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We present almost sure central limit theorems for stochastic processes whose time parameter ranges over
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rems.
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1. Introduction and notations

There has recently been considerable interest in questions of weak convergence of sequences of
stochastic processes {Xn(t), n > 1}, where t ranges over the unit cube in d-dimensional space. Sit-
uations in which such convergence arises include, for example, weak convergence of the normalized
empirical cumulative distribution function for samples from a continuous distribution concentrating
on the unit cube Rd, weak convergence of the normalized, randomly-stopped empirical cumulative
for samples from a d-dimensional continuous distribution on the unit d-cube, convergence of the
analogue of partial sum processes for d-dimensional time, cf., Wichura [25], Bickel and Wichura
[5], Pyke [19], Kuelbs [14].

On the other hand, starting with Brosamler [7] and Schatte [22], in the past decade several
authors have investigated the almost sure central limit theorems and related ‘logarithmic’ limit
theorems for partial sums of independent and dependent random variables. A survey of pointwise
central limit theorems can be found in Berkes [3], and Berkes and Csáki [4].

Some functional versions of the almost sure central limit theorem have also been presented, cf.
Brosamler [7], Lacey and Philipp [15], Schatte [22–24], Atlagh [1], Rodzik and Rychlik [20], Rychlik
and Szuster [21].

The purpose of this paper is to extend the almost sure central limit theorems for sequences
of random variables to sequences of stochastic processes {Xn(t), n > 1}, where t ranges over the
unit cube in d-dimensional space. Some results, concerning almost sure central limit theorems for
random fields, have been presented by Fazekas and Rychlik [9].

In this paper we prove multidimensional analogues of the Glivenko-Cantelli type theorems. We
present almost sure versions of the functional central limit theorem, corresponding to weak limit
theorems more general, than Theorem 3 of Wichura [25] and Theorem 5 of Bickel and Wichura [5].

The almost sure versions of the central limit theorems can be viewed as a uniform strong law
of large numbers or a Glivenko-Cantelli type result, cf., Csörgő and Horváth [8]. Strong laws of
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large numbers for multiindex sequences need stronger assumptions than strong laws for ordinary
sequences, cf., Gut [12]. On the other hand, weak convergence of probability measures is metriz-
able. Therefore, the case of multiindex sequences does not require extra conditions. However, in
the almost sure central limit theorems we consider weak convergence as well as the almost sure
convergence. Therefore, the multiindex case has its own, very interesting meaning. Furthermore,
the number of methods to prove the strong law of large numbers for sums of random variables is
much less in the case of a multidimensional parameter case. For example, the almost sure invari-
ance principle fails to be effective in this case. Thus, in the proof of the main results, we apply
purely probabilistic arguments and do not appeal to ergodic theory, as in Brosmaler [7], or to
strong invariance principle, as in Schatte [23,24].

Let Zd
+, d > 1, be the set of positive integer d-dimensional lattice points. The points in Zd

+

will be denoted by m, n, etc., or, sometimes, when necessary, more explicitly by (m1, . . . ,md),

(n1, . . . , nd), etc. Also, for n = (n1, . . . , nd) we define |n| =
∏d

i=1 ni. We shall write 0 and 1 for
points (0, . . . , 0) and (1, . . . , 1), respectively. The set Zd

+ is partially ordered by stipulating m 6 n
if mi 6 ni for each i, 1 6 i 6 d. Furthermore, we shall write m < n if m 6 n and mi < ni for at
least one i, 1 6 i 6 d. In this paper the limit n → ∞ will mean ni → ∞, for every i = 1, . . . , d.
On the other hand, the relations min and max we define coordinatewise. The limit superior of
{an,n ∈Zd

+}, lim sup
n→∞

an, is to be interpreted as inf
n

sup
n<m

am and similarly for the limit inferior (cf.,

Gabriel [11], Gut [12,13]).
Let {Xn,n ∈ Zd

+} be a random field of independent random variables, defined on a probability
space

(Ω,A, P ), such that EXn = 0, EX2
n = b2

n < ∞, n ∈Zd
+ .

Let us put

Sn =
∑

k6n

Xk, B2
n = ES2

n =
∑

k6n

b2
k,n ∈Zd

+ , (1.1)

and assume, for every ε > 0,

B−2
n

∑

k6n

EX2
kI(|Xk| > εBn) → 0 as n → ∞. (1.2)

Relation (1.2) is the exact analogue of the classical Lindeberg’s condition and is more general
than the one, considered by Bickel and Wichura [5]. On the other hand, if (1.2) holds, then for
every ε > 0

(

max
16k6n

b2
k

)

/

B2
n 6 ε2 + B−2

n

∑

k6n

EX2
kI(|Xk| > εBn) → ε2 as n → ∞.

Thus, since ε > 0 can be chosen arbitrarily small, (1.2) implies

( max
16k6n

b2
k)/B2

n → 0 as n → ∞. (1.3)

Relation (1.3) is an d-dimensional analogue of the classical Feller’s condition.
Let (D[0, 1]d,Dd) be the Skorkhod space of functions defined on the unit cube [0, 1]d. With

respect to the corresponding metric topology (S− topology), (D[0, 1]d,Dd) is separable and topo-
logically complete, and the Borel σ− algebra Dd coincides with the σ− algebra generated by the
coordinate mappings, cf., Bickel and Wichura [5], Neuhaus [17], Billingsley [6]. Of course, this met-
ric topology on D[0, 1]d for d = 1 coincides with Skorokhod’s well-known and useful J1− topology
(see Billingsley [6], for example). The functions in D[0, 1]d may be characterized by their continuity

properties, as follows. If t ∈ [0,1]
d

and if, for 1 6 p 6 d, Rp is one of the relations < and >, let
QR1,...Rd

(t) denote the following quadrant

{(s1, . . . , sd) ∈ D[0, 1]d : spRtp, 1 6 p 6 d}. (1.4)
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Then (see Neuhaus [17], Bickel and Wichura [5] ) x ∈ D[0, 1]d if and only if, for each t ∈ [0,1]
d
,

xQ ≡ lim
s→t,s∈Q

x(s) (1.5)

exists for each of the 2d quadrants Q = QR1,...,Rd
(t), and

x(t) =xQ>,...,>
. (1.6)

Thus, in this sense, the functions of D[0, 1]d are “continuous from above, with limits from
below”.

2. Results

The following theorem extends the classic result of Lindeberg and Feller.

Theorem 2.1. Let {Xn,n ∈ Zd
+} be a random field of independent random variables such that

EXn = 0, EX2
n = b2

n < ∞,n ∈ Zd
+ . Then (1.2) holds if and only if (1.3) holds and

Sn/Bn =⇒ N(0, 1) as n → ∞, (2.1)

where N(0, 1) denotes the standard normal distribution.
Here, and subsequently, =⇒ denotes the weak convergence of measures.
We would like to note that some special cases of Theorem 2.1 can be deduced from the results

presented by Wichura [25], Bickel and Wichura [5] and  Lagodowski and Rychlik [16], but even in
those cases only implication (1.2) implies that (2.1) have been proved.

Let {Xn,n ∈ Zd
+} be a random field of independent random variables with zero means and

finite variances. Assume, for each n = (n1, . . . , nd) ∈ Zd
+,

EX2
n = b(1)

n1
b(2)
n2

. . . b(d)
nd

=
d
∏

i=1

b(i)
ni

. (2.2)

Then, by (2.2), for each n = (n1, . . . , nd) ∈ Zd
+ and k = (k1, . . . , kd) ∈ Zd

+ we have,

ES2
n =

∑

k6n

EX2
k =

∑

k6n

d
∏

i=1

b
(i)
ki

=

d
∏

i=1

B(i)
ni

= |Bn| , (2.3)

where B
(i)
ni =

∑ni

j=1 b
(i)
j , 1 6 i 6 d,Bn = (B

(1)
n1

, . . . , B
(d)
nd ).

Let, by definition, X0 = S0 = B0 = 0. Let t = (t1, . . . , td) ∈ [0, 1]d, and let

m(t) = max{k > 0 :Bk 6 t}, M(t) = min{k > 0 : t 6Bk}.

Set
mn(t) =m(tBn), Mn(t) =M(tBn), t ∈[0, 1]d, (2.4)

where, by definition, tBn = (t1B
(1)
n1

, . . . , tdB
(d)
nd ).

Let, for every t ∈ [0, 1]d and any n ∈ Zd
+,

Yn(t) =Smn(t)/ |Bn|1/2
. (2.5)

Then {Yn,n ∈ Zd
+} is a random field of D[0, 1]d− valued random elements.

Let us observe that if (2.2) and (1.2) hold, then Feller’s condition (1.3) has the following form

max
k6n

EX2
k

B2
n

= max
k6n

d
∏

i=1

(
b
(i)
ki

B
(i)
ni

) =

d
∏

i=1

( max
16ki6ni

b
(i)
ki

/B(i)
ni

) → 0 as n → ∞. (2.6)
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In what follows we shall also need the following condition

max
16i6d

( max
16ki6ni

b
(i)
ki

/B(i)
ni

) → 0 as n → ∞. (2.7)

Let us observe, that (2.6) is a consequence of (2.7) and also follows from (1.2). On the other
hand, in general, (2.7) is not a consequence of (1.2) or (2.6). If (2.7) holds, then we sometimes say
that the random field {Yn,n ∈ Zd

+} satisfies a stronger version of Feller’s condition.

Theorem 2.2. Let {Xn,n ∈ Zd
+} be a random field of independent random variables with zero

means and finite second moments satisfying (2.2). If (1.2) and (2.7) hold, then

Yn =⇒ W as n → ∞, (2.8)

where W = {W (t) : t ∈ [0, 1]
d} is a Gaussian process with zero means and covariances

Cov(W (t),W (s)) = |min(t, s)| =

d
∏

i=1

min(ti, si). (2.9)

Let us observe that W, in (2.8), is a Brownian motion process on the space D[0, 1]d. Furthermore,
if (2.2) holds, then by (2.3)

B2
n = ES2

n = |Bn| , n ∈Zd
+ . (2.10)

Let log+ x = log x, if x > e and log+ x = 1, if x < e. Let, for k = (k1, k2, . . . , kd) and
n = (n1, n2, . . . , nd),

bk =

d
∏

i=1

b
(i)
ki

,
∣

∣log+ Bn

∣

∣ =

d
∏

i=1

log+ B(i)
ni

.

Let ζn, n > 1,be a sequence of random variables defined on a probability space (Ω,A, P ).
Almost sure limit theorems state that

1

Dn

n
∑

k=1

dkδζk(ω) =⇒ µ, as n → ∞, for almost every ω ∈ Ω, (2.11)

where δx is the unit mass at point x and =⇒ denotes weak convergence to the probability measure
µ. In the simplest form of the almost sure central limit theorem

ζk = (X1 + · · · + Xk)/
√

k, k > 1,

where X1,X2, . . . , are independent and identically distributed random variables with zero mean
and variance one, dk = 1/k,Dn = log n, and µ is the standard normal law N(0, 1); see, e.g., Schatte
[22,23] and [24]. See also Berkes [3], Atlagh and Weber [2], Berkes and Csáki [4] for surveys.

The general form of the multiindex version of (2.11) is

1

Dn

∑

k6n

dkδζ
k

=⇒ µ, as n → ∞, for almost every ω ∈ Ω, (2.12)

where ζk,k ∈ Zd
+, is a multiindex sequence of random elements.

The multiindex version of the classical central limit theorem is as follows.

Theorem 2.3. Let {Xn,n ∈ Zd
+} be a random field of independent random variables with zero

means and finite second moments satisfying (2.2). If (1.2) and (2.7) hold, then

1
∣

∣log+ Bn

∣

∣

∑

k6n

bk+1

|Bk|
δSk(ω)/|Bk|1/2 =⇒ N(0, 1), as n → ∞, (2.13)
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for almost every ω ∈ Ω.
Let us observe that Theorem 2.3 presents generalization, to sequences of independent noniden-

tically distributed random variables, Theorem 1.1 obtained by Fazekas and Rychlik [9].
The following Theorem 2.4 is a multiindex version of the classical almost sure functional central

limit theorem. In fact it is a multiindex version of the classical almost sure version of Prokhorov’s
[18] functional central limit theorem. Theorem 2.4 also generalizes Theorem 1.2 presented by
Fazekas and Rychlik [9].

Theorem 2.4. Let {Xn,n ∈ Zd
+} be a random field of independent random variables with zero

means and finite second moments satisfying (2.2). If (1.2) and (2.7) hold, then

1
∣

∣log+ Bn

∣

∣

∑

k6n

bk+1

|Bk|
δYk(ω) =⇒ W, as n → ∞, (2.14)

for almost every ω ∈ Ω, where W is the Wiener measure generated by a Brownian motion process
on the space D[0, 1]d.

Denote the usual integer part by [.], moreover, for n =(n1,n2, . . . , nd)∈ Zd
+ and

t =(t1,t2, . . . , td)∈ [0,1]
d

denote the vector ([n1t1], [n2t2], . . . , [ndtd]) ∈ Zd
+ by [nt]. Then, from

Theorems 2.3 and 2.4, we easily get Theorems 1.1 and 1.2 of Fazekas and Rychlik [9].

Theorem 2.5. Let {Xn,n ∈ Zd
+} be a random field of independent and identically distributed

random variables with zero mean and second moment one, then for almost every ω ∈ Ω

1
∣

∣log+ n
∣

∣

∑

k6n

1

|k|δSk(ω)/
√

|k|
=⇒ N(0, 1), as n → ∞, (2.15)

and
1

∣

∣log+ n
∣

∣

∑

k6n

1

|k|δY ∗

k
(ω) =⇒ W, as n → ∞, (2.16)

where, for n =(n1,n2, . . . , nd) ∈ Zd
+,
∣

∣log+ n
∣

∣ =
∏d

i=1 log+ ni and Y ∗
k (t) = S[kt]/

√

|k|, t ∈ [0,1]
d
,k ∈

Z d
+.

3. Proofs

3.1. Proof of Theorem 2.1.

The proof of Theorem 2.1 is almost the same as the proof of Theorems 1 and 2 presented by
Feller [10], p. 518–520, but we present it here for the sake of completeness.

Assume (1.2) holds. Then, as we noted above, (1.3) also holds. Let ϕk and Fk denote the char-
acteristic function and the distribution function of the random variable Xk, respectively. Choose
ζ > 0 arbitrarily, but fixed. We have to show that

∏

k6n

ϕk(ζ/Bn) → exp(−ζ2/2) as n → ∞. (3.1)

On the other hand, for every k,n ∈ Zd
+,k 6 n, we have

ϕk(
ζ

Bn

) − 1 +
b2
kζ2

2B2
n

=

∫ +∞

−∞

(exp(iζx/Bn) − 1 − iζx

Bn

+
ζ2x2

2B2
n

)Fk{dx}. (3.2)

Furthermore, by (1.3) and Lemma 1 of Feller (1971), p. 512, for every ε > 0

∣

∣

∣

∣

ϕk(
ζ

Bn

) − 1

∣

∣

∣

∣

6
ζ2b2

k

2B2
n

6 ζ2(max
k6n

b2
k)/(2B2

n) < εζ2 (3.3)
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for n sufficiently large. Thus, from the Taylor series expansion and (3.3), we get

∑

k6n

∣

∣

∣

∣

log ϕk(
ζ

Bn

) − (ϕk(
ζ

Bn

) − 1)

∣

∣

∣

∣

6
∑

k6n

∣

∣

∣

∣

ϕk(
ζ

Bn

) − 1

∣

∣

∣

∣

2

< εζ2
∑

k6n

(b2
k/B2

n) = εζ2. (3.4)

Hence, by (3.4), for every fixed ζ we have

∑

k6n

log ϕk(
ζ

Bn

) ∼
∑

k6n

(ϕk(
ζ

Bn

) − 1) as n → ∞. (3.5)

Thus, it is enough to prove that the right hand side of (3.5) tends to − ζ2

2 as n → ∞. For this
purpose we estimate the integrand in (3.2) by Lemma 1 of Feller [10], p. 512. It follows that for
|x| 6 εBn the integrand is dominated by

∣

∣

∣

∣

ζx

Bn

∣

∣

∣

∣

3

6 ε |ζ|3 x2/B2
n .

On the other hand, for |x| > εBn we use the upper bound (ζx)2/B2
n. Hence, we get

∑

k6n

∣

∣

∣

∣

ϕk(
ζ

Bn

) − 1 +
b2
kζ2

2B2
n

∣

∣

∣

∣

6 ε |ζ|3 +
ζ2

B2
n

∑

k6n

∫

|x|>εBn

x2Fk{dx}. (3.6)

Since ε > 0 can be chosen arbitrarily small and (1.2) holds, the right hand side of (3.5) is
therefore asymptotically the same as −ζ2/2, which gives (2.1).

Assume (2.1) and (1.3) hold. If (1.3) holds, then (3.5) also holds. On the other hand, if (2.1)
holds, then the imaginary part of the right hand side in (3.5) goes to zero as n → ∞. Thus, for
every fixed ε > 0 and any ζ, as n → ∞,

ζ2

2
−
∑

k6n

∫

|x|6εBn

(1 − cos
ζx

Bn

)Fk{dx} =
∑

k6n

∫

|x|>εBn

(1 − cos
ζx

Bn

)Fk{dx} + o(1). (3.7)

Furthermore, the integrand on the right hand side of (3.7) is 6 2 < 2x2/(εBn)2, and that on
the left hand side, 6 ζ2x2/(2B2

n). Hence, taking this into account an dividing (3.7) by ζ2/2, we
get

1 − 1

B2
n

∑

k6n

∫

|x|6εBn

x2Fk{dx} 6 (
4

ζ2ε2
)

1

B2
n

∑

k6n

∫

|x|>εBn

x2Fk{dx} + o(1) 6
4

ζ2ε2
+ o(1). (3.8)

Now, choosing ζ sufficiently large we see that the right hand side of (3.8) can be made arbitrarily
small, and this is evidently the same as (1.2), which completes the proof of Theorem 2.1.

3.2. Proof of Theorem 2.2.

We shall first establish that the finite dimensional distributions of {Yn,n ∈ Zd
+} weakly

converge to the corresponding finite dimensional distributions of W = {W (t) : t ∈ [0, 1]d}.
Let us observe that by Theorem 2.1, for every t ∈ [0, 1]d, we have

Smn(t)/
∣

∣Bmn(t)

∣

∣

1/2
=⇒ N(0, 1) as n → ∞. (3.9)

On the other hand, if t = (t1, . . . , td), then

∣

∣Bmn(t)

∣

∣ / |Bn| 6 |t| =

d
∏

i=1

ti 6
∣

∣BMn(t)

∣

∣ / |Bn| 6
∣

∣Bmn(t)+1

∣

∣ / |Bn| , (3.10)
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and, by (2.7), for each n = (n1, . . . , nd),

1 > |Bn| / |Bn+1| =
∏

(

B(i)
ni

/B
(i)
ni+1

)

=
d
∏

i=1

(

1 − b
(i)
ni+1/B

(i)
ni+1

)

>

d
∏

i=1

(

1 − max
16k6ni+1

b
(i)
k /B

(i)
ni+1

)

→ 1 as n → ∞. (3.11)

Thus, by (3.9), (3.10) and (3.11), we get

Smn(t)/ |Bn|1/2
=⇒ W (t) as n → ∞. (3.12)

Consider now two time points s and t with 0 6 s < t 6 1. It is obvious that the difference

Yn(t)−Yn(s) = (Smn(t) − Smn(s))/ |Bn|1/2
(3.13)

is the sum of independent random variables obeying the Lindeberg condition (1.2). Hence, by
Theorem 2.1 and (2.7), Yn(t)−Yn(s) converges to the normal distribution with the mean zero and
variance equal to

lim
n→∞

d
∏

i=1

(ti − si − max
16i6d

( max
16ki6ni

b
(i)
ki

/B(i)
ni

)) = |t − s| =

d
∏

i=1

(ti − si)

6 lim
n→∞

(
∣

∣Bmn(t)

∣

∣−
∣

∣Bmn(s)

∣

∣)/ |Bn| 6 lim
n→∞

d
∏

i=1

(ti − si + ( max
16ki6ni

b
(i)
ki

/B(i)
ni

))

6 lim
n→∞

d
∏

i=1

(ti − si + max
16i6d

( max
16ki6ni

b
(i)
ki

/B(i)
ni

)) = |t − s| =

d
∏

i=1

(ti − si).

Thus, we get
Yn(t)−Yn(s) =⇒W (t) − W (s), as n → ∞. (3.14)

On the other hand, for all real numbers c1 and c2

c1Yn(s)+c2(Yn(t)−Yn(s)) ={c1Smn(s) + c2(Smn(t) − Smn(s))}/ |Bn|1/2
,

which is again a sum of independent random variables satisfying the Lindeberg condition (1.2).
Thus, by Theorem 2.1, (2.7), (3.13) and 3.14), for all c1 and c2

c1Yn(s)+c2(Yn(t) − Yn(s)) =⇒c1W (s) + c2(W (t) − W (s)) as n → ∞. (3.15)

As a consequence of (3.15) and the Cramér-Wald Device, Theorem 7.7 of Billingsley [6], we
have

(Yn(s),Yn(t)−Yn(s)) =⇒ (W (s),W (t) − W (s)) as n → ∞.

Thus, by Corollary 1 to Theorem 5.1 of Billingsley [6], we get

(Yn(s),Yn(t)) =⇒ (W (s),W (t)) as n → ∞.

A set of three or more time points can be treated in the same way, and hence the finite-
dimensional distributions of {Yn,n ∈ Zd

+} weakly converge to the corresponding finite-dimensional
distributions of W = {W (t) : t ∈[0, 1]d}.

We shall now show that the random field {Yn,n ∈ Zd
+}, in (D[0, 1]d,Dd), is tight. For the

tightness of this random field it is enough to prove that there exists a positive number C such that
for each s and t in [0, 1]d, 0 6 s < t 6 1,

lim sup
n→∞

E |Yn(t)−Yn(s)|2 6 C |t − s| = C

d
∏

i=1

|ti − si| . (3.16)
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The condition (3.16) is a direct consequence of Theorems 2 and 3 of Wichura [25] or Theorems
2, 3 and 4 of Bickel and Wichura [5].

It is obvious that, by (1.2), (2.2), (2.3) and (2.7), we have

lim sup
n→∞

E(Yn(t)−Yn(s))
2

6 lim sup
n→∞

(
∣

∣Bmn(t)

∣

∣−
∣

∣Bmn(s)

∣

∣)/ |Bn|

6 lim sup
n→∞

d
∏

i=1

(ti − si + ( max
16ki6ni

b
(i)
ki

)/B(i)
ni

)

6 lim sup
n→∞

d
∏

i=1

(ti − si + max
16i6d

( max
16ki6ni

b
(i)
ki

/B(i)
ni

)) = |t − s| ,

which gives (3.16) with C = 1, and completes the proof of Theorem 2.2.

3.3. Proof of Theorem 2.3.

In the proofs of Theorems 2.3 and 2.4 we shall also follow some ideas of Fazekas and Rychlik
[9]. Let (B, ρ) be a complete separable metric space and let ζn,n ∈ Zd

+, be a multiindex sequence
of random elements in B. Let µζ denote the distribution of ζ.

Lemma 3.1. (Fazekas and Rychlik [9], Theorem 2.1 and Remark 2.2)
Assume that for any pair h, l ∈ Zd

+, h 6 l, there exists a B− valued random element ζh,l with

the following properties. If h = l, then ζh,l = 0, and if k, l ∈Zd
+, then for h = min{k, l} the following

pairs of random elements are independent: ζk and ζh,l; ζl and ζh,k; ζh,k and ζh,l. Assume

that there exist C > 0, ε > 0, and d increasing sequences {c(i)
n , n > 1}, of positive numbers with

lim
n→∞

c
(i)
n = ∞, c

(i)
n+1/c

(i)
n = O(1), as n → ∞, for each i = 1, 2, . . . , d, such that

E{ρ2(ζl, ζh,l) ∧ 1} 6 C

d
∏

i=1

{

log+ log+

(

c
(i)
li

c
(i)
hi

)}−2(1+ε)

, (3.17)

for h = (h1, h2, . . . , hd) 6 (l1, l2, . . . , ld) = l. Let 0 6 d
(i)
k 6 log(c

(i)
k+1/c

(i)
k ), assume that

∞
∑

k=1

d
(i)
k = ∞ for i = 1, 2, . . . , d.

Let

dk =
d
∏

i=1

d
(i)
ki

and Dn =
∑

k6n

dk. (3.18)

Then for any probability distribution µ on the Borel σ− algebra of B the following two state-
ments are equivalent

1

Dn

∑

k6n

dkδζ
k
(ω) =⇒ µ, as n → ∞, for almost every ω ∈ Ω; (3.19)

1

Dn

∑

k6n

dkµζ
k

=⇒ µ, as n → ∞. (3.20)

Lemma 3.1 remains valid if condition (3.17) is replaced by the following

E{ρ2(ζl, ζh,l) ∧ 1} 6 C
d
∏

i=1

(
c
(i)
hi

c
(i)
li

)β , (3.21)
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for h 6 l, where β > 0.

Proof of Theorem 2.3. Let

ζl =
1

|Bl|1/2

∑

k6l

Xk, ζh,l =
1

|Bl|1/2

∑

h<k6l

Xk

for h 6 l. Thus, the independence conditions are satisfied. Furthermore, by Theorem 2.1,

ζk =
1

|Bk|1/2

∑

l6k

Xl =⇒ N(0, 1), as k → ∞.

On the other hand, we have

E{ζl − ζh,l}2 =
1

|Bl|
E{
∑

k6h

Xk}2 =
|Bh|
|Bl|

.

Therefore (3.21) holds with c
(i)
k = B

(i)
k , 1 6 i 6 d. Moreover, taking into account (1.2) and

(2.7), we have

d
(i)
k = log(B

(i)
k+1/B

(i)
k ) = log(1 + b

(i)
k+1/B

(i)
k ) v b

(i)
k+1/B

(i)
k as k → ∞

for every i = 1, 2, . . . , d. Thus, we can choose d
(i)
k = b

(i)
k+1/B

(i)
k and, in consequence, dk =

bk+1/ |Bk| . Since

D(i)
n =

n
∑

k=1

d
(i)
k =

n
∑

k=1

log+(B
(i)
k+1/B

(i)
k ) = log+ B

(i)
n+1 − log b

(i)
1 v log B(i)

n , as n → ∞,

and

Dn =
d
∏

i=1

D(i)
ni

v

d
∏

i=1

log B(i)
ni

, as n → ∞,

therefore

Dn =
d
∏

i=1

log+ B(i)
ni

=
∣

∣log+ Bn

∣

∣

is an appropriate choice. Thus, Theorem 2.3 is a consequence of (3.21) and Lemma 3.1.

3.4. Proof of Theorem 2.4

Let

ζk(t) =Yk(t) =Smk(t)/ |Bk|1/2
, ζh,k(t) =

1

|Bk|1/2
{Smk(t)−Smin{h,mk(t)}},

for h 6 k, t ∈ [0, 1]d. Thus, the independence conditions presented in Lemma 3.1 are satisfied.
Furthermore, by Theorem 2.2, we have

Yk =⇒ W, as k → ∞,

in the space (D[0, 1]d,Dd). Moreover, by the maximal inequality of Wichura [25], Theorem 1, we
have

E{ρ2(ζk, ζh,k)} 6
1

|Bk|
E{sup

j6h

S2
j } 6

4dES2
h

|Bk|
= 4d |Bh|

|Bk|
.

Therefore (3.21) is satisfied with c
(i)
k = B

(i)
k , 1 6 i 6 d. Thus, similarly to the proof of Theorem

2.3, we easily note that Theorem 2.4 is a consequence of (1.2), (2.7), Lemma 3.1 and inequality
(3.21) and the proof is complete.
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3.5. Proof of Theorem 2.5

Under the conditions of Theorem 3.5, in (2.2) we can take b
(i)
ni = 1, ni > 1, 1 6 i 6 d.

Thus, if n ∈ Zd
+, t ∈ [0, 1]d, then mn(t) = [nt] and |Bn| = |n| . Therefore Theorem 2.5 is a

consequence of Theorems 2.3 and 2.4.
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Inst. H. Poincaré, 1994, 30, 1–11..

21. Rychlik Z., Szuster K., Some remarks on the almost sure central limit theorem for independent random
variables, Probab. Math. Statist., 2003, 23, 241–249.

22. Schatte P., On strong versions of the central limit theorem, Math. Nachr., 1988, 137, 249–256.
23. Schatte P., On the central limit theorem with almost sure convergence, Probab. Math. Statist., 1991,

11, 315–343.
24. Schatte P., Two remarks on the almost sure central limit theorem, Math. Nachr., 1991, 154, 225–229.
25. Wichura M.J., Inequalities with applications to the weak convergence of random processes with mul-

tidimensional time parameters, Ann. Math. Statist., 1969, 40, 681–687.

380



Almost sure functional central limit theorems for multiparameter stochastic processes

Майже певнi функцiональнi центральнi граничнi теореми для
багатопараметричних стохастичних процесiв

Є.Б.Черебак-Мрозович1, З.Рихлiк2, М.Урбанек2

1 Факультет математики, Технiчний унiверситет Жешува, Польща
2 Iнститут математики, Унiверситет Марiї Кюрi-Склодовської, Люблiн, Польща

Отримано 31 сiчня 2008 р.

Ми подаємо майже певнi центральнi граничнi теореми для стохастичних процесiв з часовим пара-
метром, що змiнюється у α-вимiрному одиничному кубi. Нашою метою є узагальнення класичної

функцiональної центральної граничної теореми Прохорова (1956) для таких процесiв. Ми доводимо

багатовимiрнi аналоги теореми типу Глiвенко-Кантелi.

Ключовi слова: майже певна центральна гранична теорема, багатопараметричний стохастичний

процес, теорема типу Глiвенко-Кантелi, логарифмiчне середнє

PACS: 02.50.Cw
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