validity of formula (1) for $y, \xi \in C^{1}(S ; V)$ is checked by direct calculation. Now let $\varphi \in C^{1}(S)$ be such fixed that $\varphi(a)=0$ and $\varphi(b)=1$. Moreover, for $y \in C^{1}(S ; V)$ let $\xi=\varphi y$ and $\eta=y-\varphi y$. Then, due to (1):

$$
\begin{gathered}
(\xi(t), y(t))=\int_{a}^{t}\left\{\varphi^{\prime}(s)(y(s), y(s))+2 \varphi(s)\left(y^{\prime}(s), y(s)\right)\right\} d s \\
-(\eta(t), y(t))=\int_{t}^{b}\left\{-\varphi^{\prime}(s)(y(s), y(s))+2(1-\varphi(s))\left(y^{\prime}(s), y(s)\right)\right\} d s
\end{gathered}
$$

from here for $\xi_{i} \in L_{q_{i}}\left(S ; V_{i}^{*}\right)$ and $\eta_{i} \in L_{r_{i^{\prime}}}(S ; H) \quad(i=1,2)$ such that $y^{\prime}=$ $=\xi_{1}+\xi_{2}+\eta_{1}+\eta_{2}$ it follows:

$$
\begin{aligned}
& \|y(t)\|_{H}^{2}=\int_{t}^{b}\left\{\varphi^{\prime}(s)(y(s), y(s))+2 \varphi(s)\left(y^{\prime}(s), y(s)\right)\right\} d s-2 \int_{t}^{b}\left(y^{\prime}(s), y(s)\right) d s \leq \\
& \leq \max _{s \in S}\left|\varphi^{\prime}(s)\right| \cdot\|y\|_{C\left(S ; V^{*}\right)} \cdot\|y\|_{L_{1}(S ; V)}+2 \int_{S}(\varphi(s)-1)\left(y^{\prime}(s), y(s)\right) d s \leq \\
& \left.\leq \max _{s \in S} \mid \varphi^{\prime}(s)\|y\|_{C\left(S ; V^{*}\right)}\right)^{*} \|_{L_{1}(S ; V)^{+}}+
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\left\|\eta_{1}\right\|_{L_{r_{1}}}(S ; H)^{\|y\|_{L_{r_{1}}}(S ; H)}{ }+\left\|\eta_{2}\right\|_{L_{r_{2}}}(S ; H) \mid\|y\|_{L_{r_{2}}}(S ; H)\right) \leq \\
& \leq \max _{s \in S}\left|\varphi^{\prime}(s)\right|\|y\|_{C\left(S ; V^{*}\right)}\left(\|y\|_{L_{p_{1}}}\left(S ; V_{1}\right)^{\operatorname{mes}(S)^{1 / q_{1}}}+\|y\|_{L_{p_{2}}}\left(S ; V_{2}\right)^{\left.\operatorname{mes}(S)^{1 / q_{2}}\right)+}\right. \\
& +2 \max _{s \in S}|\varphi(s)-1|\left(\left\|\xi_{1}\right\|_{L_{q_{1}}}\left(S ; V_{1}^{*}\right)+\left\|\xi_{2}\right\|_{L_{q_{2}}}\left(S ; V_{2}^{*}\right)+\left\|\eta_{1}\right\|_{L_{\gamma_{1}}}(S ; H)+\left\|\eta_{2}\right\|_{L_{r_{2}}}(S ; H)\right) \times \\
& \times\left(\|y\|_{L_{p_{1}}\left(S ; V_{1}\right)}+\|y\|_{L_{p_{2}}}\left(S ; V_{2}\right)+\|y\|_{C(S ; H)} \operatorname{mes}(S)^{1 / r_{1}}+\|y\|_{C(S ; H)} \operatorname{mes}(S)^{1 / r_{2}}\right) .
\end{aligned}
$$

Hence, due to [1, theorem 3], definition of $\|\cdot\|_{X}$, if we take in last inequality $\varphi(t)=\frac{t-a}{b-a}$ for all $t \in S$ we obtain

$$
\begin{equation*}
\|y\|_{C(S ; H)}^{2} \leq C_{2}\|y\|_{W_{0}^{*}}^{2}+C_{3}\|y\|_{W_{0}^{*}}\|y\|_{C(S ; H)}, \tag{2}
\end{equation*}
$$

where C_{1} is the constant from inequality $\|y\|_{C\left(S ; V^{*}\right)} \leq C_{1}\|y\|_{W_{0}^{*}}$ for every $y \in W_{0}^{*}$,

$$
C_{2}=2+\frac{C_{1}}{\min \left\{\operatorname{mes}(S)^{1 / p_{1}}, \operatorname{mes}(S)^{1 / p_{2}}\right\}}, \quad C_{3}=2 \max \left\{\operatorname{mes}(S)^{1 / \min \left\{\left\{_{1}, r_{2}\right\}\right.}, 1\right\}
$$

Remark that $\frac{1}{+\infty}=0, C_{2}, C_{3}>0$. From (2) it obviously follows that

$$
\begin{equation*}
\|y\|_{C(S ; H)} \leq C_{4}\|y\|_{W_{0}^{*}} \quad \text { for all } y \in C^{1}(S ; V), \tag{3}
\end{equation*}
$$

where $C_{4}=\frac{C_{3}+\sqrt{C_{3}^{2}+4 C_{2}}}{2}$ does not depend on y.
Now let us apply [1, theorem 4]. For arbitrary $y \in W_{0}^{*}$ let $\left\{y_{n}\right\}_{n \geq 1}$ be a sequence of elements from $C^{1}(S ; V)$ converging to y in W_{0}^{*}. Then in virtue of relation (3) we have

$$
\left\|y_{n}-y_{k}\right\|_{C(S ; H)} \leq C_{4}\left\|y_{n}-y_{k}\right\|_{W_{0}^{*}} \rightarrow 0,
$$

therefore, the sequence $\left\{y_{n}\right\}_{n \geq 1}$ converges in $C(S ; H)$ and it has only limit $\chi \in C(S ; H)$ such that for a.e. $t \in S \quad \chi(t)=y(t)$. So, we have $y \in C(S ; H)$ and now the embedding $W_{0}^{*} \subset C(S ; H)$ is proved. If we pass to limit in (3) with $y=y_{n}$ as $n \rightarrow \infty$ we obtain the validity of the given estimation $\forall y \in W_{0}^{*}$. It proves the continuity of the embedding W^{*} into $C(S ; H)$.

Now let us prove formula (1). For every $y, \xi \in W_{0}^{*}$ and for corresponding approximating sequences $\left\{y_{n}, \xi_{n}\right\}_{n \geq 1} \subset C^{1}(S ; V)$ we pass to the limit in (1) with $y=y_{n}, \xi=\xi_{n}$ as $n \rightarrow \infty$. In virtue of Lebesgue's theorem and $W_{0}^{*} \subset C\left(S ; V^{*}\right)$ with continuous embedding formula (1) is true for every $y \in W_{0}^{*}$.

The theorem is proved.
In virtue of $W^{*} \subset W_{0}^{*}$ with continuous embedding and due to the latter theorem the next statement is true.

Corollary 1. $W^{*} \subset C(S ; H)$ with continuous embedding. Moreover, for every $y, \xi \in W^{*}$ and $s, t \in S$ formula (1) takes place.

For every $n \geq 1$ let us define the Banach space $W_{n}^{*}=\left\{y \in X_{n}^{*} \mid y^{\prime} \in X_{n}\right\}$ with the norm

$$
\|y\|_{W_{n}^{*}}=\|y\|_{X_{n}^{*}}+\left\|y^{\prime}\right\|_{X_{n}},
$$

where the derivative y^{\prime} is considered in sense of scalar distributions space $\mathcal{D}^{*}\left(S ; H_{n}\right)$. As far as

$$
\mathcal{D}^{*}\left(S ; H_{n}\right)=\mathcal{L}\left(\mathcal{D}(S) ; H_{n}\right) \subset \mathcal{L}\left(\mathcal{D}(S) ; V_{\omega}^{*}\right)=\mathcal{D}^{*}\left(S ; V^{*}\right)
$$

it is possible to consider the derivative of an element $y \in X_{n}^{*}$ in the sense of $\mathcal{D}^{*}\left(S ; V^{*}\right)$. Remark that for every $n \geq 1 W_{n}^{*} \subset W_{n+1}^{*} \subset W^{*}$.

Proposition 1. For every $y \in X^{*}$ and $n \geq 1 \quad P_{n} y^{\prime}=\left(P_{n} y\right)^{\prime}$, where derivative of element $x \in X^{*}$ is in the sense of the scalar distributions space $\mathcal{D}^{*}\left(S ; V^{*}\right)$.

Remark 1. We pay our attention that in virtue of the previous assumptions the derivatives of an element $x \in X_{n}^{*}$ in the sense of $\mathcal{D}\left(S ; V^{*}\right)$ and in the sense of $\mathcal{D}\left(S ; H_{n}\right)$ coincide.

Proof. It is sufficient to show that for every $\varphi \in \mathcal{D}(S) \quad P_{n} y^{\prime}(\varphi)=\left(P_{n} y\right)^{\prime}(\varphi)$. In virtue of definition of derivative in sense of $\mathcal{D}^{*}\left(S ; V^{*}\right)$ we have

$$
\begin{aligned}
\forall \varphi & \in \mathcal{D}(S) \quad P_{n} y^{\prime}(\varphi)=-P_{n} y\left(\varphi^{\prime}\right)=-P_{n} \int_{S} y(\tau) \varphi^{\prime}(\tau) d \tau= \\
& =-\int_{S} P_{n} y(\tau) \varphi^{\prime}(\tau) d \tau=-\left(P_{n} y\right)\left(\varphi^{\prime}\right)=\left(P_{n} y\right)^{\prime}(\varphi) .
\end{aligned}
$$

The proposition is proved.

Due to [1, propositions 3, 4] it follows the next
Proposition 2. For every $n \geq 1 W_{n}^{*}=P_{n} W^{*}$, i.e.

$$
W_{n}^{*}=\left\{P_{n} y(\cdot) \mid y(\cdot) \in W^{*}\right\} .
$$

Moreover, if the triple $\left(\left\{H_{i}\right\}_{i \geq 1} ; V_{j} ; H\right), j=1,2$ satisfies condition (γ) with $C=C_{j}$. Then for every $y \in W^{*}$ and $n \geq 1$

$$
\left\|P_{n} y(\cdot)\right\|_{W^{*}} \leq \max \left\{C_{1}, C_{2}\right\}\|y(\cdot)\|_{W^{*}} .
$$

Theorem 2. Let the triple $\left(\left\{H_{i}\right\}_{i \geq 1} ; V_{j} ; H\right), j=1,2$ satisfy condition (γ) with $C=C_{j}$. We consider bounded in X^{*} set $D \subset X^{*}$ and $E \subset X$ that is bounded in X. For every $n \geq 1$ let us consider

$$
D_{n}:=\left\{y_{n} \in X_{n}^{*} \mid y_{n} \in D \text { and } y_{n}^{\prime} \in P_{n} E\right\} \subset W_{n}^{*}
$$

Then

$$
\begin{equation*}
\left\|y_{n}\right\|_{W^{*}} \leq\|D\|_{+}+C\|E\|_{+} \quad \text { for all } n \geq 1 \text { and } y_{n} \in D_{n} \tag{4}
\end{equation*}
$$

where $C=\max \left\{C_{1}, C_{2}\right\},\|D\|_{+}=\sup _{y \in D}\|y\|_{X^{*}}$ and $\|E\|_{+}=\sup _{f \in E}\|f\|_{X}$.
Remark 2. Due to proposition $2 D_{n}$ is well-defined and $D_{n} \subset W_{n}^{*}$ is true.
Remark 3. A priori estimates (like (4)) appear at studying of solvability of differential-operator equations, inclusions and evolutional variational inequalities in Banach spaces with maps of w_{λ}-pseudomonotone type by using FaedoGalerkin method (see $[2,3]$) at boundary transition, when it is necessary obtain a priori estimates of approximate solutions y_{n} in X^{*} and of its derivatives y_{n}^{\prime} in X.

Proof. Due to proposition 2 for every $n \geq 1$ and $y_{n} \in D_{n}$

$$
\left\|y_{n}\right\|_{W^{*}}=\left\|y_{n}\right\|_{X^{*}}+\left\|y_{n}^{\prime}\right\|_{X} \leq\|D\|_{+}+\left\|P_{n} E\right\|_{+} \leq\|D\|_{+}+\max \left\{C_{1}, C_{2}\right\}\|E\|_{+}
$$

The theorem is proved.
Further, let B_{0}, B_{1}, B_{2} be some Banach spaces such, that

$$
\begin{equation*}
B_{0}, B_{2} \text { are reflexive } B_{0} \subset B_{1} \text { with compacting embedding } \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
B_{0} \subset B_{1} \subset B_{2} \text { with compacting embedding. } \tag{6}
\end{equation*}
$$

Lemma 1. ([4] lemma 1.5 .1, p.71) Under the assumptions (5), (6) for an arbitrary $\eta>0$ there exists $C_{\eta}>0$ such that

$$
\|x\|_{B_{1}} \leq \eta\|x\|_{B_{0}}+C_{\eta}\|x\|_{B_{2}} \quad \forall x \in B_{0}
$$

Corollary 2. Let the assumptions (5), (6) for the Banach spaces B_{0}, B_{1} and B_{2} are verified, $p_{1} \in[1 ;+\infty], S=[0, T]$ and the set $K \subset L_{p_{1}}\left(S ; B_{0}\right)$ such that
a) K is precompact set in $L_{p_{1}}\left(S ; B_{2}\right)$;
b) K is bounded set in $L_{p_{1}}\left(S ; B_{0}\right)$.

Then K is precompact set in $L_{p_{1}}\left(S ; B_{1}\right)$.
Proof. Due to lemma 1 and to the norm definition in $L_{p_{1}}\left(S ; B_{i}\right), i=\overline{0,2}$ it follows that for an arbitrary $\eta>0$ there exists such $C_{\eta}>0$ that

$$
\begin{equation*}
\|y\|_{L_{p_{1}}}\left(S ; B_{1}\right) \leq 2 \eta\|y\|_{L_{p_{1}}}\left(S ; B_{0}\right)+2 C_{\eta}\|y\|_{L_{p_{1}}}\left(S ; B_{2}\right) \quad \forall y \in L_{p_{1}}\left(S ; B_{0}\right) \tag{7}
\end{equation*}
$$

Let us check inequality (7), when $p_{1} \in[0,+\infty)$ (the case $p_{1}=+\infty$ is direct corollary of lemma 1):

$$
\begin{aligned}
& \|y\|_{L_{p_{1}}}^{p_{1}}\left(S ; B_{1}\right)=\int_{S}\|y(t)\|_{B_{1}}^{p_{1}} d t \leq \int_{S}\left[\eta\|y(t)\|_{B_{0}}+C_{\eta}\|y(t)\|_{B_{2}}\right]^{p_{1}} d t \leq \\
& \quad \leq 2^{p_{1}-1}\left[\eta^{p_{1}} \int_{S}\|y(t)\|_{B_{0}}^{p_{1}} d t+C_{\eta}^{p_{1}} \int_{S}\|y(t)\|_{B_{2}}^{p_{1}} d t\right]= \\
& \quad=2^{p_{1}-1}\left[\eta^{p_{1}}\|y\|_{L_{p_{1}}}^{p_{1}}\left(S ; B_{0}\right)+C_{\eta}^{p_{1}}\|y\|_{L_{p_{1}}}^{p_{1}}\left(S ; B_{2}\right)\right] \leq \\
& \leq 2^{p_{1}}\left[\eta\|y\|_{L_{p_{1}}}\left(S ; B_{0}\right)+C_{\eta}\|y\|_{L_{p_{1}}}\left(S ; B_{2}\right)\right]^{p_{1}} \quad \forall y \in L_{p_{1}}\left(S ; B_{0}\right) .
\end{aligned}
$$

The last inequality follows from

$$
\frac{a^{p_{1}}+b^{p_{1}}}{2} \leq(a+b)^{p_{1}} \leq 2^{p_{1}-1}\left(a^{p_{1}}+b^{p_{1}}\right) \quad \forall a, b \geq 0 .
$$

Now let $\left\{y_{n}\right\}_{n \geq 1}$ be an arbitrary sequence from K. Then by the conditions of the given statement there exists $\left\{y_{n_{k}}\right\}_{k \geq 1} \subset\left\{y_{n}\right\}_{n \geq 1}$ that is a Cauchy subsequence in the space $L_{p_{1}}\left(S ; B_{2}\right)$. So, thanks to inequality (7) for every $k, m \geq 1$

$$
\begin{gathered}
\left\|y_{n_{k}}-y_{n_{m}}\right\|_{L_{p_{1}}}\left(S ; B_{1}\right) \leq 2 \eta\left\|y_{n_{k}}-y_{n_{m}}\right\|_{L_{p_{1}}}\left(S ; B_{0}\right)^{+} \\
+2 C_{\eta}\left\|y_{n_{k}}-y_{n_{m}}\right\|_{L_{p_{1}}\left(S ; B_{2}\right)} \leq \eta C+2 C_{\eta}\left\|y_{n_{k}}-y_{n_{m}}\right\|_{L_{p_{1}}}\left(S ; B_{2}\right)
\end{gathered}
$$

where $C>0$ is a constant that does not depend on m, k, η. Therefore, for every $\varepsilon>0$ we can choose $\eta>0$ and $N \geq 1$ such that

$$
\eta C<\varepsilon / 2 \quad \text { and } \quad 2 C_{\eta}\left\|y_{n_{k}}-y_{n_{m}}\right\|_{L_{p_{1}}}\left(S ; B_{2}\right)<\varepsilon / 2 \quad \forall m, k \geq N
$$

Thus,

$$
\forall \varepsilon>0 \quad \exists N \geq 1: \quad\left\|y_{n_{k}}-y_{n_{m}}\right\|_{L_{p_{1}}}\left(S ; B_{1}\right)<\varepsilon \quad \forall m, k \geq N
$$

This fact means, that $\left\{y_{n_{k}}\right\}_{k \geq 1}$ converges in $L_{p_{1}}\left(S ; B_{1}\right)$. The corollary is proved.

Theorem 3. Let conditions (5), (6) for B_{0}, B_{1}, B_{2} are satisfied, $p_{0}, p_{1} \in$ $\in[1 ;+\infty), S$ be a finite time interval and $K \subset L_{p_{1}}\left(S ; B_{0}\right)$ be such, that
a) K is bounded in $L_{p_{1}}\left(S ; B_{0}\right)$;
b) for every $\varepsilon>0$ there exists such $\delta>0$ that from $0<h<\delta$ it results in

$$
\begin{equation*}
\int_{S}\|u(\tau)-u(\tau+h)\|_{B_{2}}^{p_{0}} d \tau<\varepsilon \quad \forall u \in K \tag{8}
\end{equation*}
$$

Then K is precompact in $L_{\min \left\{p_{0} ; p_{1}\right\}}\left(S ; B_{1}\right)$.
Furthermore, if for some $q>1 K$ is bounded in $L_{q}\left(S ; B_{1}\right)$, then K is precompact in $L_{p}\left(S ; B_{1}\right)$ for every $p \in[1, q)$.

Remark 4. Further we consider that every element $x \in\left(S \rightarrow B_{i}\right)$ is equal to $\overline{0}$ out of the interval S.

Proof. At the beginning we consider the first case. For our goal it is enough to show, that it is possible to choose a Cauchy subsequence from every sequence $\left\{y_{n}\right\}_{n \geq 1} \subset K$ in $L_{\min \left\{p_{0} ; p_{1}\right\}}\left(S ; B_{1}\right)$. Due to corollary 2 it is sufficient to prove this statement for $L_{\min \left\{p_{0} ; p_{1}\right\}}\left(S ; B_{2}\right)$.

For every $x \in K \quad \forall h>0 \quad \forall t \in S$ we put

$$
x_{h}(t):=\frac{1}{h} \int_{t}^{t+h} x(\tau) d \tau
$$

where the integral is regarded in the sense of Bochner integral. We point out that $\forall h>0 \quad x_{h} \in C\left(S ; B_{0}\right) \subset C\left(S ; B_{2}\right)$.

Fixing a positive number ε, we construct for a set

$$
K \subset L_{p_{0}}\left(S ; B_{0}\right) \subset L_{p_{0}}\left(S ; B_{2}\right)
$$

a final ε-web in $L_{p_{0}}\left(S ; B_{2}\right)$. For $\varepsilon>0$ we choose $\delta>0$ from (8). Then for every fixed $h(0<h<\delta)$ we have:

$$
\begin{gathered}
\left\|x_{h}(t+u)-x_{h}(t)\right\|_{B_{2}}=\frac{1}{h}\left\|\int_{t+u}^{t+u+h} x(\tau) d \tau-\int_{t}^{t+h} x(\tau) d \tau\right\|_{B_{2}}= \\
=\frac{1}{h}\left\|\int_{t}^{t+h} x(\tau+u) d \tau-\int_{t}^{t+h} x(\tau) d \tau\right\|_{B_{2}} \leq \frac{1}{h} \int_{t}^{t+h}\|x(\tau+u)-x(\tau)\|_{B_{2}} d \tau .
\end{gathered}
$$

Moreover, from the H ö lder inequality we obtain

$$
\frac{1}{h} \int_{t}^{t+h}\|x(\tau+u)-x(\tau)\|_{B_{2}} d \tau \leq\left(\frac{1}{h}\right)^{\frac{1}{p_{0}}}\left(\int_{t}^{t+h}\|x(\tau+u)-x(\tau)\|_{B_{2}}^{p_{0}} d \tau\right)^{\frac{1}{p_{0}}} \leq
$$

$$
\leq\left(\frac{1}{h}\right)^{\frac{1}{p_{0}}}\left(\int_{0}^{T}\|x(\tau+u)-x(\tau)\|_{B_{2}}^{p_{0}} d \tau\right)^{\frac{1}{p_{0}}}<\left(\frac{\varepsilon}{h}\right)^{\frac{1}{p_{0}}} \quad \forall x \in K, \forall 0<u<\delta, \forall t \in S .
$$

Therefore the family of functions $\left\{x_{h}\right\}_{x \in K}$ is equicontinuous.
Since $\forall x \in K \quad \forall t \in S$ it results in

$$
\begin{gathered}
\left\|x_{h}(t)\right\|_{B_{2}}=\frac{1}{h}\left\|\int_{t}^{t+h} x(\tau) d \tau\right\|_{B_{2}} \leq \frac{1}{h} \int_{t}^{t+h}\|x(\tau)\|_{B_{2}} d \tau \leq \\
\leq\left(\frac{1}{h}\right)^{\frac{1}{p_{1}}}\left(\int_{t}^{t+h}\|x(\tau)\|_{B_{2}}^{p_{1}} d \tau\right)^{\frac{1}{p_{1}}} \leq\left(\frac{1}{h}\right)^{\frac{1}{p_{1}}}\left(\int_{0}^{T}\|x(\tau)\|_{B_{2}}^{p_{1}} d \tau\right)^{\frac{1}{p_{1}}} \leq\left(\frac{C}{h}\right)^{\frac{1}{p_{1}}},
\end{gathered}
$$

the family of functions $\left\{x_{h}\right\}_{x \in K}$ is uniformly bounded, because of the constant $C \geq 0$ does not depend on $x \in K$. Hence, $\forall h: 0<h<\delta$ the family of functions $\left\{x_{h}\right\}_{x \in K}$ is precompact in $C\left(S ; B_{2}\right)$, so in $L_{\min \left\{p_{0}, p_{1}\right\}}\left(S ; B_{2}\right)$ too.

On the other hand, $\forall 0<h<\delta, \forall x \in K, \forall t \in S$

$$
\begin{gathered}
\left\|x(t)-x_{h}(t)\right\|_{B_{2}} \leq \frac{1}{h} \int_{t}^{t+h}\|x(t)-x(\tau)\|_{B_{2}} d \tau \leq \\
\leq \frac{1}{h} \int_{0}^{h}\|x(t)-x(t+\tau)\|_{B_{2}} d \tau \leq\left(\frac{1}{h}\right)^{\frac{1}{p_{0}}}\left(\int_{0}^{h}\|x(t)-x(t+\tau)\|_{B_{2}}^{p_{0}} d \tau\right)^{\frac{1}{p_{0}}} .
\end{gathered}
$$

From here, taking into account inequality (8) we receive:

$$
\begin{aligned}
& \left(\int_{0}^{T}\left\|x(t)-x_{h}(t)\right\|_{B_{2}}^{p_{0}} d t\right)^{\frac{1}{p_{0}}} \leq\left(\int_{0}^{T} \frac{1}{h} \int_{0}^{h}\|x(t)-x(t+\tau)\|_{B_{2}}^{p_{0}} d \tau d t\right)^{\frac{1}{p_{0}}}= \\
& \quad=\left(\left.\frac{1}{h} \int_{00}^{h T} \int_{0}^{T} \right\rvert\, x(t)-x(t+\tau) \|_{B_{2}}^{p_{0}} d t d \tau\right)^{\frac{1}{p_{0}}}<\left(\frac{1}{h} \int_{0}^{h} \varepsilon d \tau\right)^{\frac{1}{p_{0}}}=\varepsilon^{\frac{1}{p_{0}}} .
\end{aligned}
$$

Hence, by virtue of the precompactness of system $\left\{x_{h}\right\}_{x \in K}$ in $L_{\min \left\{p_{0}, p_{1}\right\}}\left(S ; B_{2}\right) \quad \forall 0<h<\delta$ we have that K is a precompact set in $L_{\min \left\{p_{0}, p_{1}\right\}}\left(S ; B_{2}\right)$.

Let us consider the second case. Assume that for some $q>1$ the set K is bounded in $L_{q}\left(S ; B_{1}\right)$. Similarly to the previous case, it is enough to show that for every $p \in[1 ; q)$ and $\left\{y_{n}\right\}_{n \geq 1} \subset K$ there exists a subsequence $\left\{y_{n_{k}}\right\}_{k \geq 1} \subset$ $\subset\left\{y_{n}\right\}_{n \geq 1}$ and $y \in L_{p}\left(S ; B_{1}\right)$ so that

$$
y_{n_{k}} \rightarrow y \quad \text { in } \quad L_{p}\left(S ; B_{1}\right) \quad \text { as } \quad k \rightarrow \infty .
$$

Because of $y_{n} \rightarrow y$ in $L_{\min \left\{p_{0}, p_{1}\right\}}\left(S ; B_{1}\right)$, up to a subsequence, as $n \rightarrow \infty$, we have $\exists\left\{y_{n_{k}}\right\}_{k \geq 1} \subset\left\{y_{n}\right\}_{n \geq 1}$ such that $\lambda\left(B_{n_{k}}\right) \rightarrow 0$ as $k \rightarrow \infty$, where $B_{n}:=$ $:=\left\{t \in S \mid\left\|y_{n}(t)-y(t)\right\|_{B_{1}} \geq 1\right\}$ for every $n \geq 1, \lambda$ is the Lebesgue measure on S. Then for every $k \geq 1$

$$
\begin{aligned}
& \int_{S}\left\|y_{n_{k}}(s)-y(s)\right\|_{B_{1}}^{p} d s=\int_{A_{n_{k}}}\left\|y_{n_{k}}(s)-y(s)\right\|_{B_{1}}^{p} d s+ \\
+ & \int_{B_{n_{k}}}\left\|y_{n_{k}}(s)-y(s)\right\|_{B_{1}}^{p} d s \leq \int_{A_{n_{k}}}\left\|y_{n_{k}}(s)-y(s)\right\|_{B_{1}}^{p} d s+ \\
+ & \left(\int_{S}\left\|y_{n_{k}}(s)-y(s)\right\|_{B_{1}}^{q} d s\right)^{\frac{p}{q}}\left(\lambda\left(B_{n_{k}}\right)\right)^{\frac{q-p}{q}}=: I_{n_{k}}+J_{n_{k}},
\end{aligned}
$$

where $A_{n}=S \backslash B_{n}$ for every $n \geq 1$.
It is clear that $J_{n_{k}} \rightarrow 0$ as $k \rightarrow \infty$. Let us consider $I_{n_{k}}$. Since $\left\{y_{n_{k}}\right\}_{k \geq 1}$ is precompact in $L_{\min \left\{p_{0}, p_{1}\right\}}\left(S ; B_{1}\right)$, there exists such $\left\{y_{m_{k}}\right\}_{k \geq 1} \subset\left\{y_{n_{k}}\right\}_{k \geq 1}$ that $y_{m_{k}}(t) \rightarrow y(t)$ in B_{1} as $k \rightarrow \infty$ almost everywhere in S. Setting

$$
\forall k \geq 1, \quad \forall t \in S \quad \varphi_{m_{k}}(t):=\left\{\begin{array}{cc}
\left\|y_{m_{k}}(t)-y(t)\right\|_{B_{1}}^{p}, & t \in A_{n}, \\
0, & \text { otherwice },
\end{array}\right.
$$

using definition of $A_{m_{k}}$, sequence $\left\{\varphi_{m_{k}}\right\}_{k \geq 1}$ satisfies the conditions of the Lebesgue theorem with the integrable majorant $\phi \equiv 1$. So $\varphi_{m_{k}} \rightarrow \overline{0}$ in $L_{1}(S)$ as $k \rightarrow \infty$. Thus, within to a subsequence, $y_{n} \rightarrow y$ in $L_{q}\left(S ; B_{1}\right)$.

The theorem is proved.
Let Banach spaces B_{0}, B_{1}, B_{2} satisfy all assumptions (5), (6), $p_{0}, p_{1} \in[1 ;+\infty)$ be arbitrary numbers. We consider the set with the natural operations

$$
W=\left\{v \in L_{p_{0}}\left(S ; B_{0}\right) \mid v^{\prime} \in L_{p_{1}}\left(S ; B_{2}\right)\right\},
$$

where the derivative v^{\prime} of an element $v \in L_{p_{0}}\left(S ; B_{0}\right)$ is considered in the sense of the scalar distribution space $\mathcal{D}\left(S ; B_{2}\right)$. It is clear, that

$$
W \subset L_{p_{0}}\left(S ; B_{0}\right)
$$

Theorem 4. The set W with the natural operations and the graph norm

$$
\|v\|_{W}=\|v\|_{L_{p_{0}}}\left(S ; B_{0}\right)+\left\|v^{\prime}\right\|_{L_{p_{1}}}\left(S ; B_{2}\right)
$$

is a Banach space.

Proof. The executing of the norm properties for $\|\cdot\|_{W}$ immediately follows from its definition. Now we consider the completeness of W referring to just defined norm. Let $\left\{v_{n}\right\}_{n \geq 1}$ be a Cauchy sequence in W. Hence, due to the completeness of $L_{p_{0}}\left(S ; B_{0}\right)$ and $L_{p_{1}}\left(S ; B_{2}\right)$ it follows that for some $y \in L_{p_{0}}\left(S ; B_{0}\right)$ and $v \in L_{p_{1}}\left(S ; B_{2}\right)$
$y_{n} \rightarrow y$ in $L_{p_{0}}\left(S ; B_{0}\right)$ and $y_{n}^{\prime} \rightarrow v$ in $L_{p_{1}}\left(S ; B_{2}\right)$ as $n \rightarrow+\infty$.
Due to [5, lemma IV.1.10] and in virtue of continuous dependence of the derivative by the distribution in $\mathcal{D}^{*}\left(S ; B_{2}\right)$ (see [5, p. 169) it follows, that $y^{\prime}=v \in L_{p_{1}}\left(S ; B_{2}\right)$.

The theorem is proved.
Theorem 5. Under conditions (5), (6) $W \subset C\left(S ; B_{2}\right)$ with the continuous embedding.

Proof. For a fixed $y \in W$ let us show that $y \in C\left(S ; B_{2}\right)$. Let us put

$$
\xi(t)=\int_{t_{0}}^{t} y^{\prime}(\tau) d \tau \quad \forall t_{0}, t \in S
$$

The integral is well-defined because $y^{\prime} \in L_{1}\left(S ; B_{2}\right)$. On the other hand, from the inequality [5, p. 153]

$$
\|\xi(t)-\xi(s)\|_{B_{2}} \leq \int_{t}^{s}\left\|y^{\prime}(\tau)\right\|_{B_{2}} d \tau \quad \forall s \geq t, \quad s \in S
$$

it follows that $\xi \in C\left(S ; B_{2}\right)$. Due to [5] (lemma IV.1.8) $\xi^{\prime}=y^{\prime}$, so from [5] (lemma IV.1.9) it follows that

$$
y(t)=\xi(t)+z \quad \text { for a.e. } t \in S
$$

for some fixed $z \in B_{2}$.
Thus the function y also lies in $C\left(S ; B_{2}\right)$.
In virtue of the continuous embedding of $L_{p_{1}}\left(S ; B_{2}\right)$ in $L_{1}\left(S ; B_{2}\right)$ we have that for some constant $k>0$, which does not depend on y,

$$
\|\xi(t)\|_{B_{2}} \leq \int_{S}\left\|y^{\prime}(\tau)\right\|_{B_{2}} d \tau \leq k\left\|y^{\prime}\right\|_{L_{p_{1}}}\left(S ; B_{2}\right) \quad \forall t \in S .
$$

From here, due to the continuous embedding $B_{0} \subset B_{2}$, we have

$$
\begin{gathered}
\|z\|_{B_{2}}(\operatorname{mes}(S))^{1 / p_{1}}=\left(\int_{S}\|z\|_{B_{2}}^{p_{1}} d s\right)^{1 / p_{1}}=\|y-\xi\|_{L_{p_{1}}}\left(S ; B_{2}\right) \leq \\
\leq k_{1}\left(\|y\|_{L_{p_{1}}}\left(S ; B_{2}\right)+\|\xi\|_{C\left(S ; B_{2}\right)}\right) \leq k_{2}\left(\|y\|_{L_{p_{0}}}\left(S ; B_{0}\right)+\left\|y^{\prime}\right\|_{L_{p_{1}}}\left(S ; B_{2}\right)\right)
\end{gathered}
$$

where $\operatorname{mes}(S)$ is the "length" (the measure) of $S, k_{2}>0$ is a constant that does not depend on $y \in W$. Therefore, from the last two relations there exists $k_{3} \geq 0$ such that

$$
\|y\|_{C\left(S ; B_{2}\right)} \leq k_{3}\|y\|_{W} \quad \forall y \in W
$$

The theorem is proved.
The next result represents a generalization of the compactness lemma [4, theorem 1.5.1, p. 70] into the case $p_{0}, p_{1} \in[1 ;+\infty)$.

Theorem 6. Under conditions (5), (6), for all $p_{0}, p_{1} \in[1 ;+\infty)$ the Banach space W is compactly embedded in $L_{p_{0}}\left(S ; B_{1}\right)$.

Proof. At the beginning we prove the compact embedding of W in $L_{1}\left(S ; B_{2}\right)$.

For every $y \in W$ and $h \in \mathbb{R}$ let us take

$$
y_{h}(t)=\left(\begin{array}{cc}
y(t+h), & \text { if } t+h \in S \\
\overline{0}, & \text { otherwice }
\end{array}\right.
$$

In virtue of theorem 5 the given definition is correct.
Lemma 2. For every $y \in W$ and $h \in \mathbb{R}$

$$
\begin{equation*}
\left\|y-y_{h}\right\|_{L_{1}\left(S ; B_{2}\right)} \leq h\left\|y^{\prime}\right\|_{L_{1}\left(S ; B_{2}\right)} \tag{9}
\end{equation*}
$$

Proof. Let $y \in W$ be fixed. Then

$$
\left\|y-y_{h}\right\|_{L_{1}}\left(S ; B_{2}\right)=\int_{S}\|y(t+h)-y(t)\|_{B_{2}} d t=\int_{S}\left\|\int_{t}^{t+h} y^{\prime}(\tau) d \tau\right\|_{B_{2}} d t .
$$

Let us put $g_{y}(t)=\int_{t}^{t+h} y^{\prime}(\tau) d \tau=y(t+h)-y(t) \quad \forall t \in S, i=1,2 . \quad$ Due to theorem 5 the element $g_{y} \in C\left(S ; B_{2}\right)$. So, as S is a compact set, we have that $g_{y} \in L_{1}\left(S ; B_{2}\right)$. Therefore, due to proposition [6, p.191] with $X=L_{1}\left(S ; B_{2}\right)$ and to [1, theorem 2] it follows the existence of $h_{y} \in L_{\infty}\left(S ; B_{2}^{*}\right) \equiv X^{*}$ such that

$$
\int_{S}\left\|g_{y}(t)\right\|_{B_{2}} d t=\int_{S}\left\langle h_{y}(t), g_{y}(t)\right\rangle_{B_{2}} d t \text { and }\left\|h_{y}\right\|_{L_{\infty}}\left(S ; B_{2}^{*}\right)=1
$$

Hence,

$$
\begin{aligned}
& \int \| \int_{S} \mid t+h \\
& y^{\prime}(\tau) d \tau\left\|_{B_{2}} d t=\int_{S}\right\| g_{y}(t) \|_{B_{2}} d t=\int_{S}\left\langle h_{y}(t), g_{y}(t)\right\rangle_{B_{2}} d t= \\
& =\int_{S}\left\langle h_{y}(t), \int_{t}^{t+h} y^{\prime}(\tau) d \tau\right\rangle_{B_{2}} d t=\int_{S}^{t+h} \int_{t}^{t h}\left\langle h_{y}(t), y^{\prime}(\tau)\right\rangle_{B_{2}} d \tau d t=
\end{aligned}
$$

$$
\begin{aligned}
= & \int_{S \tau-h}^{\tau} \int^{\tau}\left\langle h_{y}(t), y^{\prime}(\tau)\right\rangle_{B_{2}} d t d \tau=\int_{S}\left\langle\int_{\tau-h}^{\tau} h_{y}(t) d t, y^{\prime}(\tau)\right\rangle_{B_{2}} d \tau \leq \\
& \leq \operatorname{esssup}_{t \in S}\left\|h_{y}(t)\right\|_{B_{2}^{*}} h \int_{S}\left\|y^{\prime}(\tau)\right\|_{B_{2}} d \tau \leq h\left\|y^{\prime}\right\|_{L_{1}\left(S ; B_{2}\right)} .
\end{aligned}
$$

So, we have obtained necessary estimation (9).
The lemma is proved.
Let us continue the proof of the given theorem. Let $K \subset W$ be an arbitrary bounded set. Then for some $C>0$

$$
\begin{equation*}
\|y\|_{L_{p_{0}}\left(S ; B_{0}\right)} \leq C, \quad\left\|y^{\prime}\right\|_{L_{p_{1}}\left(S ; B_{2}\right)} \leq C \quad \forall y \in K \tag{10}
\end{equation*}
$$

In order to prove the precompactness of K in $L_{1}\left(S ; B_{1}\right)$ let us apply theorem 4 with $B_{0}=B_{0}, B_{1}=B_{1}, B_{2}=B_{2}, p_{0}=1, p_{1}=p_{1}$. Due to estimates (9) and (10) the all conditions of the given theorem hold. So, the set K is precompact in $L_{1}\left(S ; B_{1}\right)$ and hence in $L_{1}\left(S ; B_{2}\right)$. In virtue of theorem 5 and the Lebesgue theorem it follows that the set K is precompact in $L_{p_{0}}\left(S ; B_{0}\right)$. Hence, due to corollary 2 we obtain the necessary statement.

The theorem is proved.
Proposition 3. Let Banach spaces B_{0}, B_{1}, B_{2} satisfy conditions (5), (6), $p_{0}, p_{1} \in[1 ;+\infty),\left\{u_{h}\right\}_{h \in I} \subset L_{p_{1}}\left(S ; B_{0}\right)$, where $I=(0, \delta) \subset \mathbb{R}_{+}, S=[a, b]$ such that
a) $\left\{u_{h}\right\}_{h \in I}$ is bounded in $L_{p_{1}}\left(S ; B_{0}\right)$;
b) there exists such $c: I \rightarrow \mathbb{R}_{+}$that $\underset{n \rightarrow \infty}{\lim _{n \rightarrow \infty}} c\left(\frac{b-a}{2^{n}}\right)=0$ and

$$
\forall h \in I \quad \int_{S}\left\|u_{h}(t)-u_{h}(t+h)\right\|_{B_{2}}^{p_{0}} d t \leq c(h) h^{p_{0}} .
$$

Then there exists $\left\{h_{n}\right\}_{n \geq 1} \subset I \quad\left(h_{n} \searrow 0+\right.$ as $\left.n \rightarrow \infty\right)$ so that $\left\{u_{h_{n}}\right\}_{n \geq 1}$ converges in $L_{\min \left\{p_{0}, p_{1}\right\}}\left(S ; B_{1}\right)$.

Remark 5. We assume $u_{h}(t)=\overline{0}$ when $t>b$.
Remark 6. Without loss of generality let us consider $S=[0,1]$.
Proof. At first we prove this statement for $L_{p_{0}}\left(S ; B_{2}\right)$. In virtue of Minkowski inequality for every $h=\frac{1}{2^{N}} \in I$ and $k \geq 1$

$$
\left(\int_{0}^{1}\left\|u_{h}(t)-u_{\frac{h}{2^{k}}}(t)\right\|_{B_{2}}^{p_{0}} d t\right)^{\frac{1}{p_{0}}} \leq\left(\int_{0}^{1}\left\|u_{h}(t)-u_{h}(t+h)\right\|_{B_{2}}^{p_{0}} d t\right)^{\frac{1}{p_{0}}}+
$$

$$
\begin{aligned}
& +\left(\int_{0}^{1}\left\|u_{h}(t+h)-u_{\frac{h}{2^{k}}}(t+h)\right\|_{B_{2}}^{p_{0}} d t\right)^{\frac{1}{p_{0}}}+\left(\int_{0}^{1}\left\|u_{\frac{h}{2^{k}}}(t+h)-u_{\frac{h}{2^{k}}}(t)\right\|_{B_{2}}^{p_{0}} d t\right)^{\frac{1}{p_{0}}} \leq \\
& \leq c^{\frac{1}{p_{0}}}(h) h+\left(\int_{h}^{1}\left\|u_{h}(t)-u_{\frac{h}{2^{k}}}(t)\right\|_{B_{2}}^{p_{0}} d t\right)^{\frac{1}{p_{0}}}+\sum_{i=0}^{2^{k}-1}\left(\int_{0}^{1} \| u_{2^{k}}^{\frac{h}{2^{k}}}\left(t+\frac{i+1}{2^{k}} h\right)-\right. \\
& \left.-u_{\frac{h}{2^{k}}}\left(t+\frac{i}{2^{k}} h\right) \|_{B_{2}}^{p_{0}} d t\right)^{\frac{1}{p_{0}}} \leq c^{\frac{1}{p_{0}}}(h) h+2^{k} \frac{h}{2^{k}} c^{\frac{1}{p_{0}}}\left(h / 2^{k}\right)+ \\
& +\left(\int_{h}^{1}\left\|u_{h}(t)-u_{\frac{h}{2^{k}}}(t)\right\|_{B_{2}}^{p_{0}} d t\right)^{\frac{1}{p_{0}}} \leq h\left(c^{\frac{1}{p_{0}}}(h)+c^{\frac{1}{p_{0}}}\left(h / 2^{k}\right)\right)+ \\
& +\left(\int_{h}^{1}\left\|u_{h}(t)-u_{h}(t+h)\right\|_{B_{2}}^{p_{0}} d t\right)^{\frac{1}{p_{0}}}+\left(\int_{h}^{1}\left\|u_{h}(t+h)-u_{\frac{h}{2^{k}}}(t+h)\right\|_{B_{2}}^{p_{0}} d t\right)^{\frac{1}{p_{0}}}+ \\
& +\left(\int_{h}^{1}\left\|u_{\frac{h}{2^{k}}}(t+h)-u_{\frac{h}{2^{k}}}(t)\right\|_{B_{2}}^{p_{0}} d t\right)^{\frac{1}{p_{0}}} \leq \ldots \leq 2 h\left(c^{\frac{1}{p_{0}}}(h)+c^{\frac{1}{p_{0}}}\left(h / 2^{k}\right)\right)+ \\
& +\left(\int_{2 h}^{1}\left\|u_{h}(t)-u_{h}(t+h)\right\|_{B_{2}}^{p_{0}} d t\right)^{\frac{1}{p_{0}}} \leq \ldots \leq 2^{N} h\left(c^{\frac{1}{p_{0}}}(h)+c^{\frac{1}{p_{0}}}\left(h / 2^{k}\right)\right)= \\
& =c^{\frac{1}{p_{0}}}(h)+c^{\frac{1}{p_{0}}}\left(h / 2^{k}\right) .
\end{aligned}
$$

So, for every $N \geq 1$ and $k \geq 1$ it results in

$$
\left(\int_{0}^{1}\left\|u_{1 / 2^{N}}(t)-u_{1 / 2^{N+k}}(t)\right\|_{B_{2}}^{p_{0}} d t\right)^{\frac{1}{p_{0}}} \leq c^{\frac{1}{p_{0}}}\left(\frac{1}{2^{N}}\right)+c^{\frac{1}{p_{0}}}\left(\frac{1}{2^{N+k}}\right) .
$$

In virtue of assumption b) we can choose $\left\{h_{n}\right\}_{n \geq 1} \subset\left\{\frac{1}{2^{m}}\right\} \bigcap_{m \geq 1} I$ such that $c\left(h_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. So, the sequence $\left\{u_{h_{n}}\right\}_{n \geq 1}$ is fundamental in $L_{p_{0}}\left(S ; B_{2}\right)$. Because of $B_{0} \subset B_{1}$ with compact embedding, the sequence $\left\{u_{h_{n}}\right\}_{n \geq 1}$ is bounded in $L_{\min \left\{p_{0}, p_{1}\right\}}\left(S ; B_{0}\right)$; due to corollary 2 it follows that $\left\{u_{h_{n}}\right\}_{n \geq 1}$ is fundamental in $L_{\min \left\{p_{0}, p_{1}\right\}}\left(S ; B_{1}\right)$.

The proposition is proved.
Now we combine all results to obtain the necessary a priori estimate.
Theorem 7. Let all conditions of theorem 2 are satisfied and $V \subset H$ with compact embedding. Then (4) be true and the set

$$
\bigcup_{n \geq 1} D_{n} \text { is bounded in } C(S ; H) \text { and precompact in } L_{p}(S ; H)
$$

for every $p \geq 1$.
Proof. Estimation (4) follows from theorem 2. Now we use compactness theorem 6 with $B_{0}=V, B_{1}=H, B_{2}=V^{*}, p_{0}=1, p_{1}=1$. Remark that $X^{*} \subset L_{1}(S ; V)$ and $X \subset L_{1}\left(S ; V^{*}\right)$ with continuous embedding. Hence, the set

$$
\bigcup_{n \geq 1} D_{n} \text { is precompact in } L_{1}(S ; H) .
$$

In virtue of (4) and theorem 1 on continuous embedding of W^{*} in $C(S ; H)$, it follows that the set

$$
\bigcup_{n \geq 1} D_{n} \text { is bounded in } C(S ; H) .
$$

Further, by using standard conclusions and the Lebesgue theorem we obtain the necessary statement.

The theorem is proved.
Partially Supported by State Fund of Fundamntal Investigations Grant № Ф25.1/029-2008

REFERENCES

1. Kasyanov P., Mel'nik V.S. On some topological properties for special classes of Banach spaces. Part 1 // System Research \& Information Technologies. - 2008. № 1. - P. 127-143.
2. Kasyanov P.O. Galerkin's method for one class differential-operator inclusions // Dopovidi Natcional'noi Academii Nauk Ukraini. - 2005. - № 9. - P. 20-24.
3. Kasyanov P.O., Mel'nik V.S. Faedo-Galerkin method for differential-operator inclusions in Banach spaces with maps of $w_{\lambda_{0}}$-pseudomonotone type // Zbirnik prats institutu mathematiki Nacional'noy Akademiy nauk Ukrainy. Part 2. - 2005. № 1. - P. 82-105.
4. Lions J.L. Quelques me'thodes de re' solution des problem $\mathrm{e}^{\prime} \mathrm{s}$ aux limites non lineaires. - Paris: DUNOD GAUTHIER-VILLARS, 1969. - 587 p .
5. Gaevsky H., Greger K., Zaharias K. Nonlinear The operator equations and the opera-tor-differential equations. - M.:Myr, 1977. - 337 p. (Russian translation).
6. Aubin J.P. Ekeland I. Applied Nonlinear Analysis. - Moscow: Mir, 1988. - p. 510.
[^0]
[^0]: From the Editorial Board: the article corresponds completely to submitted manuscript.

