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A microscopic theory of electronic spectrum and superconducting pairing within the Hubbard model is formu-
lated. The Dyson equation for the normal and anomalous Green functions in terms of the Hubbard operators
is derived by applying the Mori-type projection technique. The self-energy is evaluated in the noncrossing
approximation for electron scattering on spin and charge fluctuations induced by kinematic interaction for
Hubbard operators. Numerical results for electron dispersion in the strong correlation limit are presented.
Superconducting pairing mediated by antiferromagnetic exchange and spin fluctuations is discussed.
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1. Introduction

One of the basic models for the study of electronic spectra and superconductivity in strongly cor-
related electronic systems, such as the cuprate high-temperature superconductors, is the Hubbard
model [1]. In the simplest approximation the model is specified by two parameters: the single-
electron hopping matrix element t between the nearest neighbors and the single-site Coulomb
energy U :

H = −t
∑

i6=jσ

a†
iσ ajσ + U

∑

i

ni↑ ni↓ , (1)

where a†
iσ(aiσ) are the creation (annihilation) operators for electrons of spin σ at the lattice site i

and niσ = a†
iσaiσ is the electron occupation number. The model (1) permits to consider both the

cases of weak correlations, U � W , and of strong correlations, U � W , where W = 2zt is the
bandwidth (z is the number of the nearest neighbors). In the weak correlation limit a metallic state
is observed, while in the strong correlation limit the model describes a Mott-Hubbard insulating
state at half-filling (an average occupation electron number n = 1). For hole doping (n < 1) of
the lower Hubbard subband (LHB), or for electron doping (n > 1) of the upper Hubbard subband
(UHB) the model describes a strongly correlated metal.

While investigating the Hubbard model various methods have been used such as numerical
simulations for finite clusters (for a review see [2,3]), dynamical mean field theory (DMFT) (for a
review see [4,5]), the dynamical cluster theory (for a review see [6,7]), etc. (see [8] and references
therein). A rigorous analytical method is based on the Hubbard operator (HO) technique [9] since
in this representation the local constraint of no double occupancy of any lattice site is rigorously
implemented by the Hubbard operator algebra. A superconducting pairing due to the kinematic
interaction in the Hubbard model in the limit of strong electron correlations (U → ∞) was first
obtained by Zaitsev and Ivanov [10] who studied the two-particle vertex equation by applying a
diagram technique for Hubbard operators. However, they studied only the lowest order diagrams
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which are equivalent to the mean-field approximation (MFA) for a superconducting order parameter
and obtained only the k-independent s-wave pairing. Subsequently, superconducting pairing in
the Hubbard model was studied by Plakida and Stasyuk [11] by applying the equation of motion
method to the thermodynamic Green functions (GFs) [12]. They have used a decoupling procedure
for higher order GFs in MFA and obtained the results similar to [10] but with a different dependence
of the superconducting temperature Tc(n) on the electron occupations numbers n. As was found
later in the study of the t-J model within the Mori-type projection technique [13], in the simple
decoupling procedure used in [11] commutation relations specific for HOs were not properly taken
into account which resulted in a different formula for Tc(n) in comparison with [10]. A self-consistent
solution of Dyson equations for normal and anomalous GFs and respective self-energies within the
t-J model was performed in [14] which confirmed the results of the previous studies in MFA [13].

There are several later studies of superconductivity in the Hubbard model within the MFA [15–
17], where, however, a spin-fluctuation channel of superconducting pairing resulting from the
anomalous component of the self-energy was not taken into account. Electronic spectra for the
effective p-d Hubbard model in MFA was calculated in [18], while self-energy effects on electronic
spectra were studied in [19] based on a self-consistent solution of the Dyson equations for GFs and
the self-energy. A general formulation of a superconductivity theory within the Dyson equation
for the normal and anomalous GFs in the Hubbard model was given in [20]. A weak-coupling
approximation in the theory was considered in [21] where Tc(n) dependence was calculated and
the d-wave symmetry of the superconducting gap was confirmed.

In the present paper a consistent microscopic theory for electronic spectra and superconduc-
tivity in the strongly correlated limit of the Hubbard model is formulated. The theory is based
on the solution of the Dyson equation for the thermodynamic GFs in terms of HOs with a self-
energy evaluated in the noncrossing approximation (NCA). We present several numerical results
for electronic spectra for parameters of the Hubbard model different from those considered in [19]
and formulate superconducting equations with due regard for the two-band nature of the Hubbard
model in the limit of strong correlations.

In the next section we briefly discuss the model and derivation of the Dyson equation and
self-energy in NCA. A self-consistent system of equations for a hole-doped case is considered in
section 3 where several results of numerical calculations for electronic spectra and Tc are presented.
Concluding remarks are given in section 4.

2. General formulation

2.1. Hubbard model

We consider a Hubbard model on a square lattice in a hole representation usually used in
describing cuprate superconductors:

H = E1

∑

i,σ

Xσσ
i + E2

∑

i

X22
i +

∑

i6=j,σ

tij{Xσ0
i X0σ

j + X2σ
i Xσ2

j + σ(X2σ̄
i X0σ

j + H.c.)
}

, (2)

where Xαβ
i = |iα〉〈iβ| are HOs for the four states α, β = |0〉, |σ〉, |2〉 = | ↑↓〉, σ = ±1 = (↑, ↓),

σ̄ = −σ. We denote the single-site repulsion energy by U and introduce E1 = ε1 − µ and E2 =
2E1 + U as the energy levels for the one-hole (with a reference energy ε1) and the two-hole states.
The model (2) can be used to study cuprate superconductors by setting U = ∆pd where ∆pd is the
charge-transfer gap in cuprates. In this case the one-hole band is the d-like copper band (ε1 = εd)
and the two-hole band is the Zhang-Rice (ZR) p-d singlet band (ε2 = εd + εp) [22] (see, e.g., [23]).

The bare electron dispersion is defined by the hopping parameter tij which k-dependence is
specified by the equation

t(k) = 4t γ(k) + 4t′ γ′(k) + 4t′′ γ′′(k), (3)

where the hopping parameters are equal to t for the nearest neighbors and t′, t′′ for the second
neighbors, which determine the bare (band) dispersion by the functions: γ(k) = (1/2)(coskx +
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cos ky), γ′(k) = cos kx cos ky and γ′′(k) = (1/2)(cos 2kx + cos 2ky). The chemical potential µ
depends on the average hole occupation number

n = 〈Ni〉, Ni =
∑

σ

Xσσ
i + 2X22

i , (4)

where 〈. . .〉 denotes the statistical average. The spin operators in terms of HOs are defined as

Sσ
i = Xσσ̄

i , Sz
i = (1/2)

∑

σ

σ Xσσ
i . (5)

The HOs satisfy the completeness relation X00
i + X↑↑

i + X↓↓
i + X22

i = 1 and the multiplication

rules Xαβ
i Xγδ

i = δβγXαδ
i . From the latter follow the commutation relations

[

Xαβ
i , Xγδ

j

]

±
= δij

(

δβγXαδ
i ± δδαXγβ

i

)

. (6)

The upper sign pertains to Fermi-type operators like X0σ
i which change a number of particles and

the lower sign pertains to Bose-type operators, for example, the particle number operator Ni in
(4) or spin operators Sα

i (5).
We emphasize here that the Hubbard model (2) does not involve a dynamical coupling of

electrons (holes) to fluctuations of spins or charges. Its role is played by the kinematic interaction
caused by the non-Fermi nature of commutation relations (6) for the HOs, as was already noted
by Hubbard [9]. For example, the equation of motion for the HO Xσ2

i has the form

i dXσ2
i / dt = [Xσ2

i , H ] = (E1 + U)Xσ2
i

+
∑

l6=i,σ′

til

(

B22
iσσ′Xσ′2

l − σB21
iσσ′X0σ̄′

l

)

−
∑

l6=i

til X02
i

(

Xσ0
l + σX2σ̄

l

)

, (7)

B22
iσσ′ = (X22

i + Xσσ
i ) δσ′σ + Xσσ̄

i δσ′σ̄ = (Ni/2 + Sz
i ) δσ′σ + Sσ

i δσ′σ̄,

B21
iσσ′ = (Ni/2 + Sz

i ) δσ′σ − Sσ
i δσ′σ̄ . (8)

Here Bαβ
iσσ′ are Bose-like operators related to the particle number operator Ni and spin operators

Sα
i (5).

2.2. Dyson equation

To consider the superconducting pairing in Hubbard model (2), we define the thermodynamic
anticommutator GF as a 4 × 4 matrix in Zubarev notation [12]:

Gijσ(ω) = 〈〈X̂iσ | X̂†
jσ〉〉ω =

(

Ĝijσ(ω) F̂ijσ(ω)

F̂ †
ijσ(ω) − Ĝjiσ̄(−ω)

)

, (9)

where we introduce the four-component Nambu operator X̂iσ and its conjugate operator X̂†
iσ =

(X2σ
i X σ̄0

i X σ̄2
i X0σ

i ) . Due to the two-subband nature of the model (2), the normal Ĝijσ and

anomalous F̂ijσ components of the GF are 2 × 2 matrices which are coupled by the symmetry
relations for the anticommutator retarded GF [12].

To calculate the GF (9) we use the method of the equations of motion. Differentiating the GF
with respect to the time t, its Fourier representation leads to the equation

ωGijσ(ω) = δijQ + 〈〈[X̂iσ , H ] | X̂†
jσ〉〉ω , (10)

where Q = 〈{X̂iσ , X̂†
iσ}〉 = τ̂0 × Q̂ , Q̂ =

(

Q2 0
0 Q1

)

. (11)

Here τ̂0 is the 2× 2 unit matrix and in a paramagnetic state the coefficients Q2 = 〈X22
i + Xσσ

i 〉 =
n/2 and Q1 = 〈X00

i + X σ̄σ̄
i 〉 = 1 − Q2 depend only on the occupation number of holes (4). In
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the Q matrix we neglect anomalous averages of the type 〈X02
i 〉 which give no contribution to the

d-wave pairing.
In the Hubbard model, there are no well-defined QP excitations specified by zeroth-order kinetic

energy. Therefore, it is convenient to choose the mean-field contribution to the energy of QPs in
the equations of motion (10) as the zeroth-order QP energy. To identify this contribution, we use
the Mori-type projection method. To this end, we write the operator Ẑiσ = [X̂iσ , H ] in (10) as a

sum of the linear part, proportional to the original operator X̂iσ, and the irreducible part Ẑ
(ir)
iσ

orthogonal to X̂iσ :

Ẑiσ = [X̂iσ , H ] =
∑

l

EilσX̂lσ + Ẑ
(ir)
iσ . (12)

The orthogonality conditions 〈{Ẑ(ir)
iσ , X̂†

jσ}〉 = 〈Ẑ(ir)
iσ X̂†

jσ +X̂†
jσẐ

(ir)
iσ 〉 = 0 determine the linear part,

the frequency matrix:

Eijσ =
〈{

[X̂iσ , H ], X̂†
jσ

}〉

Q−1. (13)

Frequency matrix (13) determines QP spectrum in the generalized MFA and the corresponding
zeroth-order GF. Passing to the Fourier representation in the (q, ω) space, we write the zeroth-order
GF as

G0
σ(q, ω) =

(

ωτ̃0 − Eσ(q)
)−1

Q , (14)

where τ̃0 is the 4 × 4 unit matrix.
Differentiating the multiparticle GF 〈〈Ẑiσ(t) | X̂†

jσ(t′)〉〉 in (10) with respect to the second
time t′ and using the same projection procedure as in (12) leads to the Dyson equation for the GF
(9). In the (q, ω)-representation, the Dyson equation becomes

(Gσ(q, ω))
−1

=
(

G
0
σ(q, ω)

)−1 − Σσ(q, ω). (15)

The self-energy operator Σσ(q, ω) is defined by the proper part of the scattering matrix

Σσ(q, ω) = Q−1〈〈Ẑ(ir)
qσ | Ẑ(ir)†

qσ 〉〉(prop)
ω Q−1. (16)

Dyson equations (13)–(16) give an exact representation for GF (9). To obtain a closed system
of equations, we must evaluate the multiparticle GF in self-energy operator (16); this describes
the processes of inelastic scattering of electrons (holes) on charge and spin fluctuations due to
kinematic interaction.

2.3. Mean-field approximation

The superconducting pairing in the Hubbard model already occurs in the MFA and is caused
by the kinetic exchange interaction as proposed by Anderson [24]. Therefore it is reasonable to
consider the MFA described by zeroth-order GF (14) separately. Using commutation relations for
Hubbard operators (6), we evaluate the frequency matrix (13):

Eijσ =

(

ε̂ijσ ∆̂ijσ

∆̂∗
jiσ − ε̂jiσ̄

)

, or Eσ(k) =

(

ε̂σ(k) ∆̂σ(k)

∆̂∗
σ(k) − ε̂σ̄(k)

)

. (17)

The matrix ε̂σ(k) determines the QP spectrum in the two Hubbard bands in the normal phase
(for details see [18,19])

ε1,2(k) = (1/2)[ω2(k) + ω1(k)] ∓ (1/2)Λ(k),

Λ(k) = {[ω2(k) − ω1(k)]2 + 4W (k)2}1/2, (18)

where ω1(k) = 4t α1γ(k) + 4t′ β1γ
′(k)− µ, ω2(k) = 4t α2γ(k) + 4t′ β2γ

′(k) + U −µ, and W (k) =
4t α12γ(k) + 4t′ β12γ

′(k). Due to the kinematic interaction, the spectrum is renormalized: α1(2) =
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Q1(2)[1 + C1/Q2
1(2)], β1(2) = Q1(2)[1 + C2/Q2

1(2)] , α12 =
√

Q1Q2[1−C1/Q1Q2], β12 =
√

Q1Q2[1−
C2/Q1Q2] . Here, beyond the Hubbard I renormalization of hopping parameters given by the factors
Q1(2), we take into consideration the renormalization caused by spin correlation functions for the
nearest and the second neighbors, respectively:

C1 = 〈SiSi±ax/ay
〉, C2 = 〈SiSi±ax±ay

〉 . (19)

They considerably suppress the hopping parameters for the nearest neighbors: α1(2) � 1 since
due to AF correlations C1 < 0, |C1| = 0.1 − 0.2. However, we neglect charge correlations in the
renormalization by using the approximation 〈NiNj〉 = 〈Ni〉 〈Nj〉. For a moderate Coulomb energy
U 6 8t, charge fluctuations may be important in reducing strong renormalization caused by AF
spin correlations.

Now we evaluate the anomalous component ∆̂ijσ of matrix (17), which determines the super-
conducting gap. In what follows, we consider only the singlet d-type pairing, which is determined
by the anomalous averages at noncoincident sites, (i 6= j). The diagonal matrix components have
the forms

∆22
ijσ = −σtij〈X02

i Nj〉/Q2 , ∆11
ijσ = σtij〈NjX

02
i 〉/Q1 . (20)

Expressing the Fermi operators in terms of the Hubbard operators as aiσ = X0σ
i + σX σ̄2

i , we can

write the anomalous averages in (20) as 〈ai↓ ai↑Nj〉 = 〈X0↓
i X↓2

i Nj〉 = 〈X02
i Nj〉 , because the other

products of the Hubbard operators do not contribute, in accordance with the multiplication rules,
Xαγ

i Xλβ
i = δγ,λXαβ

i . This representation of the anomalous averages in terms of Fermi operators
shows that the pairing occurs at a single site but in different Hubbard subbands.

The anomalous averages 〈X02
i Nj〉 can be calculated directly by using the equation for the pair

commutator GF Lij(t−t′) = 〈〈X02
i (t) | Nj(t

′)〉〉 without any decoupling approximations [21]. Here
we present only the result for the correlation function for the two-hole band, in which the pairing
occurs under the hole doping, n = 1 + δ > 1:

〈X02
i Nj〉 = − 1

U

∑

m6=i,σ

σtim〈Xσ2
i X σ̄2

m Nj〉 ' −4tij
U

σ 〈Xσ2
i X σ̄2

j 〉. (21)

The last equation is obtained in the two-site approximation, m = j, which is typically used to
derive the t-J model. As a result, the equation for the superconducting gap in formulas (20) in the
case of hole doping can be written as

∆22
ijσ = −σ tij〈X02

i Nj〉/Q2 = Jij〈Xσ2
i X σ̄2

j 〉/Q2 . (22)

The obtained equation is equivalent to the gap equation in the t-J model, leading to a pairing due
to the exchange interaction Jij = 4 (tij)

2/U [13]. A similar equation can also be obtained in the
case of electron doping for the gap in the one-hole Hubbard band: ∆11

ijσ = Jij 〈X0σ̄
i X0σ

j 〉/Q1. Thus
we conclude that anomalous averages (20) in the Hubbard model correspond to the anomalous
averages in one of the Hubbard subbands (depending on the position of the chemical potential) in
the t-J model. Therefore, this is just conventional pairing mediated by the exchange interaction
which has been extensively studied within the t-J model (see, e.g., [13,14] and references therein).

The same anomalous pair correlation functions (20) were obtained in MFA for the original
Hubbard model (1) in [15–17]. To calculate the anomalous correlation function

〈

ci↓ci↑Nj

〉

in [15,17]
the Roth procedure was used based on a decoupling of the operators on the same lattice site
in the time-dependent correlation function: 〈ci↓(t)|ci↑(t

′)Nj(t
′)〉 . However, the decoupling of the

Hubbard operators on the same lattice site is not unique (as has been really observed in [15,17])
and unreliable. To escape uncontrollable decoupling, in [16] kinematical restrictions imposed on the
correlation functions for the Hubbard operators were used which, however, also have not produced
a unique solution for superconducting equations.
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2.4. Self-energy operator

Self-energy operator (16) can be conveniently written in the same form as GF (9):

Σijσ(ω) = Q−1

(

M̂ijσ(ω) Φ̂ijσ(ω)

Φ̂†
ijσ(ω) − M̂jiσ̄(−ω)

)

Q−1 , (23)

where the matrices M̂ and Φ̂ denote the respective normal and anomalous components of the
self-energy operator.

The system of equations for the (4×4) matrix GF (9) and the self-energy (23) can be reduced to
a system of equations for the normal Ĝσ(k, ω) and anomalous F̂σ(k, ω) (2×2) matrix components.
By using representations for the frequency matrix (17) and the self-energy (23), we derive for these
components the following system of matrix equations:

Ĝσ(k, ω) =
(

ĜN (k, ω)−1 + ϕ̂σ(k, ω) ĜN (k,−ω) ϕ̂∗
σ(k, ω)

)−1

Q̂, (24)

F̂ ∗
σ (k, ω) = −ĜN (k,−ω) ϕ̂∗

σ(k, ω) Ĝσ(k, ω). (25)

In (24) we introduced the normal state matrix GF and the matrix superconducting gap function:

ĜN (k, ω) =
(

ωτ̂0 − ε̂(k) − M̂(k, ω)/Q̂
)−1

, (26)

ϕ̂σ(k, ω) = ∆̂σ(k) + Φ̂σ(k, ω)/Q̂. (27)

To calculate the self-energy matrix (16) we use the non-crossing (NCA) or the self-consistent Born
approximation (SCBA). In this approximation, Fermi-like excitations described by operators Xj =
X0σ

j (X σ̄2
j ) and Bose-like excitations described by operators Bi (8) in multiparticle GF (16) are

considered to propagate independently, and therefore their correlation functions at noncoincident
lattice sites (i 6= j, l 6= m) factor into a product of the corresponding functions:

〈Bi(t)Xj(t)Bl(t
′)Xm(t′)〉 ' 〈Xj(t)Xm(t′)〉〈Bi(t)Bl(t

′)〉. (28)

Using the spectral representation for these correlation functions we get in the NCA the following
expressions for the normal Mαα

σ (q, ω) and anomalous Φαα
σ (q, ω) diagonal components of the

self-energy:

M22
σ (k, ω) =

1

N

∑

q

+∞
∫

−∞

dz K(+)(ω, z|q,k− q)

{

− 1

π
Im

[

G22
σ (q, z) + G11

σ (q, z)
]

}

, (29)

Φ22
σ (k, ω) =

1

N

∑

q

+∞
∫

−∞

dz K(−)(ω, z|q,k− q)

{

− 1

π
Im

[

F 22
σ (q, z) − F 11

σ (q, z)
]

}

, (30)

where Gαα
σ (q, z) and F αα

σ (q, z) are given by the diagonal components of the matrices (24), (25).
Analogous expressions hold for M 11

σ (k, ω) and Φ11
σ (k, ω) [20] . The kernel of the integral equations

(29), (30) has a form, similar to the strong coupling Eliashberg theory [25]:

K(±)(ω, z|q,k − q) = |t(q)|2 1

2π

+∞
∫

−∞

dΩ

ω − z − Ω

[

tanh
z

2T
+ coth

Ω

2T

]

Im χ(±)
sc (k − q, Ω), (31)

where the interaction is defined by the hopping parameter t(q) (3). The spectral density of bosonic
excitations in (31) is determined by the dynamic susceptibility of the Bose-like operators Bi(t) –
the spin and number (charge) fluctuations:

χ(±)
sc (q, ω) = χs(q, ω) ± χc(q, ω) = −[〈〈Sq|S−q〉〉ω ± (1/4)〈〈δNq|δN−q〉〉ω ] , (32)

500



Electronic spectrum and superconductivity in Hubbard model

where we introduced the commutator GF for the spin Sq and the number δNq = Nq −〈Nq〉 oper-
ators. The renormalized QP spectrum in the two-hole subband in the normal state is determined
by the equation (26): ε̃2(k) ' ε2(k) + ReM22

σ (q, ω = ε̃2(k))/Q2 , while the gap function (27) is
defined as ϕ2,σ(k, ω) = ∆22

σ (k) + Φ22
σ (k, ω)/Q2.

In the NCA vertex, corrections are neglected as in the Migdal-Eliashberg theory. For the
electron-phonon system the vertex corrections are small in the adiabatic approximation, as shown
by Migdal [26]. The kinematic interaction induced by the intraband hopping is of the same or-
der as the bandwidth and vertex corrections may be important in obtaining quantitative results.
However, in the NCA the self-energy is calculated self-consistently allowing to consider a strong
coupling limit which plays an essential role both in renormalization of quasiparticle spectra and in
superconducting pairing. Thus, this approach can be considered as a first reasonable approxima-
tion. Concerning the spin fluctuation contribution, it should be pointed out that the NCA is quite
reliable in this case since a certain set of diagrams, in particular the first crossing diagram [27],
vanishes due to kinematic restrictions for spin scattering processes.

3. Numerical results

In this section we consider a self–consistent system of equations for the GFs (24)–(27) and the
self-energy (29), (30) for the two-hole subband at hole doping when n = 1 + δ > 1. The normal
GF (26) can be approximately written as

G22
N (k, ω) = [1 − b(k)]G2(k, ω) + b(k)G1(k, ω), (33)

G1(2)(k, ω) =
1

ω − ε1(2)(k) − Σ(k, ω)
, (34)

where the hybridization parameter b(k) = [ε2(k)−ω2(k)]/[ε2(k)− ε1(k)] . The self-energy in (34)
can be approximated by the same diagonal component for the both subbands:

Σ(k, ω) =
1

N

∑

q

+∞
∫

−∞

dzK(+)(ω, z|q,k− q)
(

− 1

π
Im[G1(q, z) + G2(q, z)]

)

. (35)

The gap equation (27) for the diagonal component for the two-hole subband can be written as

ϕ2,σ(k, ω) =
1

NQ2

∑

q

+∞
∫

−∞

dz

[

J(k − q)
1

2
tanh

z

2T
+ K(−)(ω, z|q,k − q)

] (

− 1

π

)

Im F 22
σ (q, z). (36)

Here the gap equation (22) in MFA for the exchange interaction J(q) = 4J γ(q) was used where
J is the exchange energy for the nearest neighbor spins. In (36) a contribution from the one-hole
subband F 11

σ (q, z) was neglected since the gap function in this filled band much below the Fermi
level is vanishingly small. To determine the superconducting Tc it is sufficient to solve a linear
equation for the gap (36) by using the linearized anomalous GF (25):

F 22
σ (k, ω) = −G22

N (k,−ω) ϕ2,σ(k, ω) G22
N (k, ω) Q2 . (37)

To solve the system of equations we should specify a model for the spin-charge susceptibility (32)
in the kernel (31). Below we take into account only the spin-fluctuation contribution χs(q, ω) =
−〈〈Sq | S−q〉〉ω for which we adopt a model suggested in numerical studies [28]

Im χs(q, ω + i0+) = χs(q) χ
′′

s (ω) =
χ0

1 + ξ2(1 + γ(q))
tanh

ω

2T

1

1 + (ω/ωs)2
. (38)

The q-dependence in χs(q) is determined by the AF correlation length ξ while a frequency de-
pendence is determined by a continuous spin-fluctuation spectrum in χ

′′

s (ω) with a cut-off energy
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of the order of the exchange energy ωs ∼ J . The two fitting parameters, however, do not fix the
strength of the spin-fluctuation interaction given by the static susceptibility χ0 at the AF wave
vector Q = (π, π). This parameter is fixed by the normalization condition:

〈S2
i 〉 =

1

N

∑

i

〈SiSi〉 =
1

π

+∞
∫

−∞

dz

exp (z/T )− 1
χ

′′

s (z)
1

N

∑

q

χs(q), (39)

which gives the following value for this constant: χ0 = (2〈S2
i 〉/ωs){(1/N)

∑

q 1/[1+ξ2(1+γ(q))]}−1.

In (39) we introduced 〈S2
i 〉 = (3/4)(1−|δ|) where at the hole doping δ ' 〈X22

i 〉, while at the electron
doping δ ' −〈X00

i 〉.
The spin correlation functions (19) in the single-particle excitation spectra (18) in MFA are

defined by equations

C1 =
1

N

∑

q

Cq γ(q), C2 =
1

N

∑

q

Cq γ′(q). (40)

The static correlation function Cq can be calculated from the same model (38) as follows Cq =
〈SqS−q〉 = C(ξ)/[1 + ξ2(1 + γ(q))], where the factor C(ξ) = χ0 (ωs/2).

The doping dependence of the AF correlation length ξ(δ) at low temperature was evaluated
from comparison of the correlation function C1 calculated from (40) with numerical results of an
exact diagonalization for finite clusters [29]. It was found that ξ = 3 − 2 for δ = 0.05− 0.15 .

Below we discuss electronic spectra in the normal state in the hole-doped case and consider an
equation for the superconducting gap in the two-subband model. An extensive study of dispersion
of single-particle excitations, spectral functions, and the Fermi surface in the normal state have
been reported in [19] in the limit of strong correlation for U = 8t. Here we present some of the
numerical results for a modest correlation limit for U = 4t. The model dispersion (3) is specified
by the hoping parameters t′ = −0.13t, t′′ = 016t suggested for a model of La2CuO4 in [30].

3.1. Normal state electronic spectrum

The spectrum of single-electron excitations is determined by the spectral function A(el)(k, ω) =
A(h)(k,−ω) where the spectral function for single-hole excitations is determined as

A(h)(k, ω) = [Q1 + P (k)][−(1/π) Im G1(k, ω)] + [Q2 − P (k)][−(1/π)] Im G2(k, ω), (41)

where the parameter P (k) = (n− 1)b(k)− 2
√

Q1 Q2 W (k)/Λ(k) takes into account hybridization
effects both from diagonal and off-diagonal components of the GF (26). Dispersion curves given by
the maximum of the spectral function (41) in units of t along the symmetry directions Γ(0, 0) →
M(π, π) → X(π, 0) → Γ(0, 0) for δ = 0.1 at T = 0.03t are shown in figure 1, left panel. The
dispersion reveals a rather flat hole-doped band (LHB in electron notation) at the Fermi energy
(FE) (ω = 0) and dispersing behavior far away from the FE. Our results for LHB resemble the
dispersion curves obtained by LDA + DMFT numerical calculations for a model of La2−δSrδCuO4

by Weber et al. [31] despite a difference in hole concentrations. Their results are shown in figure 1,
right panel, in the direction Γ(0, 0) → X(π, 0) → K(π, π) → Γ(0, 0) in units of eV. The flat band
crossing the FE is ascribed to the coherent QP excitations of the Zhang-Rice (ZR) singlet band,
while the dispersing part is related to the incoherent ZR excitations related to the self-energy effects
in DMFT. An abrupt change in the dispersion from the flat band to the dispersing part below the
FE shown by white dashed lines in the right panel are associated with the so-called “waterfall”
feature observed in ARPES experiments in cuprates. We also observe the “waterfall” feature, but,
in contrast to [31], in our calculations the spectral intensity close M(π, π) point is transferred to
the UHB which is separated by a gap of the order of U ∼ 4t ∼ ∆pd where ∆pd is the charge-transfer
gap in the LDA calculations in [31]. Most likely this difference is due to a momentum dependence
of the self-energy (35) which is not accounted for in the DMFT calculations. There should also be
taken into account a difference in the models (our two-subbands model versus three-band p-d model
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Figure 1. Dispersion curves in units of t for δ = 0.1 (left panel) in comparison with LDA +
DMFT calculations for δ = 0.24 (right panel) [31].

in the LDA calculations) and a lower doping level in our calculations (δ = 0.1 versus δ = 0.24)
which may result in different energy scales.

Studies of temperature and doping dependence of the spectral function (41) in [19] have revealed
a strong increase of the dispersion and the intensity of the QP peaks at the Fermi energy in the
overdoped region, δ = 0.3, and at high temperature, T = 0.3t , which proves a strong effect of
AF spin-correlations on the spectra. The obtained dispersion curves are in accord with numerical
studies for the Hubbard model [6,7]).
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Figure 2. Fermi surface at δ = 0.05 determined by the equation ε2(kF) + ReΣ(kF, ω = 0) = 0
(left panel) and from maxima of the spectral function A(k, ω = 0) (right panel).

Noticeable temperature and doping dependence was also observed for the Fermi surface (FS).
Figure 2 shows the FS at hole doping δ = 0.05 and T = 0.03t. In the left panel the FS determined
by the equation: ε2(kF) + Re Σ(kF, ω = 0) = 0 is represented by a large pocket. At the same
time, the FS obtained from maxima of the spectral function Ael(k, ω = 0) on the (kx, ky)-plane
shown in figure 2, right panel, reveals an arc-type shape with maximum intensity located on the
large FS. This explains why in ARPES experiments, where the spectral function Ael(k, ω = 0) is
measured, only this part of the FS has been detected (for a discussion see [32]). In the underdoped
region δ < 0.05 the hole pockets shrink while at higher doping the FS becomes open and in the
overdoped region it transforms to an electron-like form. This FS transformation was confirmed by
studying the electron momentum distribution function N(el)(k) = 1 − N(h)(k) where N(h)(k) =
〈∑σ Xσσ

k + 2X22
k 〉 [19].
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3.2. Equation for superconducting gap and Tc

In this subsection we discuss equations for the superconducting gap (36) and Tc at hole doping.
For the linearized anomalous GF (37) the gap equation in the Matsubara frequency representation,
ωn = iπT (2n + 1), can be written as

ϕ2,σ(k, iωn) =
T

N

∑

q

∑

m

{

J(k − q) + λ(−)(q,k − q | iωn − iωm)
}

× G22
N (q,−iωm) G22

N (q, iωm) ϕ2,σ(q, iωm). (42)

Here the interaction function for the spin susceptibility model (38) is given by the equation

λ(q,k − q | iων) = −|t(q)|2 χs(k − q)
1

π

∫ ∞

0

2xdx

x2 + (ων/ωs)2
1

1 + x2
tanh

x ωs

2T
. (43)

To calculate Tc and to find the gap function one should find out the eigenvalue and the eigenfunction
of the linear equation (42) in (k, ωn)-space. In the strong-coupling limit within the Eliashberg-type
theory, the full normal-state GFs (33), (34) self-consistently calculated taking into consideration
the self-energy (35) should be used. A particular wave-vector dependence of the interaction (43)
as a product of the (q)- and (k − q)-dependent functions makes it possible to use the fast-Fourier
transformation which helps to simplify the calculations. This program has been realized for the
single-band t-J model in [14]. However, a complicated two-subband form of GFs (33), (34) in the
Hubbard model presents a complicated problem for numerical calculations which has not been
solved so far.

Therefore, as a first step, a weak-coupling approximation (WCA) for the gap function (42) can
be considered. In the WCA the kernel of integral equation (36) is approximated by its value near
the Fermi surface for energies |ω, z| � µ as

K(ω, z|q,k− q) = −|t(q)|2 χ(k − q)
1

2
tanh

z

2T
, (44)

where χ(q) = Re χ(q, Ω = 0) is the static susceptibility. In the WCA the self-energy contribution in
the normal-state GF (34) is neglected which results in the following equation for the gap function
at the Fermi energy ∆(k) = ϕ2,σ(k, ω = 0):

∆(k) =
1

N

∑

q

(

J(k − q) − |t(q)|2 χ(k − q)
)([ (1 − b(q))2

2ε2(q)
+

b(q)(1 − b(q)

ε1(q) + ε2(q)

]

tanh
ε2(q)

2T

+
[ b(q)2

2ε1(q)
+

b(q)(1 − b(q)

ε1(q) + ε2(q)

]

tanh
ε1(q)

2T

)

∆(q). (45)

In this equation, only the first term ∝ [(1 − b(q))2/2ε2(q)] tanh(ε2(q)/2T ) shows a divergence on
the FS for ε2(q) → 0, while other terms with the energy ε1(q) ∼ U in denominators give much
smaller contribution. This suggests that to estimate Tc, one can take into consideration only the
contribution from the two-hole subband on the FS. A numerical solution of this reduced equation
has been obtained in [21] in the limit of weak hybridization, b(q) � 1. The d-wave pairing with high
Tmax

c ∼ 200 K was found. In the strong-coupling limit a certain reduction of T max
c in comparison

with WCA should be observed.
Concerning the mechanism of pairing in the Hubbard model, we can draw the following general

conclusions from the gap equations (42) or (45). As follows from these equations, there are two
channels of pairing. The first one is mediated by inter-subband hopping and is determined by the
AF exchange interaction J(k − q) which is usually considered in the RVB-type theories [24]. There
are no retardation effects for the exchange pairing due to a large hopping energy U � t that results
in the pairing of all electrons in the hole subband as shown in figure 3. The second contribution
comes from the spin-fluctuation pairing ∝ χ(k − q) induced by intra-subband hopping which is
only possible in a range of energies ±ωs near the FS, as in the BCS theory as sketched in figure 4.
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Figure 3. Antiferromagnetic exchange pairing mediated by inter-band hopping.

Figure 4. Spin-fluctuation pairing mediated by intra-band hopping.

The spin-fluctuation interaction is repulsive and can produce pairing only for a sign-varying gap
on the FS, as the d-wave gap. This type of pairing is usually considered in phenomenological
spin-fermion models [33].

To estimate both contributions, we consider the equation for the d-wave gap ∆(k) = ∆0 (cos kx−
cos ky)/2 ≡ ∆0 η(k) in the WCA in a conventional BCS form:

1 =

W̃−µ
∫

−µ

dε

2ε
tanh

ε

2Tc
[J Nd(ε) + θ(ωs − |ε|) λsf Nsf(ε)] , (46)

where Nd(ε) and Nsf(ε) are the density of electronic states for the exchange and spin-fluctuation
interactions and the effective spin-fluctuation coupling constant is given by the hopping parameter
averaged over the Fermi surface: λsf = 〈t2(k) η2(k)〉FS/ωs (for details see [21]). The integration
over energy for the first term in (46) extends over all energies in the subband of the renormalized
width W̃ , while for the second term the integration is restricted as discussed above. By solving
this equation in the standard logarithmic approximation, we derive for the superconducting Tc the
following estimation

Tc = ωs exp(−1/Ṽsf), Ṽsf = Vsf +
Vex

1 − Vex ln(µ/ωs)
, (47)

where the effective coupling constants Vex ∼ J Nd(0) and Vsf ∼ λsf Nsf(0). Even for a weak coupling,
Vex ∼ Vsf ∼ 0.2 a large value of Tc can be obtained by means of the enhancement of the spin-
fluctuation coupling constant Ṽsf due to a large logarithm for µ � ωs.

4. Conclusions

In the present paper a theory of superconducting pairing within the effective p − d Hubbard
model (2) with strong-electron correlations is presented. By employing the Mori-type projection
technique for the equation of thermodynamic GFs [12] we obtained a self-consistent system for
the matrix GF and the self-energies in the noncrossing approximation. The latter is similar to the
Migdal-Eliasberg strong-coupling approximation.
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It is important to point out that the investigations of models with strong electron correlations
provide a microscopic theory for superconducting pairing mediated by the AFM exchange inter-
action and spin-fluctuation scattering induced by the kinematic interaction, characteristic of the
systems with strong correlations. These mechanisms of superconducting pairing are absent in the
fermionic models (for a discussion, see Anderson [34]) and they appear to be generic for cuprates.
The singlet dx2−y2 -wave superconducting pairing was proved for the original two-band p-d Hubbard
model. Therefore, we believe that the proposed magnetic mechanism of superconducting pairing is
a relevant mechanism of high-temperature superconductivity in copper-oxide materials.
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Електронний спектр i надпровiднiсть в моделi Хаббарда

М.М.Плакiда1,2, В.С.Удовенко1,3

1 Об’єднаний iнститут ядерних дослiджень, 141980 Дубна, Росiя
2 Iнститут Макса Планка з фiзики складних систем, Дрезден 01187, Нiмеччина
3 Унiверситет Ратгерса, Пiскатавей, Нью-Джерсi 08854, США

Отримано 20 травня 2008 р., в остаточному виглядi – 10 червня 2008 р.

В рамках моделi Хаббарда, сформульовано мiкроскопiчну теорiю електронного спектру та надпро-
вiдного спарювання. З використанням технiки проектування типу Морi, отримано рiвняння Дайсона
для нормальних i аномальних функцiй Ґрiна побудованих на операторах Хаббарда. Власноенер-
гетична частина розрахована в наближеннi без перетинiв для розсiяння електронiв на спiнових i
зарядових флуктуацiях, якi створюються кiнематичною взаємодiєю для операторiв Хаббарда. При-
веденi чисельнi результати для електронної дисперсiї в границi сильних кореляцiй. Обговорюється
можливiсть надпровiдного спарювання через антиферомагнiтнi обмiннi та спiновi флуктуацiї.

Ключовi слова: сильнi електроннi кореляцiї, модель Хаббарда, надпровiднiсть

PACS: 74.20.Mn, 71.27.+a, 71.10.Fd, 74.72.-h
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