Electronic structure, Fermi surface and dHvA effect in YIn$_3$, LuIn$_3$, and YbIn$_3$

V.N. Antonov

Institute of Metal Physics, 36 Vernadsky Street, 03680 Kiev-142, Ukraine
E-mail: antonov@imp.kiev.ua

Received June 26, 2013

The electronic structure, Fermi surface, angle dependence of the cyclotron masses and extremal cross sections of the Fermi surface of RIn$_3$ (R = Y, Lu, and Yb) compounds were investigated from first principles using the fully relativistic Dirac linear muffin-tin orbital method. The effect of the spin-orbit (SO) interaction and Coulomb repulsion U in a frame of the LDA+SO$+U$ method on the Fermi surface, orbital dependence of the cyclotron masses, and extremal cross sections of the Fermi surface are examined in details. A good agreement with experimental data of cyclotron masses and extremal cross sections of the Fermi surface was achieved.

PACS: 75.50.Cc Other ferromagnetic metals and alloys;
71.20.Lp Intermetallic compounds;
71.15.Rf Relativistic effects.

Keywords: Fermi surface, band structure, rare earth compounds.

1. Introduction

The de Haas–van Alphen (dHvA) effect is an oscillatory variation of the diamagnetic susceptibility as a function of a magnetic field strength (B). The method provides details of the extremal areas of a Fermi surface (FS). The first experimental observation of this behavior was made by Wander Johannes de Haas and his student P.M. van Alphen in 1930 [1]. They have measured a magnetization M of semimetal bismuth as a function of the magnetic field and found that the magnetic susceptibility M/B is a periodic function of the reciprocal of the magnetic field (1/B). Similar oscillatory behavior has been also observed in magnetoresistance (so-called the Shubnikov–de Haas effect). The dHvA phenomenon was explained by Landau [2] as a consequence of the quantization of closed electronic orbits in a magnetic field. The electrons in a metal exist only as a series of orbitally quantized states in a magnetic field. Because the number of occupied Landau levels changes with the magnetic field, on sweeping the magnetic field one observes oscillations in the magnetization which are periodic in an inverse magnetic field.

Although the magnetic oscillations were discovered as long as 1930 in bismuth, it was nearly 20 years before the effect was found in other metals [3]. Bismuth contains very few conduction electrons and so has a very small Fermi surface. The significance of a small Fermi surface is that the oscillations being of low frequency and requiring only modest magnetic field are particularly easy to observe. Higher fields and more sensitive techniques are necessary for seeing the oscillations in most other metals and it was mainly for this reason that the effect was not more widely observed until the late 1940s, while the very high frequency oscillations associated with the large Fermi surfaces of monovalent noble and alkali metals were observed only in the late 1950s [4].

The connection between the oscillations and the Fermi surface was pointed out independently by I.M. Lifshitz (1950) and by Onsager (1951), fortunately at just the time when the oscillations were being discovered in more and more metals. For majority of the metals the oscillation proved to be much more complicated than those in bismuth. It was Lifshitz–Onsager formulation that provided the key to unraveling the rather complicated experimental data.

Onsager during his visit Cambridge in 1951 pointed out that the change in 1/B through a single period of oscillation was determined by the remarkably simple relation

$$P = \frac{1}{F} = \Delta \left(\frac{1}{B} \right) = \frac{2\pi e}{\hbar S_F},$$

where P is the period of the dHvA oscillation in 1/B, F is the dHvA frequency, and S_F is any extremal cross-sectional area of the Fermi surface in a plane normal to the magnetic field. Later Onsager published his idea in Ref. 5. Similar idea has been proposed by I.M. Lifshitz in an unpublished lecture in Academy of Sciences of Ukraine in 1950. Later on I.M. Lifshitz and A.M. Kosevich derived
a rigorous general form of the oscillatory magnetization which gives not only the oscillation frequency but also their amplitude and phase [6,7].

If the \(z \) axis is taken along the magnetic field, then the area of a Fermi-surface cross section at height \(k_z \) is \(S(k_z) \) and the extremal areas \(S_F \) are the values of \(S(k_z) \) at the \(k_z \) where \(S(k_z) = 0 \). Thus maximum and minimum cross sections are among the extremal ones. Since altering the magnetic field direction brings different extremal areas into play, all extremal areas of the Fermi surface can be mapped out. From the temperature and field dependences of the dHvA amplitude, the cyclotron effective mass \(m^*_e \) can be determined. The mean free path \(l \) can be also estimated from the simple relations: \(S_F = \pi k_F^2 m^*_e \), \(h k_F = m^*_e v_F \), and \(l = v_F/\tau \), where \(k_F \) is half of the caliper dimension of a circular \(S_F \) and \(v_F \) is the Fermi velocity. Although, the dHvA experiment needs high-quality single crystals as well as low temperatures down to 30 mK and strong magnetic fields up to 170 kOe, it provides quite precious information on the Fermi surface of crystals.

De Haas–van Alphen effect is a powerful tool to explore the electronic structure of metals. To prove it we consider two examples in the present study. First, we compare the band structure and Fermi surface of isotypical and isoelectronic compounds YIn\(_3\) and LuIn\(_3\). We will show that even a small change of the Fermi-surface properties associated with the relativistic effects can be precisely detected by the dHvA measurements.

The second example is strongly correlated YbIn\(_3\) compound with divalent Yb\(^{2+}\) ions. For this compound we performed three independent fully relativistic band structure calculations. The 4\(f \) electrons have been considered as: (1) itinerant electrons using the local density approximation (LDA+SO); (2) fully localized, putting them in the core; and (3) partly localized using the LDA+SO+\(U \) approximation. We will show that the dHvA method can be suited as ideal method for the decision which approximation is more correct for the description of the electronic structure of lanthanide crystals.

The de Haas–van Alphen oscillations in LuIn\(_3\) and YbIn\(_3\) were measured by Nojiri et al. [8]. They also calculated angular dependence of the dHvA frequency in YbIn\(_3\) using 4\(f \)-localized model in a frame of full potential linear augmented plane wave (FLAPW) method. They found quite good agreement between the theory and the experiment for high-frequency ellipsoidal type \(\alpha \), \(\beta \), and \(\gamma \) orbits. Although, the agreement with the experiment for the low-frequency \(\delta \) orbits was worse and the \(\xi \) orbits were not described at all. The angular dependencies of the de Haas–van Alphen frequencies and the corresponding cyclotron masses for YIn\(_3\) were determined by Pluzhnikov et al. [9]. The dHvA frequency branches were in the range from 2.3·10\(^6\) to 105·10\(^6\) Oe. For all of them cyclotron masses were found to be light; their values were between 0.2 \(m_0 \) and 0.8 \(m_0 \). Fermi-surface properties in rare earth (R) and actinide (An) compounds of RX\(_3\) (X = Al, Ga, In, Si, Ge, Sn, Pb), AnX\(_3\), RTIn\(_5\) (T: transition metal), and AnTGa\(_5\) are presented in recent review article by Onuki and Settati [10].

The paper is organized as follows. Section 2 presents the details of the calculations. Section 3 is devoted to the electronic structure as well as the Fermi surface, angle dependence of the cyclotron masses and extremal cross sections of the Fermi surface in RIn\(_3\) (R = Y, Lu, and Yb) using the fully relativistic linear muffin-tin orbital (LMTO) band structure method. The results are compared with available experimental data. Finally, the results are summarized in Sec. 4.

2. Computational details

The RIn\(_3\) (R = Sc, Y, La, Lu, and rare earth elements) compounds crystallize in the AuCu\(_3\)-type cubic crystal structure with the space group symmetry \(Pm\bar{3}m \) (number 221), where the corner-sites are occupied by the R atoms and the face-centered sites are occupied by the In atoms (Fig. 1). Most RIn\(_3\) compounds order antiferromagnetically, except a paramagnet of PrIn\(_3\) with the singlet ground state in the CEF scheme. YIn\(_3\) and LuIn\(_3\) are Pauli paramagnets [10]. YbIn\(_3\) is also a divalent Pauli paramagnet. Determination of the energy band structure of solids is a many-body problem. Band theory, a mean-field theory to treat this problem, in the framework of the local density approximation, has been successful for many kinds of materials, and has become the de facto tool of first-principle calculations in solid state physics. It has contributed significantly to the understanding of material properties at the microscopic level. However, there are some systematic errors which have been observed when using the LDA. In particular, the LDA fails to describe the electronic structure and properties of 4\(f \)-electron systems in which the interaction among the electrons is strong. They now called strongly correlated electron systems and many new concepts to address these phenomena have been constructed. However, the understanding of these systems is not complete.

![Fig. 1. (Color online) Schematic representation of the RIn\(_3\) crystal structure.](image-url)
There are actually different attempts to improve the LDA to treat correlated electrons: GW approach, dynamical mean-field theory, time-dependent density functional theory, self-interaction correction, and LDA+U method being the most used ones [11,12]. To account better for the on-site f-electron correlations, we have adopted as a suitable model the LDA+U approach [13,14].

A rigorous formulation for the quasiparticle properties of solids is the Green function approach. The self-energy $\Sigma = G_0^{-1} - G^{-1}$ of the single-particle Green function G is energy dependent and yields the correlation corrections to the single-particle (mean-field) approximation to the quasiparticle excitation spectrum described by G_0. With a number of plausible assumptions, the LDA+U approach has been related to the so-called GW approximation to Σ in Ref. 15. Already the simplest random phase approximation applied to Σ for the Hubbard model yields a jump of $\Sigma(\epsilon)$ at the Fermi level ϵ_F by the Hubbard U. The more elaborate analysis of Ref. 15 results in a correlation correction to the mean-field approximation of the self-energy, which is $U_{\text{eff}}/2$ downward below the Fermi level and $U_{\text{eff}}/2$ upward above the Fermi level. As mean-field theory in a crystal describes always a delocalized situation and the LDA Kohn–Sham potential is a well proved approximation to the self-energy of weakly correlated situations [16], the suggestion is

$$\Sigma(\mathbf{r}, \mathbf{r}'; \epsilon) \approx \delta(\mathbf{r} - \mathbf{r}') v_{\text{LDA}}(\mathbf{r}) + P_m \frac{U_{\text{eff}}}{2} \left[\delta(\epsilon - \epsilon_F) - \delta(\epsilon_F - \epsilon) \right] P_m,$$

(2)

where P_m is the projector onto a strongly correlated m state.

The LDA+U approach simply uses (2) to replace the LDA Kohn–Sham potential in the self-consistency loop. This can be considered as a rough approximation to Σ. Since the potential shift is taken to be constant in space, it does not deform the Kohn–Sham orbital φ_{mk}. However, it shifts the levels of strongly correlated motion away from the Fermi level and thus removes incorrect hybridization with conduction states, which would spoil the calculated ground-state spin densities. On the other hand, being also understood as an approximation to Σ, it hopefully yields for the Kohn–Sham band structure the same quality of a working approximation to the quasiparticle excitation spectrum as it does in the case of weakly correlated metals. Estimates for U_{eff} may be obtained from constrained density functional calculations or from GW calculations in which case the approach is parameter-free. Most reliable are those results which do not very sensitively depend on the actual value of U_{eff} within a certain reasonable range.

The calculations of the electronic structure and Fermi-surface properties of RIn$_3$ compounds were performed using the fully relativistic spin-polarized Dirac LMTO method [17,18] in the atomic sphere approximation (ASA) with the combined correction term taken into account. We used the von Barth–Hedin parameterization [19] for the exchange-correlation potential. Brillouin zone (BZ) integrations were performed using the improved tetrahedron method [20]. For obtaining the self-consistent solution we used 286 k points in the irreducible part of the BZ. For the calculation of the Fermi-surface properties we used extended mesh with 22945 k points in the irreducible part of the BZ.

We have adopted the LDA+U method [13] as a different level of approximation to treat the electron–electron correlations. The LDA+U method has proved to be an efficient and reliable tool for calculating the electronic structure of systems where the Coulomb interaction is strong enough to cause localization of the electrons. We used the rotationally invariant LDA+U method described in details in our previous paper [14]. The effective on-site Coulomb repulsion U was considered as an adjustable parameter and was chosen to 7.0 eV. For the exchange integral J the value of 0.82 eV estimated from constrained LDA calculations was used.

3. Results and discussion

3.1. YIn$_3$ and LuIn$_3$

3.1.1. Energy band structure. The Y atom in YIn$_3$ has no f-electrons in valence band ($4f^{10}$ configuration). On the other hand, Lu possesses 14 f-electrons in valence band ($4f^{14}$ configuration). In our theoretical LDA calculation of the Fermi properties of LuIn$_3$ we treated 4f electrons as valence states as well as fully localized ones putting them in core. We found identical FSs for these two approximations. We can conclude that 4f states in LuIn$_3$ are strongly localized and have no influence on their Fermi properties. Figure 2 presents the energy band structure and total density of states (DOS) of YIn$_3$ (full lines) and LuIn$_3$ (dashed lines). The partial DOSs for YIn$_3$ are shown in Fig. 3. The crystal field at the Y (Lu) site (Oh point symmetry) causes the splitting of Y (Lu) d orbitals into a doublet e_g ($d_{3z^2-r^2}$ and $d_{x^2-y^2}$) and triplet t_{2g} (d_{xy}, d_{xz}, and d_{yz}). The crystal field at the In site (D4h point symmetry) causes the splitting of In p orbitals into a singlet a_{2u} (p_x) and a doublet e_u

Fig. 2. (Color online) Energy band structure and total DOS [in states/(cell·eV)] of YIn$_3$ (full blue curves) and LuIn$_3$ (dashed red curves).

Low Temperature Physics/Fizika Nizkikh Temperatur, 2014, v. 40, No. 4 391
There is a significant $p - Y d$ hybridization in the valence band. If one moves from YIn_3 to $LuIn_3$ the p valence bandwidth is slightly increasing due to the increasing extension of the corresponding atomic wave functions. The relativistic effects decrease the center of gravity of $Lu 6s$ valence bands in comparison with the $Y 5s$ bands. Although, the energy band structures of YIn_3 and $LuIn_3$ compounds are very similar (Fig. 2), there are some significant differences in the band positions. For example, the 8th empty energy band at the R symmetry point shifts downwards by 1.4 eV in $LuIn_3$ in comparison with the YIn_3 due to the relativistic effects. Also the 4th occupied energy band in the M symmetry point is shifted downwards by 0.5 eV in $LuIn_3$. Both these bands are predominantly of s character ($Lu 6s$ in $LuIn_3$ and $Y 5s$ in YIn_3). However, such dramatic change in the position of some energy bands has small influence on the relative positions which cross the ϵ_F. Two energy bands cross the ϵ_F in both the compounds: the 6th and 7th energy bands in YIn_3 and the 13th and 14th ones in $LuIn_3$. These bands have predominantly Y (Lu) d (t_{2g}) and In p (e_{u}) characters. However, there is at least one visible difference in these bands behavior. In the $\Gamma - R$ symmetry direction the 6th energy band lays below ϵ_F in YIn_3, however, the corresponding 13th band in $LuIn_3$ crosses the ϵ_F at around 1/3 distance from Γ to R points. As a result, $LuIn_3$ possesses closed electron sheet centered around Γ point in comparison with open one in YIn_3 (see below).

3.1.2. Fermi surface. The electronic configuration of Y atom is $[Kr] 4f^0 5d^1 5s^2$, while the configuration of Lu atom is $[Xe] 4f^{14} 5d^1 6s^2$. The total number of valence electrons is 12 in YIn_3 and 26 in $LuIn_3$. Therefore, both YIn_3 and $LuIn_3$ are a compensated metals with equal number of electrons and holes, or equal volume of the electron and hole Fermi surfaces. Figure 4 shows the Fermi surface of YIn_3, the corresponding Fermi surface for $LuIn_3$ can be found in Ref. 8 (Fig. 2). The Fermi surfaces of YIn_3 and $LuIn_3$ are very similar and consist of three kinds of major parts. Among them, the nearly spherical electron Fermi surface centered at the corner R points (Fig. 4, lower panel) originated from the 7th energy band in YIn_3 and 14th band in $LuIn_3$; a complex open along the <100> direction hole surface centered at Γ point (Fig. 4, upper panel) from the 6th
energy band in YIn$_3$ and 13th band in LuIn$_3$, and almost spherical in topology electron Fermi surface at Γ point. The last sheet of the Fermi surface derived from the 6th energy band in YIn$_3$ and 13th band in LuIn$_3$ has different topology in these compounds. It is closed in LuIn$_3$ and open in the $<111>$ direction in YIn$_3$. The difference is clearly seen in Fig. 5 where we present the calculated Fermi-surface cross-section areas of YIn$_3$ and LuIn$_3$ in the plane perpendicular to the $<111>$ direction at the 1/3 distance between the Γ and R points.

Figure 6 presents the calculated Fermi-surface cross-section areas of YIn$_3$ (left column) and LuIn$_3$ (right column) in the planes perpendicular to the z direction and cross R symmetry point (upper row), cross Γ point (lower row) and in the planes at 1/3 (the second row from the bottom) and 2/3 (the third row from the bottom) distances between the planes crossed the Γ and R points. The cross-section areas of almost spherical FSs centered in R points (red dashed curves) are almost identical in the shape and size for YIn$_3$ and LuIn$_3$. The cross sections for electron and hole FSs centered in Γ point are also similar in both compounds in the plane $z = 0$ (lower row in Fig. 6). However, for other three planes the cross sections are significantly differ from each other in YIn$_3$ and LuIn$_3$ not only in size but also in topology. These differences are well reflected in the experimentally measured dHvA frequencies.

Figure 7 shows the angular dependence of the dHvA frequency in YIn$_3$ and LuIn$_3$ for field directions in the (110) and (110) planes. The black full squares represent the results of dHvA experimental measurements by Pluzhnikov et al. [9] in YIn$_3$ (left panel) and by Nojiri et al. [8] in LuIn$_3$ (right panel). Branch α originates from the band 7-electron FS centered in R point in YIn$_3$ (14-electron FS in LuIn$_3$) with the nearly spherical topology, while the others originate from the band 6-hole and 6-electron FSs centered in Γ point. The electron FSs around R point have almost identical form and slightly different size in YIn$_3$ and LuIn$_3$. As a result, they have similar Fermi-surface cross-section areas (α orbits) at all the planes (Fig. 7). The β_1 branch originates from the belly orbit in the band 6-electron FS in YIn$_3$ (13-electron in LuIn$_3$) centered at the Γ point. As we pointed out above, LuIn$_3$ possesses closed
electron sheet centered around \(\Gamma \) point in comparison with open one in YIn\(_3\). As a result, the \(\beta_1 \) orbit appears in a whole angle interval in LuIn\(_3\) and restricted angle intervals in YIn\(_3\) (\(\pm 35^\circ \) around \(<100>\) direction and \(\pm 15^\circ \) around \(<111>\) direction). The \(\beta_3 \) orbits are also placed on the band 6-electron FS in YIn\(_3\) (13-electron in LuIn\(_3\)) centered at the \(\Gamma \) point. The \(\gamma \) orbits in both the compounds have similar angular field dependence.

The orbits in the region of the low dHvA frequencies (\(F < 0.1 \) T) correspond to small sheets of open 6-hole FS in YIn\(_3\) (13-hole in LuIn\(_3\)) centered at the \(\Gamma \) point. They are sensitive to peculiarities of the electronic structure and have not much similarity between dHvA spectra in YIn\(_3\) and LuIn\(_3\). Especially, there is a very small \(\sigma \) orbit in LuIn\(_3\) originated from small ellipsoid type FS sheets at the open 13-hole FS cross sections in LuIn\(_3\) which is absent in YIn\(_3\).
The theory reasonably well reproduces the experimentally measured frequencies for the \(\alpha, \beta_1, \beta_2, \gamma, \delta_1, \delta_2, \varepsilon_1, \) and \(\varepsilon_2 \) orbits. However, we were not able to detect low-frequency \(\delta \) orbits near the \(<111>\) direction observed experimentally. Instead, we found an additional two branches with higher frequencies near the \(<111>\) direction in \(\text{LuIn}_3 \) which were not detected experimentally. The small \(\sigma \) orbits are detected only at the \((110)\) plane in \(\text{LuIn}_3 \), however, we observed them almost in all angle interval. We also found an additional two branches with higher frequencies near the \(<111>\) and \(<110>\) directions in \(\text{YIn}_3 \) which were not detected experimentally.

Figure 8 shows the theoretically calculated angular dependence of the cyclotron masses \(m_{\epsilon_k} \) in \(\text{YIn}_3 \) and \(\text{LuIn}_3 \) and the experimentally measured masses \((m_\epsilon^* \) in \(\text{YIn}_3 \) in the \(<110>\) and \(<111>\) and \(<100>\) symmetry directions [9]. The cyclotron effective masses were determined from the temperature dependences of the amplitudes of the dHvA oscillations. The cyclotron masses were found to be relatively light in both the compounds. Their values were between \(-0.9 m_0 \) and \(0.5 m_0 \). Cyclotron masses for the \(\alpha \) orbits have almost constant angle dependence and equal to around \(0.4 m_0 \). We found a stronger angle field dependence for the \(\beta_1 \) orbit in \(\text{LuIn}_3 \) than in \(\text{YIn}_3 \). The \(\beta \) orbits was found to be strongly anisotropic in both compounds.

We note that band cyclotron effective masses \(m_{\epsilon_k} \) are renormalized by the electron–phonon interaction \(m_{\epsilon_k}^* = m_{\epsilon_k}(1+\lambda) \), where \(\lambda \) is the constant of the electron–phonon interaction. By comparing the experimentally measured cyclotron masses with band masses we can estimate the \(\lambda \). It is strongly varied on the orbit type and magnetic direction. We estimate the constant of the electron–phonon interaction to be equal to 0.45 and 0.46 for the \(\varepsilon_1 \) and \(\varepsilon_2 \) hole orbits, respectively, with \(\mathbf{H} || <110> \). The constant \(\lambda \) for the electron orbits is equal to 0.48 for the \(\alpha \) orbit with magnetic field along \(<100>\) direction. For the \(\gamma \) and \(\delta \) orbits with \(\mathbf{H} || <100> \) the \(\lambda \) was found to be equal to 0.8 and 0.34, respectively.

3.2. \(\text{YbIn}_3 \)

3.2.1. Electronic structure. The 4f-electron lanthanide compounds are usually treated by a 4f-localized model (4f electrons in core). The localized 4f-electron picture is a good starting point in description of the electronic structure of lanthanides. On the other hand, there are several interesting phenomena such as metal–insulator transitions, valence fluctuations in the Kondo effect, heavy fermion behavior, superconductivity, and so on. All these effects strongly depend on the hybridization between 4f and conduction electrons and cannot be described correctly in the 4f-localized model.

\(\text{YbIn}_3 \) is a Pauli paramagnet with the divalent property of \(\text{Yb}^{2+} \) [21] (4f\(^{14}\) configuration). The divalent property of \(\text{YbIn}_3 \) is clear from the lattice constants of \(\text{RIn}_3 \) [10], where the lattice constant of \(\text{YbIn}_3 \) deviates from the lanthanide contraction [21]. An important issue is the energy position of the occupied 4f\(^{14}\) states in the electron band structure of \(\text{YbIn}_3 \). It is well known that LDA usually gives a wrong energy position for the 4f states in rare-earth compounds. For nonzero 4f occupation it places the 4f states right at the Fermi level [22,23] in contradiction to various experimental observations. In the case of Gd compounds or divalent \(\text{Yb}^{2+} \) compounds the LDA places the 4f states too close to the Fermi energy [12,24].

Figure 9 shows the fully relativistic energy band structure of \(\text{YbIn}_3 \). In these calculations the 4f states have been considered as: (1) itinerant using the local density approximation, (2) fully localized, treating them as core states, and (3) partly localized using the LDA+U approximation. On the first glance all three approximations produce similar electronic structure in the close vicinity of \(\varepsilon_F \). The differences are in small details. In the LDA approximation fully occupied 4f states of \(\text{Yb}^{2+} \) are situated at \(-0.3 \) eV and \(-1.65 \) eV below the Fermi level for the 4f\(^{7/2}\) and 4f\(^{5/2}\) states, respectively. The corresponding 4f\(^{7/2,5/2}\) states in the LDA+U approach are located around \(-1.3 \) and \(-2.65 \) eV below Fermi level. Such shifting of the 4f-levels affects the Fermi surface because the 4f electrons directly contribute to the conduction electrons.

![Fig. 9. Self-consistent fully relativistic energy band structure and total DOS (in states/(unit cell-eV)) calculated for \(\text{YbIn}_3 \) treating the 4f states as: (1) fully localized with 4f in core (upper panel); (2) itinerant LDA approximation (middle panel); and (3) partly localized in the LDA+U approach (lower panel).](image-url)
3.2.2. Fermi surface. The electronic configuration of Yb atom is [Xe] $4f^{14}6s^2$, the same as in Lu atom but without 5d electron. Considering the valence electrons of $5s^25p^1$ in In atom, the total number of valence electrons are 25 (11 in the 4f-localized model) in YbIn$_3$, revealing an uncompensated metal. Due to the lack of one electron in valence band the Fermi level of YbIn$_3$ shifts downward in comparison with LuIn$_3$ compound. This leads to significant changing of the Fermi surface coming from LuIn$_3$ to YbIn$_3$. There are three energy bands which cross the s_F (5th, 6th, and 7th in localized model with 4f electrons in core, and 12th, 13th, and 14th bands for the LDA and LDA+U approaches).

Figure 10 shows the Fermi surface of YbIn$_3$. The 14th energy band (7th in 4f-localized model) produces a nearly spherical electron Fermi surface centered at the corner R points (lower panel). This FS is very similar to the corresponding FSs in YIn$_3$ and LuIn$_3$ (compare lower panels in Figs. 4 and 10). However, already the 13th energy band in YbIn$_3$ produces quite different FS in comparison with YIn$_3$ and LuIn$_3$ reference compounds. There are several closed sheets derived from the 6th energy band in YbIn$_3$ (middle panel in Fig. 10): electron Fermi surface at Γ point; small electron ellipsoids along $\Gamma-M$ symmetry direction, electron pockets in X point, small hole ellipsoids along $X-R$ direction and a very large electron sheet in R point. Besides, YbIn$_3$ has an additional small closed hole sheets originated from the 12th energy band and situated at M point and along the $\Gamma-R$ direction (upper panel in Fig. 10) which are absent in reference compounds YIn$_3$ and LuIn$_3$.

Figure 11 shows the calculated Fermi-surface cross-section areas of YbIn$_3$ in the plane perpendicular to the z direction and cross Γ symmetry point (left column), cross R point (right column) and in the plane at half distances between the planes crossed the Γ and R points (middle column) with 4f electrons in core (upper row), LDA (middle row) and LDA+U (lower row) approaches. The cross sections of 12-hole sheets present by dotted magenta curves, 13-electron sheets by full blue curves and 14-electron sheets by red dashed curves.

Fig. 10. (Color online) The theoretically calculated band 12-hole (upper panel), 13-hole and electron (middle panel), and band 14-electron (lower panel) Fermi surfaces in YbIn$_3$. Fig. 11. (Color online) The calculated Fermi-surface cross-section areas of YbIn$_3$ in the plane perpendicular to the z direction and cross Γ symmetry point (left column), cross R point (right column) and in the plane at half distances between the planes crossed the Γ and R points (middle column) with 4f electrons in core (upper row), LDA (middle row) and LDA+U (lower row) approaches. The cross sections of 12-hole sheets present by dotted magenta curves, 13-electron sheets by full blue curves and 14-electron sheets by red dashed curves.
Electronic structure, Fermi surface and dHvA effect in YIn₃, LuIn₃, and YbIn₃

LDA (middle row) and LDA+U (lower row) approaches. The cross sections of 12-hole sheets presented by dotted magenta curves, 13-electron and hole sheets by full blue curves and 14-electron sheets by red dashed curves. All three approximations used in the calculations produce similar in topology but different in size cross-sections areas in the planes $2\pi/a (0, 0, 0.25)$ and $2\pi/a (0, 0, 0.5)$. It is interesting to note that cross-section areas obtained with 4f electrons in core and LDA+U approach are closer to each other than to the LDA calculations. For the plane $z = 0$ all three approximations produce completely different cross-section areas not only in the size but also in topology. A careful comparison of the dHvA results with the results of energy band calculations is therefore necessary to make conclusion which method is more correct for the description of the Fermi-surface properties of YbIn₃.

Figure 12 shows the theoretically calculated angular dependence of the dHvA frequency in YbIn₃ for field directions in the (100) and (110) planes using the 4f-localized model (left panel) and LDA approximation (right panel). The black full squares represent the results of dHvA experimental measurements by Nojiri et al. [8]. From the theoretical calculations we found that the branch α originates from the band 14-electron FS centered in R point (7-electron FS with 4f in core) with the nearly spherical topology. The β branch originates from the belly orbit in the band 13-electron FS in YbIn₃ (6-electron in 4f-localized model) centered at the Γ point. The nature of these two orbits is the same as the α and β_1 orbits in YIn₃ and LuIn₃. There is an excellent agreement between the experiment and theory with 4f-electron in core for α orbit, but the LDA approach slightly underestimates the frequencies for this orbit. The fully localized model overestimates and the LDA approach underestimates the frequencies for the β orbit. The π orbit originates from the extremal cross sections of large 13-electron FS centered in R point.

The orbits δ, $\varepsilon_{1,2}$, and $\xi_{1,2}$ in the region of the low dHvA frequencies ($F < 0.1$ T) correspond to small sheets of closed 12-hole FSSs situated at M point and along the $\Gamma - R$ direction (upper panel in Fig. 10) as well as to small 13-electron ellipsoids along $\Gamma - M$ symmetry direction, 13-electron pockets in X point, and small 13-hole ellipsoids along $X - R$ direction. They are sensitive to the peculiarities of the electronic structure and have not much similarity with the dHvA experimental data for the 4f-localized model as well as for the LDA approach. Especially, 4f-localized model strongly overestimates the size of the δ orbits, however, the LDA calculations equally underestimate their size. Both the approaches clearly reproduce the $\varepsilon_{1,2}$ and $\xi_{1,2}$ orbits.

On the other hand, the calculations in the LDA+U approach describes the low-frequency orbits quite well (see Fig. 13). This approach also improve the agreement with the experiment for the β orbits. We can conclude that the inclusion of strong Coulomb repulsion in 4f shell is very important for the correct description of the Fermi-surface properties of YbIn₃.

Figure 14 shows the theoretically calculated angular dependence of the cyclotron masses in YbIn₃ using the LDA+U approach. The cyclotron masses were found to be relatively light in YbIn₃ as it was also in YIn₃ and LuIn₃ (compare Figs. 8 and 14). The cyclotron masses in YbIn₃ values are between $-0.9 m_0$ and $0.5 m_0$. The largest cyclotron masses were obtained for the high-frequency π
The electronic structure, the Fermi surface, angle dependence of the cyclotron masses, and extremal cross sections of the Fermi surface of YIn₃, LuIn₃, and YbIn₃ have been studied using the fully relativistic linear muffin-tin orbital method. The Fermi surfaces of YIn₃ and LuIn₃ are very similar and consist of three kinds of major parts: the nearly spherical large electron Fermi surface centered at the corner R points, a complex open along the <100> direction hole surface centered at Γ point, and almost spherical in topology electron Fermi surface at Γ point. The last sheet of the Fermi surface is closed in LuIn₃ and open in the <111> direction in YIn₃. The difference in topology and small differences in the size of FS sheets of these two compounds while almost invisible in the band structure picture were clearly detected by the dHvA measurements.

The cyclotron masses were found to be relatively light in both compounds. Their values are between –0.9 m₀ and 0.5 m₀. Cyclotron masses for the α orbits have almost constant angle dependence and equal to around 0.4 m₀. We found a stronger angle field dependence for the β₁ orbit in LuIn₃ than in YIn₃. The β orbits were found to be strongly anisotropic in both compounds. The constant of the electron–phonon interaction \(\lambda \) is strongly varied on the orbit type and magnetic direction. We estimate the constant of the electron–phonon interaction in YIn₃ to be equal to 0.45 and 0.46 for the \(\varepsilon₁ \) and \(\varepsilon₂ \) hole orbits, respectively, with \(\mathbf{H} \parallel <110> \). The constant \(\lambda \) for the electron orbits is equal to 0.48 for the α orbit with magnetic field along <100> direction. For the γ and δ orbits with \(\mathbf{H} \parallel <100> \) the \(\lambda \) was found to be equal to 0.8 and 0.34, respectively.

The second example, considered in this study, is strongly correlated YbIn₃ compound with divalent Yb²⁺ ions. For this compound we performed three independent fully relativistic band structure calculations. The 4f electrons have been considered as: (1) itinerant electrons using the local density approximation (LDA+SO); (2) fully localized, putting them in the core; and (3) partly localized using the LDA+SO+U approximation. The Fermi surface of YbIn₃ consists of a nearly spherical 14-electron Fermi surface centered at the corner R points; the 13th energy band produces the electron Fermi surface at Γ point, small electron ellipsoids along Γ–M symmetry direction, electron pockets in X point, small hole ellipsoids along X–R direction, and a very large electron sheet in R point; there are also small closed 12-hole sheets situated at \(\Gamma \) point and along the \(\Gamma–R \) direction.

The 4f-localized model and the LDA approximation reasonably well reproduces the experimentally measured frequencies for the \(\pi \), \(\alpha \), and \(\beta \) orbits. The orbits in the region of the low dHvA frequencies (the \(\delta \), \(\varepsilon₁,\varepsilon₂ \), and \(\xi₁,\xi₂ \) orbits) are very sensitive to the peculiarities of the electronic structure. These orbits are clearly reproduced by the 4f-localized model as well as by the LDA approach. On the
other hand, the calculations in the LDA+U approach quite well describes the low-frequency orbits. The cyclotron masses in YbIn$_3$ were found to be between -0.9 m_0 and 0.5 m_0. The largest cyclotron masses were obtained for the high-frequency π electron orbits (0.71–0.78 m_0). Cyclotron masses for the α orbits have almost constant angle dependence and equal to 0.4 m_0. The masses for the γ, β as well as the $\xi_{1,2}$ orbits are also have relatively weak angle dependence. The masses for the hole δ orbits was found to be strongly anisotropic in YbIn$_3$.

In conclusion we found that the Fermi-surface properties of YbIn$_3$ and LuIn$_3$ can be relatively well described by the LDA approach. But the conventional LDA band calculations fail to describe the Fermi surface of YbIn$_3$ due to wrong position of the 4f states (too close to the ξ_F). The Fermi-surface properties of YbIn$_3$ are also purely described by the 4f-localized model because the 4f electrons directly contribute to the conduction electrons. On the other hand, the LDA+U approach relatively well describes the Fermi surface of YbIn$_3$. We can conclude that the inclusion of strong Coulomb repulsion in 4f shell is very important for the correct description of the Fermi-surface properties of YbIn$_3$.

Even nowadays more than 80 year after discovery, de Haas–van Alphen effect is very popular and provides a powerful tool to explore the electronic structure of metals due to its high sensitivity to the peculiarities of the electronic structure. The dHvA method can be regarded as an ideal method for the decision which approximation is more correct for the description of the electronic structure of crystals.

Acknowledgments

This work was supported by the National Academy of Sciences of Ukraine in the framework of the State Target Scientific and Technology Program “Nanotechnology and Nanomaterials” for 2010–2014 (No. 0277092303) and Implementation and Application of Grid Technologies for 2009–2013 (No. 0274092303).