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impurity is studied. The considered magnetic impurity reveals the property of a “mobile” one. It is shown that 
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1. Introduction 

Recently the interest in systems with the spin-orbit in-

teraction has been grown. For example, the spin-orbit in-

teraction manifests itself in the effect of an electric field on 

a moving particle with spin. Such interest is connected 

with spintronics, where the spin of electrons in electronic 

devices has to be manipulated and detected. In many de-

vices of spintronics an interaction between electrons also 

has to be taken into account, hence, it is very important to 

investigate the effects of the spin-orbit coupling together 

with the antiferromagnetic spin-spin interaction between 

spin of electrons. In low-dimensional semiconductor struc-

tures the internal electric field may exist [1] so that the 

spin-orbit coupling takes place even without external elec-

tric fields. Recently systems, where the spin-orbit interac-

tion plays the crucial role in low-dimensional electron sys-

tems, like edge or surface states of topological insulators 

[2], or semiconductor nanowires [3] have attracted much 

attention of researchers. 

The strong electron–electron coupling can essentially 

change the properties of electron systems with spin-orbit 

interaction, especially in low-dimensional electron sys-

tems, where fluctuations are strongly enhanced due to the 

peculiarities in the density of states, and, hence, exact theo-

retical results are very important. On the other hand, mag-

netic impurities affect the behavior of electron systems, the 

famous Kondo effect is the prime example [4]. 

The aim of the present work is twofold. First, we want to 

study the effect of the spin-orbit coupling and electron–

electron interaction in a low-dimensional correlated electron 

system. Second, we decide to investigate how the magnetic 

impurity can affect the exponents for correlation functions in 

such a strongly correlated electron chain. As the model for 

studying we choose the model, which, on the one hand, has 

both of these features, i.e., it has spin-orbit and electron–

electron interaction, and the magnetic impurity can change 

the properties of such a system considerably. On the other 

hand, that model permits to obtain an exact solution. Exact 

solutions are rare, and, some of the features of exactly solv-

able Hamiltonians are not very realistic, however it is very 

important to obtain results for exactly solvable models, be-

cause they give the only opportunity to check the validity of 

the results of approximate methods applied to more realistic 

models. Also, sometimes the results of exactly solvable 

models can be directly applied to real systems, systems of 

ultracold atoms being the prime example of such an applica-

tion [5] (for the recent review, use, e.g., Ref. 6). It is im-

portant to add that the study of artificially designed spin-

orbit interaction in ultracold atomic gases, mimicking effects 

from condensed matter physics, is now coming of age, mak-

ing our research timely. 



A.A. Zvyagin 

84 Low Temperature Physics/Fizika Nizkikh Temperatur, 2014, v. 40, No. 1 

In this paper, using the exact Bethe ansatz method and 

the conformal field theory technique we have studied the 

properties of a strongly correlated electron chain, the 

supersymmetric t-J model with spin-orbit interaction. We 

show that the spin-orbit coupling manifests itself mostly in 

finite-size effects there. However, those finite-size effects 

determine the values of critical exponents for the considered 

system. In particular, we show that the spin-orbit coupling 

strongly renormalizes exponents for density-density, field-

field, spin-spin, and spin-singlet and spin-triplet pair correla-

tion functions of the considered chain. Also, we show that 

the features of the exactly solvable magnetic impurity pro-

vide influence of the impurity on exponents of the correla-

tion functions, which does not depend on the position of the 

impurity. This feature is caused by the non-reflective charac-

ter of the integrable impurity. Our investigation shows that 

the impurity can drastically change the values of critical 

exponents for correlation functions in the correlated electron 

chain with the internal spin-orbit interaction. 

2. The model 

The hopping of the one-dimensional (1d) tight-binding 

electron system in the presence of the internal spin-orbit 

interaction can be written in the form [7] 
†

, ,1,, ,
( h.c.),jjj

t S  where ,S  is the 

SU(2)-symmetric matrix. This hopping term can be trans-

formed to the diagonal term by a unitary transformation 

[7], which rotates the spin space. The matrix ,S  is a 

unitary one, thus its eigenvalues can be presented as expo-

nentials exp( ).i  Parameters t  and ,S  can be site-

dependent, however, the diagonalization of the hopping 

term is possible in that case, too, cf. Ref. 7. This transfor-

mation can be also applied for any form of the electron–

electron interaction, if the latter respects SU(2) symmetry. 

In what follows we will essentially use that property. 

Let us start with the consideration of the 1d lattice ver-

sion of the electron gas with the internal spin-orbit interac-

tion, the Hamiltonian of which can be written as [7] 

 
† †

0 , ,1, 1,
,

= [ ( h.c.) (j jj j
j

t i   

 
†2 2 2

, ,1,
,

h.c.) ] = [ ( ) /4( e
zi

j jj
j

n t  

 ,h.c.) ] ,jn  (1) 

where 
†
,j  creates the electron with the spin projection 

= 1/2  at the lattice site j  ( = 1, ,j L , L  is the num-

ber of sites), t  is the hopping integral,  is the parameter 

of the spin-orbit coupling (see, e.g., Refs. 2, 3), and 
†

, ,,= .j jjn  Then the “usual” spin-independent hop-

ping has the magnitude cos(2 ),t  and the internal spin-

orbit coupling has the magnitude sin(2 ),t  

2 2= ( ) /4.t t  Worth noting that for =1/4  there is 

no “usual” hopping, and only spin-dependent transfer of 

electrons persists, as for edge states of 2d topological insu-

lators [2] (notice, however, that for topological insulators 

the spin-dependent transfer is chiral, i.e., electrons with 

spin up can move only to the right, and those with spin 

down to the left, or vice versa). Using the (spin-dependent) 

gauge transformation we can remove the explicit depend-

ence on the phase factor from the 1d Hamiltonian to twist-

ed boundary conditions. Such a transformation can be used 

also for Hamiltonians, which interaction part also respects 

U(1) symmetry (it, naturally, persists for SU(2)-symmetric 

interactions). For instance, it takes place for the 

supersymmetric t-J chain with the antiferromagnetic inter-

action between neighboring electrons. Supersymmetry 

implies the fixed ratio between the parameter of the elec-

tron hopping t  and the antiferromagnetic exchange inte-

gral J  [8]. The Hamiltonian for the supersymmetric anti-

ferromagnetic t-J chain with internal spin-orbit coupling 

has the form host , 1= ,j j

j

t  where  

 † †
, 1 1, ,, 1,= ( )j j j jj j

  

 
† † † †

, 1, , 1,, 1, , 1,j j j jj j j j
  

 , 1, , 1, ,j j j jn n n n  (2) 

where the hopping 2 2= ( ) /4,t t  and the standard for 

t-J chains projector operator , 1,= (1 )(1 )j jn n  

excludes double occupation at each site of the chain. The 

electron–electron interaction term has the standard Heisen-

berg antiferromagnetic form 1j jS S  written using the 

operators of creation and destruction of electrons. The total 

exactly solvable by Bethe ansatz (BA) Hamiltonian of the 

system with a magnetic impurity [8] can be written as 

host imp= .  The impurity’s part of the Hamiltonian 

(for an impurity situated at the site labeled as imp, for ex-

ample, between the sites labelled by the numbers m  and 

1,m  see Fig. 1) is  

Fig. 1. The illustration of the coupling of the impurity to the host 

chain in the considered model. The impurity is situated between 

sites m and m + 1 of the host chain. 

imp

m m + 1
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 imp ,imp imp, 12 2

( , | )
= (

( 1/2)
m m

M M

S
 

 , 1 ,imp imp, 12 ( 1) { , }m m m mS S  

 , mp imp, 12 [ , ]) ,m i mi  (3) 

where {.,.}  ( [.,.] ) denote anticommutator (commutator) 

and ( , | )M M  denotes the Clebsch–Gordan coeffi-

cient 
1 1

( , | )
2 2

S M S SM  with = 1/2.S S  S  defines 

the spin of the impurity. The real parameter  regulates 

the impurity-host coupling. For  the impurity is 

totally decoupled from the chain. On the other hand, for 

= 1/2S  and = 0  we have a simple addition of one site to 

the chain, i.e., 1.L L  Terms in the Hamiltonian 

imp ,  proportional to the commutator and anticommutator, 

are irrelevant from the renormalization group viewpoint 

(though they are important for the exact solvability), and 

they can be neglected in the long-wave limit. If the impuri-

ty is situated at the edge of the open chain (i.e., for = )m L  

we see that the Hamiltonian becomes simpler: The impuri-

ty is coupled to the last site of the chain with the coupling 

strength, which is determined by two parameters, S  and 

,  which distinguish the impurity site from other sites of 

the chain. It can be checked that the gauge transformation, 

which removes the spin-orbit phase shift from the Hamil-

tonian for open boundary conditions and transfers it to 

twisted boundary conditions for the closed chain, can be 

applied also when the impurity interaction is included. 

3. Bethe ansatz description 

The stationary Schrödinger equation for the considered 

model can be solved exactly by BA for the magnetic field 

H  applied along the distinguished by the spin-orbit cou-

pling direction. For any other direction of the field H  ex-

citations become gapped with the gap value 

2 2 /4.H  For twisted (due to the internal spin-orbit 

coupling) boundary conditions BA equations for two sets 

of quantum numbers (rapidities) jv  ( =1, , ,j N  where 

N  is the number of electrons) and  ( =1, , ,M  

where M  is the number of electrons with spin down) can 

be written as  

 
2

=1

/2 /2
e ,

/2 /2

M
j j j

j j j

iS i i

iS i i

v v v

v v v
  

 

=1

/2(2 1)/2

(2 1)/2 /2

N
j

jj

ii S

i S i

v

v
  

4

=1

e .
M i

i
 (4) 

The energy of the eigenstate is equal to  

 

2

2
=1

1 42
= 2 ,

1 4

N
j

j j

vN N M
E H t

L L v
 (5) 

i.e., rapidities parametrize eigenvalues (as well as eigen-

functions) of the Hamiltonian for given N and M. 

The problem can be also solved exactly for open bounda-

ries. In that case the spin-dependent phase factor can be to-

tally removed from the 1d Hamiltonian with the help of the 

gauge transformation [8]. In that case eigenvalues and ei-

genvectors of the Hamiltonian  depend on the spin-orbit 

coupling only in the trivial way 2 2= ( ) /4,t t  like for 

the homogeneous Hubbard chain [9]. 

We can introduce the low-energy spin scale 

exp( | |),KT t  which plays the role of the Kondo 

temperature for spin degrees of freedom of the considered 

model [8]. The parameters of the internal spin-orbit cou-

pling appear in BA equations twofold: As the renormaliza-

tion of the hopping constant t  due to ,  and, hence, of the 

Kondo temperature ,KT  and via the phase factor in BA 

equations. The former can be trivially taken into account in 

magnetic and temperature dependences of the magnetic 

moment of the impurity. Contrary, the latter can manifest 

itself only in finite size corrections [8]. The most important 

manifestation of the latter can be seen in the asymptotics of 

correlation functions and in persistent currents. For persis-

tent currents the phase factor  reveals itself in the initial 

phase of charge and spin (Aharonov–Bohm–Casher effect 

[10]) persistent currents [11]. The former can be calculated 

with the help of the finite-size corrections to the BA 

ground-state eigenvalues using the conformal field theory. 

The ground state of the considered models is organized as 

usual for all Fermi systems: All states with negative ener-

gies (Fermi seas) are filled, while other states are non-

occupied. For the supersymmetric t-J model with antifer-

romagnetic interactions between spin of neighboring elec-

trons there are two Fermi seas [8]: for unbound electron 

excitations, which carry charge e and spin 1/2, and for 

spin-singlet pairs, which carry only charge 2e and no spin. 

4. Finite-size corrections 

Let us start first with the homogeneous case, which can 

be obtained for .  We can introduce two sets of 

counting functions ( =1, 2)i  

2
0 0

, ,

=1 =1

1 1
( ) = ( ) [2 ( , )] ,

2

N j

i L i i ij j l

j l

z x p x x u
L

 (6) 

where 1 = ,  2 = 0,  and , ,= ( )/i L i Lz x x  with 

0 0( , ) = ( , ),ij jix y y x  which satisfy BA equations, cf. 

Eqs. (4) , ,( ) = / ,i L j i jz J L  where 1, 2= /2jJ N  (mod 1) 

and 2, 1 2= ( 1)/2jJ N N  (mod 1), ,j lu  are rapidities. 
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Here we use 1 =N M  and 2 = 2 ,N N M  the number of 

unbound electrons (2M  is the number of paired ones). 

The functions are 

 
0 1 0 1
1 2( ) = 2 tan 2 , ( ) = 2 tan ,p x x p x x   

 
0 1 0
12 11( , ) = 2 tan [2( )] , = 0 ,x y x y   

 
0 1
22 ( , ) = 2 tan ( ) .x y x y  (7) 

The momentum and energy of the state with N  electrons, 

M  of which having their spin down are  

 
2 2

0
0 ,

=1 =1 =1 =1

2
= , = ( ),

N Ni i

ij i i j

i j i j

P J E E u
L

 (8) 

where 

 
0
1 1( ) = 2 [1 ( )] ,

2

H
x t a x   

 
0
2 2( ) = 2 2 [2 ( )] ,x t a x  (9) 

which are energies of an unbound electron excitation and a 

pair, respectively, if we neglect interactions, and 
2 2( ) = 2 / [4 ].ma x m x m  Let us choose two sets of num-

bers 1 1 =J J L N M  and 2 2 = ,J J L N  

1 1 1 1= 2 2 ,J J D  and 2 2 2 2= 2 2J J D  that de-

termine numbers of particles in each Dirac sea for low-

lying excitations and numbers of particles which are trans-

ferred from the left Fermi point of excitations of each kind 

to the right Fermi point. With this choice ,i jJ  are all num-

bers satisfying the conditions , < ,i j iJ J  , > ,i j iJ J  

= 1, 2.i  By using the Euler–Maclaurin formula, we can 

derive the following equations: 

 

0 2

, ,

=1

( )1
( ) = ( , ) ( )

2

i
i L ij j L

j

dp x
x dyK x y y

dx
  

2
, ,

( , ) ( , )1 1 1
,

24 ( ) ( )

ij j ij j

j L j j L j

K x K x

x xL
 

  (10) 

where 0( , ) = ( , )/ .ij ijK x y x y x  Here i  satisfy the equa-

tions , ( ) = / .i L i iz J L  Notice that for the case of a 

supersymmetric antiferromagnetic t-J chain integrations 

are performed not from j  to ,j  as, e.g., for the Hub-

bard chain, but from  to j  and from j  to .  The 

equations for , ( )i L x  can be written in the form  

 , 1,2 1,2( ) = ( | , )i L ix x   

2
1,2 1,2 1,2 1,2

2
=1 , ,

( | , ) ( | , )1
,

24 ( ) ( )

j j

j j L j j L j

x x

L
  

  (11) 

where 1,2 1,2( | , )x  and 1,2 1,2( | , )i x  are the solu-

tions of the following linear integral equations: 

 
0

1,2 1,2

( )1
( | , ) =

2

i
i

dp x
x

dx
  

 
2

1,2 1,2

=1

( , ) ( | , ) ,ij j

j

dyK x y y   

 

2

1,2 1,2

=1

( , )1
( | , ) =

2

ij j
i

j

K x
x

x
  

 1,2 1,2( , ) ( | , ) .ij jdyK x y y  (12) 

We can convert the integrals from  to j  and from j  

to  to the ones from j  to j  by using a Fourier trans-

formation. That conversion implies the formal changes 

11 22,K K  22 0,K  
0
2 0,p  

0
1 12( )/ ( ),dp x dx K x  

0
1 21( ) ( ,0),x H tK x  and 

0
2 ( ) 2 ( /2),x t H  and 

1 1.  After such a transformation we get 

1 2

1, 2,

1 2

( ) = 1 , ( ) = 1 .L L
N M N

dx x dx x
L L

 (13) 

Then the energy of the state can be written as  

 0= ( , )i iE E L   

 
2

=1 , ,

( , ) ( , )1
,

24 ( ) ( )

i i i i i i

i i L i i L i

e e

L
 (14) 

where 

 

2
0

1,2 1,2

=1

( , ) = ( ) ( | , ) ,

j

i i j j

j
j

dx x x  (15) 

and 

 

0 ( )
( , ) = i i

i i i

i

d
e

d
  

 

2
0

1,2 1,2

=1

( ) ( | , ) .

j

j j

j
j

dx x x  (16) 



Spin-orbit interaction in the supersymmetric antiferromagnetic t-J chain with a magnetic impurity 

Low Temperature Physics/Fizika Nizkikh Temperatur, 2014, v. 40, No. 1 87 

Naturally, these equations can be re-written in terms of 

dressed energies  

02

1,2 1,2

=1

( )1
( , ) = ( | , ) ,

2

i
i

i i i

i
i

dp x
dx x

dx
 (17) 

where the dressed energies 1,2 1,2( | , )i x  satisfy the set 

of equations 

 0
1,2 1,2( | , ) = ( )i ix x   

 
2

1,2 1,2

=1

( , ) ( | , ),

j
t
ij j

j
j

dyK x y y  (18) 

where the index t  denotes transposition, which implies 

 

0
1,2 1,2

=

( | , )
( , ) = | .

i
i i i x i

x
e

x
 (19) 

In the infinite chain ( , )i i  is minimal with respect 

to i  at given  and H . This condition leads to  

 1,2 1,2( | , ) = 0,i i  (20) 

which is the determination of the ground-state Fermi points 

for dressed energies. Expanding ( , )i i  to the second 

order in ( ),i i  we find  

 ( , ) = ( , )i i i i   

 
2 1,2 1,2 =

1,2 1,2=1

( | , ) |

( | , )

j x j

j jj

x
x   

 
2

1,2 1,2
1

([ ( | , )( )]
2

j j j j   

 2
1,2 1,2[ ( | , )( )] ).j j j j  (21) 

This equation is written with the accuracy of 2L . It turns 

out that  

1,2 1,2 =
1,2 1,2

1
( | , ) | = 2 ,

( | , )

F
j x jj

j j

x
x

v   

  (22) 

where F
jv  are Fermi velocities of low-lying excitations. It 

is easy to check that for =i i  the equations for 

1,2 1,2( | , )i x  and 1,2 1,2( | , )i x  coincide with 

the standard definitions of densities and dressed energies 

for the ground state in the thermodynamic limit. Let us 

denote = / ,i iN L  = ( )/i i iD L  and calculate  

 = = ( | , ) ,i i
j j j j ji

j j

Z   

 11
= = ( | , )( ) ,

2

ti i
j j j j ji

j j

Z  (23) 

where we introduced dressed charge matrix .ijZ  Dressed 

charge matrix can be expressed as = ( ),ij ij iZ  where 

( )ij x  satisfy the set of integral equations 

 
2

=1

( ) = ( , ) ( ) .

l
t

ij ij il lj

l
l

x dyK x y y  (24) 

Again, the coefficients of the dressed charge matrix satisfy 

the relation ( ) = ( )/ ,ij i jx x  where i  are effective 

chemical potentials for low-lying excitations, 1 = H  and 

2 = ( /2).H  A dressed charge matrix measures how 

strong the interaction is in a system. For the noninteracting 

electron chain without magnetic impurities the dressed 

charge matrix is the unity matrix. At the half-filling one 

has only one Fermi sea for unbound electron excitations. 

The results can be obtained for the formal limit 2 = 0Fv  

and 11 21 12= = = 0,Z Z Z  and 22 1= ( ).sZ  Here ( )s  

is the solution of the equation  

| | 1

1 exp( [ ] )
( ) = ( ) .

2 2 1 exp(| |)
S s

dx i x
d

x
 (25) 

In this limit the supersymmetric t-J correlated electron 

chain is equivalent to the antiferromagnetic spin-1/2 Hei-

senberg chain (electrons cannot move from site to site, and 

the only possible movement is the one for spin flips). For 

the spin chain the spin-orbit coupling is similar to the 

Dzyaloshinskii–Moriya interaction [12]. 

By using dressed charges and velocities of low-lying 

excitations it is easy to write  

2 2

0

=1 =1

2
= ( , ) ,

6

F F
i i i i i

i i

E E L
L L

v v  (26) 

where 

 

2
2

1 1

=1

= ( )j j j j

j

Z D L   

2
22 1 1 21 2 22

1
[ ( ( , ) ) ( ( , ) )] ,

4(det )
Z N H L Z N H L

Z
  

 

2
2

2 2

=1

= ( )j j j j

j

Z D L   

12 1 12

1
[ ( ( , ) )

4(det )
Z N H L

Z
 

 
2

11 2 2( ( , ) )] .Z N H L  (27) 
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We can introduce particle–hole excitations by removing 

,i jJ  from a Dirac sea for low-lying excitations and intro-

ducing ,i jJ  outside the sea. In order not to change iM  and 

,iD  in other words, the total number of quasiparticles and 

the number of quasiparticles moved from the left Fermi 

point to the right one in each Dirac sea for low-lying exci-

tations, the number of particles and holes for particle–hole 

excitations should be equal both in the vicinity of the left 

and right Fermi points. We characterize holes and particles 

in the vicinity of iJ  as , ,= ,i p i i pJ J n  , ,=i h i i hJ J n  

( =1, 2),i  where the numbers , , > 0i p hn  are half integers. 

We then introduce total numbers as , ,= ( ),i i p i hn n n  

where in  are integers since , ,= .i p i hJ J  

This description is modified when one considers finite 

size corrections for a chain with an integrable impurity. Cal-

culations, similar to the above, yield ,imp ,i i  where 

 

2
2

1,imp 1 ,imp

=1

= ( )t
j j j j j

j

Z D d L   

 22 1 1,imp 12

1
[ ( ( , ) )

4(det )
Z N n H L

Z
  

 2
21 2 2,imp 2( ( , ) )] ,Z N n H L   

 

2
2

2,imp 1 ,imp

=1

= ( )t
j j j j j

j

Z D d L   

 12 1 1,imp 12

1
[ ( ( , ) )

4(det )
Z N n H L

Z
  

 2
11 2 2,imp 2( ( , ) )] ,Z N n H L  (28) 

where 1,2,impn  are related to the valence impn  and the mag-

netization imp
zm  of an impurity. For the supersymmetric 

antiferromagnetic t-J chain we have imp 1,imp=1/2zm n  

and imp 1,imp 2,imp= 2 ,n n n  i.e., 1,imp imp= 2 zn m  and 

2,imp imp imp= ( /2) .zn n m  As for j,imp ,d  they define shifts 

of the total momentum of a correlated electron chain caused 

by an integrable impurity as 

 
(1) (1)

,imp
1

= ( ) ( )
2

i

i i i

i

d dx x dx x  

 
1

[ ( ) ( )] ,
4

i ix x  (29) 

where 

 1
1( ) = 2 tan [( )/ ]x x x S   

 

2
(1)1
2,

2

2 tan [2( )] ( ) ,
h

dy x y y   

 

1
(1)1

2 1,

1

( ) = 2 tan [2( )] ( )
h

x x dy x y y   

 12 tan [2( )/(2 1)]x S   

 

2
(1)
2,2

2

1
2 ( )

1 ( )
h

dy y
x y

 (30) 

for periodic boundary conditions, where (1)
i  satisfies 

the equation for density of an impurity of order of 1.L  

In the ground-state integral equations for densities of im-

purities are 

 

2

1 1, 1 2, 2

2

( ) ( ) ( ) ( ) = ( ),h h Sp p d a p a p   

 

2

2, 2 2 2,

2

( ) ( ) ( ) ( )h hd a   

 

1

1 1, 2 1

1

( ) ( ) ( ).h Sdpa p p a  (31) 

We point out that the impurity introduces nonzero ground-

state momentum via ,imp.jd  It implies that the studied 

impurity has the properties of the “mobile” impurities [13]. 

The valence of an impurity (for = 0)H  is 

 imp 1, 2,= ( ) 2 ( ),h hn dp p d  (32) 

which is equal to 2 2
imp 2 2= (2 1) /2 ( )n S  for large 

2  (we assumed that 2 | |),  i.e., for low electron 

density, and imp 2=1 ( )n O  for small 2,  i.e., for the 

electron density close to half-filling. As a function of the 

band filling the valence of an impurity smoothly varies 

between 0 (for 0)N  and 1 (for )N L ). The valence 

is a decaying function of  for fixed band filing: Larger  

pertain to weaker coupling of an impurity to the host. The 

valence is maximum for = 0,  which is the resonance 

situation (the impurity level is situated at the Fermi point 

for the Dirac sea of pairs). The impurity valence also de-

creases as a function of S  close to half-filling, and in-

creases for higher values of the impurity spin for small 

total number of electrons in the system. The magnetization 

of an impurity for = 0H  is imp = 1/2.zm S  
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For small 0H  the valence of an impurity 

for (1/2) | |S Q  is imp 22 | |/ (2 1),n S  

and for the opposite case 2(1/2) | |S  it is 

imp 2 2=1/2 (1/ )[ln2 | | (2 1)/2 | |],n S  

where 

2 2
2

2
= [2 ln 2 ( /4 )].

3 (3)
t H t  

When switching on the magnetic field the valence of an im-

purity becomes smaller than unity even at half-filling, as the 

manifestation of correlations between electrons in the host. 

The ground-state magnetization comes from two ori-

gins, the magnetization arising from the valence admix-

ture, and the one due to spin degrees of freedom of an 

impurity. The magnetic field is usually much smaller than 

the band width, the former contribution is small (and lin-

ear in H), and can be neglected. Then the Fredholm equa-

tion, which describes only the “Kondo”-like spin excita-

tions is for 1  

1, 1 1 1, 2 1( ) ( ) ( ) ( ) = ( ).h h Sp p dp G p p p G p   

  (33) 

Then the Kondo temperature can be introduces as 

1( ) = ln( / ),KH T  and we obtain the solution for the 

magnetization of an impurity  

imp 2

ln | ln( / ) |1
= 1 ,

2 | ln( / ) | 4ln ( / )

z K
i

K K

H T
m

H T H T
 (34) 

where we use for KH T  the lower sign and = ,i S  

and for KH T  we use the upper sign and = (1/2)i S  

for > 1/2S , and = /i KH T  for =1/2.S  The impurity 

spin is underscreened at low fields to the value 1/2S  for 

> 1/2,S  while for = 1/2S  it is totally screened with the 

finite magnetic susceptibility (inverse proportional to the 

“Kondo” temperature). For high enough values of the 

magnetic field the impurity spin behaves as an asymptoti-

cally free spin S. The “Kondo” temperature depends on the 

band filling via 1.  If charge fluctuations are totally sup-

pressed, for = ,N L  at the half-filling, the “Kondo” tem-

perature is 1= exp( | |),F
KT v  where 1

Fv  is the Fermi 

velocity of spin-carrying excitations. The corrections due 

to the mixed valence of an impurity shift the value of the 

“Kondo” temperature, e.g., as 
3
2(1 2 (3) )K KT T  for 

2 1,  as the additional manifestation of correlations 

between electrons in the host. At ,sH H  in the spin-

saturation phase, the magnetization of an impurity is equal 

to imp imp= ( 1)/2,zM S n  where impn  is the valence of 

an impurity. 

Naturally, the values ,impjm  and ,impjd  are defined 

modulo 1. They determine shifts of the values =iM  

= ( , )i iM L H  and =i i i iD D L  due to a single 

impurity. It is important to emphasize that a dressed charge 

matrix of a correlated electron chain with a single impurity 

also does not depend on the parameters of the impurity. 

Notice that for open boundary conditions finite-size 

corrections can be obtained as above with the formal sub-

stitution 2L L  with = = 0,i iD  and with the contri-

bution from particle–hole excitations from only one of 

Fermi edges, say .in  In that case charge and spin persis-

tent currents are obviously zero, because the Aharonov–

Bohm–Casher phase factors (as well as the spin-orbit 

one) can be removed from the Hamiltonian using a gauge 

transformation [8,11]. 

5. Correlation functions 

Let us now turn to the calculation of asymptotics of 

correlation functions. Within the conformal field theory 

they can be then written as ( =x ja  where a is the lattice 

constant) 

2 2 ( )2 2 1

2 2

=1,2

e e
( , ) (0,0) ~ ,

( ) ( )

F FiD x i D D x

F Fj j
j j

j

x t

x i t x i tv v

 (35) 

where the Fermi momenta 
( )

= ( /2 )[ ( 2 )].F L N N M  

For small nonzero temperatures T  one has to replace 

the values ( )F
ix i tv  by sinh[ ( )/ ]/F F F

i i iT x i t Tv v v  

in Eq. (35). In the conformal field theory asymptotic of 

correlation functions are determined up to the (constant) 

multipliers (form factors), which do not depend on t  and 

x. It is clear from Eq. (35) that nonzero  produces addi-

tional oscillating factor 

 exp( 2 [ ]) = exp( 2 [ 2 ]/ ),F Fi x i x N M L   

which phase is proportional to the magnetic moment of the 

system ( 2 )/2 .N M L  

The lowest exponents for correlation functions can be 

obtained for 1,2 = 0.n  On the other hand, the numbers iD  

due to BA equations are restricted to 1 2= /2D N  mod 1 

and 2 1 2= ( )/2D N N  mod 1, where we introduced 

1,2 1,2 1,2= ( , )N N H  and use = 0.i  

For the homogeneous supersymmetric t-J chain without 

internal spin-orbit coupling we can use the following val-

ues (cf. Ref. 14) of quantum numbers 1,2 ,N  1,2 ,D  and 

1,2.n  For the 
†-  correlation function we use 2 =1N  

with half-integer 1D  and 1 =1(0)N  and integer (half-

integer) 2D  for spin-up (down) states. For density-density 

(or spin-spin )z z  correlations we use 1,2 = 0N  and in-

teger 1,2.D  For spin-singlet (-triplet) pairs the choice is 

1 =1(2),N  2 = 2N  with integer 1D  and half-integer 

(integer) 2.D  The role of the phase  caused by the inter-

nal spin-orbit interaction is in the renormalization of 1D  
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values, so that for the maximum value of the spin-orbit cou-

pling =1/4  the values of 1D  are changed from integers to 

half-integers and vice versa. On the other hand, the magnetic 

impurity changes in general all values iN  and iD  due to 

nonzero in  and .id  

In the general case 0H  and non-half-filled band all 

components of the dressed charge matrix are nonzero, as 

well as ,impin  and ,imp .id  Let us consider two limiting 

cases, at which some analytic results can be obtained. 

First, consider the situation with = 0,H  at which we 

have 11 =1 2,Z  12 = 0Z  and 22 21 2= 2 = ( ),cZ Z  

where c  is the solution of the following integral equation: 

   

2

2

exp( ( ))
( ) = 1 ( ) .

2 1 exp(| |)
c c

dx ix
d

x
 (36) 

It is easy to see that 2( )c  decays from the value 2  at 

= 0N  to 1 at = .N L  It is convenient to introduce 

2
2= 2 ( ),c c  which decays from 4 to 2 with the growth 

of the band filling from zero to half-filling. On the other 

hand, we have 1,imp = 0n  and 2,imp imp= /2n n  (there are 

no unbound electron excitations) with 1,imp4 =d  

1 1( ) ( )x x  for = 0.H  For the equal-time correla-

tions in the ground state the decay of correlation func-

tions is proportional to 
2[ ]

,c c s sx  and at non-

zero temperatures the decay is proportional to 

2

=1,2
( / ) exp( / ),F j j

j jj
T x Rv  where we introdu-

ced the correlation radia = /[2 ( )].F
j j j jR Tv  

We have for the homogeneous chain with the internal 

spin-orbit coupling 
†-  correlation functions propor-

tional to 

2[(1/ ) (1/4) [( /4) 1](1 2 ) /4]
cos( /2 ) .c cNx L x  

It implies that the power-law singularity for kn  is pro-

portional to 

2[(1/ ) 3/4 [( /4) 1](1 2 ) /4]
| | .F c cP  

For density-density correlation functions the main contri-

bution is proportional to 
2( / ) ,N L  and the next-to main 

corrections are proportional to 

2[( /4) 1](1 )
cos(2 / ) cNx L x

 

and 
2[( /4) 1](1 )

cos( / ) cNx L x  

or  
2 2[( /4)(2 ) ]

cos( / ) ,cNx L x  

depending on the band filling and the strength of the inter-

nal spin-orbit coupling. Notice that there can exist the 

term, proportional to 
2 22 ( /4)cx  caused by possible 

particle–hole excitations. For the spin-spin correlation 

functions the asymptotics are similar without the constant 

term. For the spin-singlet pair correlation function the main 

asymptotic is proportional to 

2 2[(4/ ) ( /4)(1 ) ]
cos( / ) .c cNx L x

 

Finally for the spin-triplet pair correlation function the 

asymptotic is proportional to 
2[1 (4/ ) [( /4) 1] ]

.c cx  We 

can see that the spin-orbit interaction, as a rule, can en-

hance field-field, spin-spin and density-density correlation 

functions. On the other hand, pair correlation functions 

decay stronger due to the spin-orbit coupling. It implies 

that the spin-orbit interaction favors the charge density 

wave or spin density wave quasi-ordering (the real order-

ing is excluded in one-dimensional systems at nonzero 

temperatures). 

At small nonzero temperatures the same exponents as in 

the ground state determine the temperature dependences 

and the correlation radii for the asymptotics of correlation 

functions. For example, for the spin-triplet pair correlation 

function the low-temperature asymptotics is given by 

22[ ( )/ ] (4/ ) ( /4)11 2 1 2
1 2e ( / ) ( / ) ,

x R R R R F Ft t t t c cT Tv v  

where 

2
1 1= [ /2 (1 )]F
tR Tv  

and 
2

2 2= ( /2 [(4/ ) ( /4) ]).F
t c cR Tv  

The presence of the magnetic impurity can strongly 

renormalize the behavior of correlation function exponents 

according to Eqs. (28). Here we point out that the 

renornalization of the exponents due to the integrable im-

purity does not depend on the position of the impurity. 

Such a property is caused by the reflectionless nature of 

the integrable impurity. The manifestation of the latter is 

seen in the nonzero momentum, caused by the impurity 

(i.e., the influence of the impurity is spread along all the 

chain without dissipation). 

The other case, in which analytical answers can be ob-

tained, is the half-filling, 2 = 0.  Here we have only one 

Fermi sea for unbound electron excitations. This case for 

the homogeneous situation is equivalent to the studied ear-

lier repulsive Hubbard chain with the internal spin-orbit 

interaction at half-filling [9]. 

In a number of recent publications for correlated 

spinless fermions [15] and for correlated electron models 

[16] the conformal field theory result was corrected by 

taking into account the curvature of the dispersion law of 

low-energy excitations. Formally their corrections [15,16] 

were related to the fictitious impurity, which description is 

similar to the impurity, introduced in our model. The dif-

ference between our impurity and the fictitious one is in 

the definition of  and S. For our case  is determined by 

the impurity-host coupling. For the fictitious impurity in-

stead of  the rapidity of the high-energy excitation is 

introduced. (In such a case the fictitious impurity can have 
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a nonzero momentum, i.e., it is similar to the “mobile” 

one.) Then, it is easy to generalize our results for the non-

zero curvature of the low-energy excitation. It means, that 

we have to add 
,imp

( )
f

hi
n  and 

,imp
( )

f
hi

d  together with 

,imp ( )in  and ,imp ( ),id  where h  defines the rapidity of 

the high-energy excitation. They are related [15,16] to the 

value of the dressed charge matrix , .i jZ  For example, 

111,imp
( ) =1 ( ),

f h
hn  212,imp

( ) = ( ).
f

h hn  It is 

important to emphasize that (i) 
,imp
f

i
n  and 

,imp
f

i
d  are also 

determined modulo 1; (ii) critical exponents for correlation 

functions are determined by the minimal choice of quan-

tum numbers iN  and .iD  

6. Conclusions 

In summary, using the exact Bethe ansatz solution and 

conformal field theory we have calculated the asymptotic 

behavior of correlation functions for the supersymmetric 

antiferromagnetic t-J chain with the internal spin-orbit inter-

action and with a magnetic impurity. We have shown that the 

spin-orbit coupling strongly renormalizes critical exponents 

for correlation functions even for the homogeneous case for 

periodic boundary conditions. On the other hand, for open 

chains the contribution of the spin-orbit interaction to correla-

tion functions is trivial. In particular, the spin-orbit coupling, 

as a rule, causes the increase of critical exponents for pair-

pair correlation functions, while for spin-spin and density-

density correlations the critical exponents decrease with the 

growth of the spin-orbit interactions. The magnetic impurity 

also can play the decisive role in the behavior of correlation 

functions, because it renormalizes critical exponents in the 

way, similar to the contribution from curvatures of dispersion 

laws of low-energy excitations of the correlated electron sys-

tem in the Luttinger liquid approach. This feature is the mani-

festation of the reflectionless nature of the integrable impuri-

ty. The nonzero momentum, caused by the impurity implies 

that the influence of the impurity is spread along all the chain 

without dissipation. Such a property of the impurity, together 

with the highest entanglement of the antiferromagnetic 

ground state of the considered model makes the latter as the 

promising candidate for the application of similar systems in 

quantum computation and spintronics. 

Our findings are generic for one-dimensional correlated 

electron systems with the internal spin-orbit coupling and 

magnetic impurities, and can be used in studies of, e.g., 

semiconducting wires, where the spin-orbit interaction is 

relatively large. In particular, the influence of such spin-

orbit effects can be very important for spintronics, e.g., in 

spin-filtering current states. On the other hand, we have 

shown that in general critical exponents depend on the va-

lence and the magnetic moment of the magnetic impurity. 
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