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Abstract. The manifestation of phonon dispersion on frequency and temperature dependence
of exciton damping is investigated theoretically for the models of crystal with the large and
small exciton radii. The correlation between the dispersion and the frequency intervals with
phonon absorption and emission is discussed for the exciton of TIBr, ZnS and some other
crystals as examples. It is demonstrated that depending on frequency the dispersion results
both in increase and reduction of the exciton damping. In addition, the intensity of exciton
damping close to the peaks of phonon absorption and emission is varied. The change of the
tendency of influence of dispersion on damping for some fixed frequency with temperature

growing is noticed.
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1. Introduction

The phonons cause power losses for excitations [1] and
assist appreciable influence on the physical properties of
materials [2]. The scattering of excitons by phonons is
recently treated more intensively for both low-dimen-
sional [3] and anisotropic [4] crystals. In these materials,
the energy of exciton coupling grows in comparison with
its volumetric meaning [5] and the power exchange with
phonons becomes more essential [6,7]. The detailed study
of the phonon dispersion is important both owing to the
practical application in device making and for the deeper
understanding of the nature of microprocesses in solid
state.

The relaxation of the energy of an exciton goes the
most effectively through its interaction with an optical
phonon [8] (except for low temperatures, at which the
acoustic phonons can give the comparable contribution).
Among other branches of vibrations, one allocate the in-
teraction with longitudinal optical (LO) phonons [9]. As
a most energetic, these phonons have a significant dis-
persion for majority of directions of the wave vector [10].
However, the LO-phonon dispersion has been frequently
neglected supposing merely that all oscillators have iden-
tical frequency (the well-known Einstein model). Such
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approach can result in loss of an important information.
For instance, the investigation of the polaron mobility in
one-dimensional conductors [11] has shown the essential
influence of the phonon dispersion. In three-dimensional
crystals [12], it was established that the phonon disper-
sion appreciably changes a low frequency asymptotic of
conductivity. In work [13], for strongly coupled electron-
phonon system, it was revealed that the dispersion of
phonon frequency can cause washing out the oscillations
in angle-resolved photoemission spectra.

The principal objective of this work is to study the
influence of the LO-phonons dispersion on frequency and
temperature dependence of exciton damping within the
limits of weak coupling of excitons with phonons and
one-phonon approximation.

Earlier this effect was studied in detail by us using
cosine law for dispersion [14]. Owing to the peculiarities
of the edges of the Brillouin zone, there is a great interest
to study the damping for other laws of phonon dispersion
as well.

For the illustration, we use the model of TIBr and ZnS
crystals with large and small exciton radii, respectively.
Further, the paper is constructed as follows. In the second
section the basic formulas for calculations are given. In
the third section the obtained results are discussed and in
the final fourth section, the conclusions are presented.
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2. Basic formulae of a task

Let’s treat the cubic crystal as the system of periodically
placed quantum oscillators, in which under action of an
external excitation the excitons can be create. It is sup-
posed that the exciton realizing coherent motion in a
phonons environment and can be described by the Bloch
wave. Then, in the case of a weak exciton-phonon coup-
ling the one-phonon scattering processes play the most
important role. Exciton collisions with phonons results
in restriction of its lifetime and to the damping " of an
exciton wave that in quantum language can be described
as the sum of processes with the absorption ' and emis-
sion '™ of phonons:

F=rr+r-. (1)

In the first Born approximation the damping depend-
ing on frequency of the incident wave w and temperature
T of the crystal can be presented in a general form as [15]:

M (,0T) = 2nz|ejo(q)| N (T)+ 1Hx

x ol - E(k +q)+Q,o(q)]
@)

In this formula G;g(q) is the coupling function of
excitons with the longitudinal (] = L) or transverse (j =T)

Here p is the reduced mass density of a material, §
is the effective ionic charge density, E is the macroscopic
electrical field, Wro is the frequency of TO-mode, C;
and cy4 are optical-mode elastic constants, Et is any
transversely polarized component of the electrical field,
Uo 1s the magnetic permeability of free space. The well-
known properties of these modes (for example, [16]) are
given in Table 1.

Taking into account the expressions for the energy of
optical modes given in this Table we shall calculate the
damping of an exciton in the crystal. Let’s choose in Eq.(2)
the dependence of exciton energy on quasi-momenta of
exciton and phonon as

2
E(kiq):E0+§l—M(kiq)2, M =mg +my,

4)

where Ej is the exciton band bottom energy, m, is the
electron mass, my, is the hole mass. Let’s substitute both
the Eq. (4) and one of expressions of Table 1 in the for-
mula (2). We shall convert summation over ¢ in Eq. (2)
to the appropriate integration. The integration will be
performed in the spherical system of coordinates. Inte-
gral over polar corner gives 277, and the integration over
azimuthal corner is easy for executing by using the J -
functions. Then, one obtains

optical phonons, E(k) and Qjo(q) are, accordingly, . MV g, /n |—1
the energy of an exciton and jO -phonon in the crystal, = (k,w,T)=—
J [...]is the Dirac delta-function, Ng(T) is the average 2mhi°k \/1 d;(a:/do) | s
number of phonons with a quasi-momentum q which obey 1 10 ®)
to the Bose statistics, k is the exciton quasi-momentum. XJ' dq qG2 io (9) EV M+= H
Longitudinal and transverse modes of the optical vibra- ~k+q 2 2
tions generally are the solutions of the macroscopic equa- h
tion of motions for relative displacement U of ions con- W 1¢I€
nected to the appropriate Maxwell equations, namely
2Hw-Ey _d;

g Bzt 0g
EoU = —pwioU + 6 E + ¢ 0(0U) +cgyIx Ox U, 10 ©
- (eV) =0 oy
g . 2 3) 1+ E‘L +d E!T
[l ET =—0 ET . jO B
5 &Ho Mo 2

@ =n- hz o djEno— jELT, @
Table 1. Basic properties of optical modes 10
Mode Dispersion Electrical field Permeability
10 Q%(q) =Qfo ~1*q’vf EL=-§/e,UL £w) =0
TO 0?%(q) = Qf - 1%g%v? Er=0 g(w) —»

Q%6 =(e0/£0)Q%0, & =£.p(Qf0 -Q%0) /12,
vE=culp, vE=cyulp.
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V is the volume of the crystal, n=1,2,3, ... are some inte-
gers (for maximal n thevalueof d; ought to be less than
unity). The values ¢. con be obtained from algebtic equa-
tion of the fourth order. Their exact meaning is rather
cumbersome, thereofore, we have kept only the essential
terms in Eq.(6)The limits of integration in Eq. (5) should
satisfy the conditions:

Bkﬂhﬁ%ax: 8)
g-k+a. 20,

where Qg = (617> /Vo)ll 3, V is the volume of an el-
ementary cell. Besides, from Eq.(6) follows that

how- E0<QJO@ 2n %gﬁ djz0. ©)

Above entered parameter d; can be considered as
parameter describing the dispersiveness of the j -th mode
of optical vibrations in the polar crystal.

The further calculation of Eq. (5)in an analytical form is
possible for elementary kind of the coupling function

Gjo(q), without any restrictions on the value of an exci-
ton quasi-momentum Kk , or for a general view of the func-
tion G with k — 0. First, let us consider the former case.

We shall be limited hereinafter to the interaction of
excitons only with the longitudinal optical (LO) phonons.
Let the length of a phonon wave A pn be much more than,
the radius of an exciton rgy. Then, the coupling function
of excitons with LO-phonons (having the dispersion d; )
is taken to be

GLo(a) =2Q¢(ag -ad)x

—0 o 7
—Rﬂ—dL%D
] ,Ho
O O

Here, Q is the energy of optical phonon with zero
momentum,

e [m H1 1 h?
q=— |[— - R=
h ZQO o €0 ZMQO

are, accordingly, the polaronic coupling constant and the
radius of polaron withmass M , €., and &g are the dielec-
tric constants for high and low frequencies, respectively,

I
q =l

2 M’

(10)

(11)

(12)

i =¢h.

The integration in Eq. (5) with the account for Eq.(10)
gives
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[ (k,w,T) =16aRQq(aZ -a2)2q2qs. x

g Beve2l
x(k2+qf) H qo B X

(13)

X
DDEDDDDDD

where quasi-momentums kK and g, satisfy the conditions
of Eq. (8) and also to the criterion:

k? +Z < qf/dy - (14)

The dependence I'* on the frequency is set only
through the parameter g, of Eq. (6). We have also used
the identity

<ofsf-
do
H - 20 hew-E- d;
PRl
. n o} n QJO

with j =L at calculation of Eq. (13).

Formula (13) describes the damping of an exciton by
absorption or emission of a phonon moving under some
corner 8 with respect to the direction of exciton movement
k. Equation (13), in other words, determines the probability
that an exciton with a wave vector k can absorb or emit a
phonon with the quasi-momentum g, and dispersion d| .

If the effective mass of an electron and hole are coin-
cides, the scattering of an excitons by LO-phonons does
not occur. There comes the mutual compensation of the
polarization in accordance to the model of independent
polarization of the lattice by an electron and hole taken
separately, chosen by us in Eq. (10).

Let’s consider now the case of the small exciton quasi-
momentums. In this case, in Eq. (5) there arises uncer-
tainty relation of the type 0/0, opening which, we arrive
at the following expression

(15

OO O,

v
rtk - 0,wT)= 930, X
an

e

‘/1 d (Q+/QO) |

C':‘jZO (0)
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Within the framework of one-phonon approximation,
the function G here can be arbitrary function of q, . Here
the conditions (8) are found to be

_QjO Sh&)—EO <

oeg--oied,

for processes with the phonon absorption I'*, and

(17)

QjO Shw—Ec)S

0 0
SQ]O%E%@(EZJF /1“’1@%&@2% (18)
0 0
B

for processes with the phonon emission I'~. From Eqs (17),
(18) follows, that maximal dispersion in the polar crys-
tals may achieve the magnitude:

(19)

Otherwise, this substantially means that the maximal
pulse of a phonon in the crystal should saiisfy also the
CI‘ltCI’lO’nZ Omax S Wjo /U (Where wig =1""Q o).

Let’schoose G aslinear in operator of exciton-phonon
interaction coupling function for 1s exciton:

(20)

Then, the damping of an exciton on the longitudinal
vibrations of the lattice in accordance with Eq. (16) is
determined as

0l

o

s
o]
o |+
CITT4,

r*0,wT)= 2‘/201(20 x
n
qiD—Li 1_d|_ +§
QOHn Yo
0 f
0 0
0 0
0 0
x [3 1 - 1 0 x
gl B, AR
£ 00 00
Pl g AP Ha e
B 0O O OH
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where 3, =a;qg . Notice that the formula (21) describes
the damping not only close to the bottom of an exciton
zone, but on distances of the order of an energy charac-
teristic to the dispersionless phonon as well. It follows
from the dependence of exciton energy in Eq. (2) on the
phonon quasi-momentum.

We put g = Qppax for one-phonon approach. From con-
ditions, ensuring the frequencies lacing for phonon absorp-
tion or emission (in absence of its dispersion) it is possi-
ble to determine the parameter n. Thus, we find that at
n = 4 the conditions (17), (18) for Eq. (21) are rewritten as:

—Qoshw—EosQO(z—,/l—dL), (22)
for I'*,and

Qoshw—EosQO(2+,/1—dL), (23)
for '™ . Therefore, formally

0<d, <1. (24)

Though for concrete crystal the value of d is quite
certain for any given mode j, but studying the effect of
phonon dispersion on exciton damping in the crystal, was
allowed to vary it in the limits of (24). As it is seen from
Egs (22), (23), at maximal dispersion (d =1) the range
with the phonon emission is narrowed by the value of the
energy LO-phonon while the range with phonon absorp-
tion extends by the same quantity of energy. The magni-
tude d determines a share of the contribution of the pho-
non zone to the exciton scattering.

In the case when phonon dispersion is neglected
(d = 0) the expression (8) with the account for Eq. (9) can
be reduced to the known from earlier works (see, for ex-
ample, [17]).

As models for calculations the number of ionic crystals
were chosen with parameters given in Table 2. The exci-
ton radius was calculated here by the formula rg =
= (h/E)ZEO/H » U =1m+1/my,. It is necessary to
notice that the problem of determination of exciton ra-
dius is connected with the problem of a choice of dielec-
tricconstant £ [23]. If the angular frequency of an exciton
Wey = h/(Ur2) is less or does not exceed frequency of a
longitudinal mode of optical vibrations Q, the displace-
ment of vibrations of a lattice follows to the exciton mo-
tion. Then the lattice is polarized, and, for Coulomb in-
teraction it is necessary to choose the low-frequency di-
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electric constant &g . On the contrary in the case, when
the angular frequency of an exciton is greater than Qg,
than the exciton follows to the lattice motion, and the
choice of high-frequency dielectric constant &, is more
acceptable. For the crystals given in Table 2, the con-
stant &g proved to be proper.

3. Discussion of results

For illustration we have chosen from Table 2 TIBr and
ZnS (sphalerit) crystals having most contrast parameters
€0 Tex> Qg In figures 1 and 2, the frequency depend-
ence of excitons damping are given in the presence (curves
1) or in the absence (curves 2) of dispersions of optical
vibrations of the lattice. The calculations are performed
for room temperature (7= 300K), at which effect of dis-

Table 2. Parameters of ionic crystals

persion are the most distinct. As seen from the figures, the
frequency dependence of damping represents a double-
humped curve, according to processes involving absorp-
tion and emission LO-phonon in the crystal.
The scattering of an exciton begins with the energy
Ep — Qg . The intensity of damping grows quickly with
increase of difference in effective masses of an electron
and hole. This growth is restrained by reduction of the
electron-phonon coupling with increasing the wave vec-
tor q, when the phonon wavelength becomes less than the
exciton radius. Especially remarkable such reduction is
for crystals with large exciton radii (as considered TIBr)
and poorly manifest itself for excitons with small exciton
radii (as in ZnS) for which the maximum of exciton-pho-
non coupling is displaced to the side of shorter waves or
even may fall outside the frequency limits of one-phonon
interval. The competition of these factors forms the maxi-
mums in damping.

<] [

Crystals & Eo mIny mylmy Q. cm™ Tex, A a,A a C;, 10", (dyn./cm)?
MgO* 9.8 2.97 0.25 3.20 726 22.4 4.21 5.36 29.6
TIBr** 35.1 5.4 0.18 0.38 115 152.1 3.97 3.62 3.78
TICI** 37.6 5.1 0.37 0.36 173 109 3.84 3.65 4.04
GaP** 11.0 91 0.17 024 403 59.0 545 02 14.5
Cu,O*F* 7.1 6.2 0.61 0.84 606 10.63 2.46 0.33 11.6
ZnSHH** 8.6 5.2 0.25 0.59 352 25.9 5.41 1.23 10.5
AgBr¥*** 10.6 4.68 0.22 0.70 140 33.4 5.77 3.21 5.63

The note. * On the data [18]. ** On the data [19]. *** On the data [20]. **** On the data[21]. The meaning of constants
cy1 are given on the data [22] at room temperature.
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200

A r@),em!
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Fig .1. Frequency dependence of exciton damping for TIBr crystal

at room temperature for different values of LO-phonon dispersion:

d =0 (curve 1), d = 1 (curve 2).
500, 4(4), 2001

Fig. 2. Frequency dependence of exciton damping for ZnS crystal at

room temperature for different values of LO-phonon dispersion:
d =0 (curve 1), d = 1 (curve 2).
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Starting with the energy Eg + Qg alongside with ab-
sorption the processes with phonon emission begin to give
contribution to the damping as well, which is sustained
down to helium temperatures inclusively. The summa-
tion of all named processes for this spectrum range causes
the higher intensity of damping.

Increase in phonon band dispersion results in the weak
displacement of the maximum of damping (below Ej) to
the short-wave side of the spectrum. This displacement is
due to the fact that with increasing phonon wave vector
the LO-phonons frequency decreases, and contribution
of phonons with identical quasi-momentums is displaced
to the side of shorter waves. On the other hand, with dis-
persion growth the processes with phonon emission come
to the end at lesser frequencies (see (23)), which results in
displacement of the second maximum (above Ej) to the
long-wave side of the spectrum. As seen from Figs 1, 2,
the growth of dispersion determines the downturn of a
damping maximum in the range with phonon absorption
and its increasing in the range with phonon emission.
Such behavior follows from restrictions (22), (23) to the
frequency range of variation of I and '™,

The displacement of damping maxima (both higher
and lower E\)) are more considerably for crystals with
small exciton radii (Cu,0O, AgBr and ZnS (Fig. 2)), whe-
reas the change of intensities of damping is more essential
for crystals with the large exciton radii (as TICI). For the
former, as a rule, the maximum is pronounced expressed
and retained with displacement. This behavior may be
considered as a consequence of weakening the exciton-
phonon coupling in the field of frequencies, where the
length of the phonon wave exceeds the exciton radius.

The absolute value of damping of an exciton for the
certain crystal, except for told, is determined also by both
polaronic coupling constant a and the energy of disper-
sionless phonon Q.

A (D), em”

1000
750

500

250

0 100 200 300

Fig. 3. Temperature dependence of damping for a TIBr crystal at
energies hw—Eg=-0.9Qq (curves 1, 2), —-1.3Qq (curves 3, 4),
1.1Qg (curves 5, 6). The curves 1,3,6 correspond to the presence
of dispersion, and its absence is displayed by curves 2.4,5.
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Thus, analyzing the frequency dependence of dam-
ping for crystals with considerably distinguished con-
stants, one finds the same tendency, namely, with increas-
ing of phonon dispersion the short-wave wing LO-phonon
damping is displaced towards the direction of exciton
band bottom. This results in narrowing the frequency in-
terval with phonon emission, and by that, to increase of
absolute magnitude of damping. At the same time, the
range with phonon absorption extends, accordingly, the
intensity of damping falls, especially for crystals with
the large exciton radii.

In Figs 3, 4, the results of calculation of damping versus
temperature for crystals TIBr and ZnS are shown. The cal-
culations were fulfilled for some fixed frequencies in pres-
ence (curves 1, 3, 6) and in absence (curves 2, 4, 6) of phonon
dispersion. As a rule, those frequencies got out, for which
the display of dispersion was the most appreciable or any
other characteristic tendencies were noticed.

So, for all crystals, in the frequency region w<
< (Eg +Qo)h_1, we found that - 0 at T - 0. That
corresponds to usual theoretical conceptions [9,17] and
is caused by absence both absorption and emission of
phonons in this frequency region.

Depending on the frequency interval, the growth of
phonon dispersion can either increase or decrease the
exciton damping. In the vicinity of the maximum of pho-
non absorption, at energies iw — Eg =—-0.9Q for TIBr
and hw— Eg =—-0.5Q( for ZnS, the dispersion results in
reduction of damping (compare curves 1 and 2). On the
wing of absorption beginning with the energy
hw—-Ep <-0.7Qq for TIBr and Aw-Ey<0.2Qq for
ZnS, on the contrary, the dispersion causes growth of the
damping.

Such tendency is also developed in the vicinity of the
phonon emission maximum (curves 5, 6, Figs 3, 4). It is
especially appreciable at energies hiw — Eg =1.1Qq for

0(7), cm’' .
300 |
3
ZnS 2
200 F
5
100 |
>
0 100 200 300

Fig. 4. Temperature dependence of damping for ZnS crystal at
energies iw—Eg =-05Q( (curves 1, 2), 2.0Qq (curves 3, 4) 1.5Qq
(curves 5, 6). The presence of dispersion is reflected by curves
1,3,6, and its absence — by curves 2,4,5.
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TIBrand siw— Eg =1.5Q( for ZnS, at which the contri-
bution from a phonon dispersion is the greatest (Figs 1,
2). Simultaneously, on the wing with phonon emission
the growth of a dispersion again stimulates reduction of
exciton damping (curves 3, 4). For TIBr crystals, it oc-
curs at frequencies w < (Eg + 1.3(20)h_1 and for ZnS at
w<2Qgnt.

As the rule, the damping of an exciton in the crystal
gradually grows with temperature. This growth is ap-
proximately identical for most frequencies from one-
phonon interval as in presence of a dispersion, so in its
absence. This tendency is kept for crystals with the large
exciton radii. However, for crystals with small exciton
radii the interesting phenomena is found out: if in pres-
ence of phonon dispersion the exciton damping is small
at low temperatures, then with temperature growth, be-
ginning with some critical temperature T, , it starts even
to exceed the damping in the absence of a dispersion (see
curve 3 in Fig. 4). For ZnS crystal T, =170K . This
effect is due to the fact that with increasing temperature
the exciton scattering on the dispersionless phonon be-
comes less probable owing to reduction of phonon number
with small pulses during emission. Let’s note also that at
T - 0 in this frequency range the damping becomes non-
zero finite quantity due to the contribution of the proc-
esses with phonon emission.

The effect of phonon dispersion on exciton damping
was also investigated for other crystals given in Table 2.
It was revealed that in such crystals as Cu,O, GaP, TICl
the display of dispersion in damping is rather weak, be-
cause the damping itself for is a small quantity a wide
interval of frequencies. So, for example, for Cu,O the
damping does not exceed 1 cm ~! for the frequency range
with phonon absorption, and 10 cm ™! for the range with
phonon emission, respectively. We found out the great-
est influence for MgO crystal. In this crystal at frequen-
cies with phonon absorption the damping for maximal
dispersion (d = 1) can exceed the damping in absence of
dispersion more than twice. In this case, the damping in
the frequency range with the phonon emission by almost
two orders surpasses the damping in the range with phonon
absorption.

The results of calculations of exciton damping for AgBr
crystal are closes to illustrate above for ZnS crystal.

4. Conclusions

The dispersion of optical vibrations of the lattice influ-
ences on frequency dependence of exciton damping in
ionic crystals. First of all, the frequency intervals with
phonons absorption and emission change: with disper-
sion growth the frequency interval with absorption of an
optical phonon extends, while the interval with the
phonon emission is narrowed. It causes the reduction of
intensity of damping of an exciton in the vicinity of the
maximum of phonon absorption and its increase — in the
region with maximum of phonon emission. Accordingly,
on wings, the inverse dependence is found out: with growth
of dispersion the value of damping with phonon absorp-
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tion enhanced, whereas with phonon emission it falls.
Such frequency dependence is pronounced for crystals
both with large and small exciton radii. However, for
crystals with the large exciton radii it is more pronounced
since the maximum of exciton-phonon coupling for them
is displaced to the side of longer waves, owing to prefer-
ence of exciton scattering on phonons with small wave
vectors.

The most significant display of a dispersion in exciton
damping for number of ionic crystals (Tab. 2) is revealed
in MgO crystal, and is weakly pronounced for Cu,0,
TICI and GaP crystals.

With increase of temperature, the damping of an
exciton in the crystal gradually grows. This growth is
approximately identical for majority of frequencies from
one-phonon interval both in presence of dispersion and
in its absence. However, for crystals with small exciton
radii, there is a frequency interval, for which dependence
of the damping on temperature behaves sharply in pres-
ence of the phonon dispersion. It results in phenomenon
for which the damping in absence of the dispersion at low
temperatures at first dominates on some frequency inter-
val, and then, with increase of temperature, is compared
and becomes even smaller than the damping in the pres-
ence of dispersion.

Depending on the energy interval the different beha-
vior '(T) is found out. So, in the range 7w - Ey < Qq,
' - 0at T - 0, whereas in the range 7w - Ey = Qg it
becomes finite quantity at zero temperatures owing to
the not disappearing contribution of the processes with
phonon emission.
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