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1. Introduction and notations

There has recently been considerable interest in questions of weak convergence of sequences of
stochastic processes {X,,(t),n > 1}, where t ranges over the unit cube in d-dimensional space. Sit-
uations in which such convergence arises include, for example, weak convergence of the normalized
empirical cumulative distribution function for samples from a continuous distribution concentrating
on the unit cube R%, weak convergence of the normalized, randomly-stopped empirical cumulative
for samples from a d-dimensional continuous distribution on the unit d-cube, convergence of the
analogue of partial sum processes for d-dimensional time, cf., Wichura [25], Bickel and Wichura
[5], Pyke [19], Kuelbs [14].

On the other hand, starting with Brosamler [7] and Schatte [22], in the past decade several
authors have investigated the almost sure central limit theorems and related ‘logarithmic’ limit
theorems for partial sums of independent and dependent random variables. A survey of pointwise
central limit theorems can be found in Berkes [3], and Berkes and Cséki [4].

Some functional versions of the almost sure central limit theorem have also been presented, cf.
Brosamler [7], Lacey and Philipp [15], Schatte [22—24], Atlagh [1], Rodzik and Rychlik [20], Rychlik
and Szuster [21].

The purpose of this paper is to extend the almost sure central limit theorems for sequences
of random variables to sequences of stochastic processes {X,(t),n > 1}, where t ranges over the
unit cube in d-dimensional space. Some results, concerning almost sure central limit theorems for
random fields, have been presented by Fazekas and Rychlik [9].

In this paper we prove multidimensional analogues of the Glivenko-Cantelli type theorems. We
present almost sure versions of the functional central limit theorem, corresponding to weak limit
theorems more general, than Theorem 3 of Wichura [25] and Theorem 5 of Bickel and Wichura [5].

The almost sure versions of the central limit theorems can be viewed as a uniform strong law
of large numbers or a Glivenko-Cantelli type result, cf., Csorgé and Horvath [8]. Strong laws of
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large numbers for multiindex sequences need stronger assumptions than strong laws for ordinary
sequences, cf., Gut [12]. On the other hand, weak convergence of probability measures is metriz-
able. Therefore, the case of multiindex sequences does not require extra conditions. However, in
the almost sure central limit theorems we consider weak convergence as well as the almost sure
convergence. Therefore, the multiindex case has its own, very interesting meaning. Furthermore,
the number of methods to prove the strong law of large numbers for sums of random variables is
much less in the case of a multidimensional parameter case. For example, the almost sure invari-
ance principle fails to be effective in this case. Thus, in the proof of the main results, we apply
purely probabilistic arguments and do not appeal to ergodic theory, as in Brosmaler [7], or to
strong invariance principle, as in Schatte [23,24].

Let Zi,d > 1, be the set of positive integer d-dimensional lattice points. The points in Z_‘f_

will be denoted by m, n, etc., or, sometimes, when necessary, more explicitly by (mi,...,ma),
(n1,...,nq), etc. Also, for n = (ny,...,ng) we define |n| = Hle n;. We shall write 0 and 1 for

points (0,...,0) and (1,...,1), respectively. The set Z¢ is partially ordered by stipulating m < n
if m; < n; for each 7,1 < i < d. Furthermore, we shall write m < n if m < n and m; < n; for at
least one i,1 < i < d. In this paper the limit n — oo will mean n; — oo, for every i = 1,...,d.
On the other hand, the relations min and max we define coordinatewise. The limit superior of

{an,n GZi}, lim supay, is to be interpreted as inf sup a,, and similarly for the limit inferior (cf.,
n—oo o pn<m

Gabriel [11], Gut [12,13]).
Let {X,,n € Zi} be a random field of independent random variables, defined on a probability
space
(Q,A,P), suchthat EX,=0, EX2=02<o00, neZl.

Let us put
Sa=Y X, Bi=ESi=) binez{, (1.1)

k<n k<n

and assume, for every € > 0,

B.? Y EXPI(|Xy| > €Bn) -0 as n— oo (1.2)
k<n

Relation (1.2) is the exact analogue of the classical Lindeberg’s condition and is more general
than the one, considered by Bickel and Wichura [5]. On the other hand, if (1.2) holds, then for
every € > 0

( max bi) /Bﬁ <E+ B2 Y EXZ(Xi| > €Bn) — € as n— oo,

1<k<n
KX k<n

Thus, since € > 0 can be chosen arbitrarily small, (1.2) implies

(1211?2( b2)/B: -0 as n— oo. (1.3)

Relation (1.3) is an d-dimensional analogue of the classical Feller’s condition.

Let (D[0,1]¢,D4) be the Skorkhod space of functions defined on the unit cube [0,1]¢. With
respect to the corresponding metric topology (S— topology), (D[0,1]¢,D,) is separable and topo-
logically complete, and the Borel o— algebra ®, coincides with the o— algebra generated by the
coordinate mappings, cf., Bickel and Wichura [5], Neuhaus [17], Billingsley [6]. Of course, this met-
ric topology on D[0,1]? for d = 1 coincides with Skorokhod’s well-known and useful .J; — topology
(see Billingsley [6], for example). The functions in D[0, 1] may be characterized by their continuity
properties, as follows. If t € [0,1]d and if, for 1 < p < d, R, is one of the relations < and >, let
QR,...r,(t) denote the following quadrant

{(s1,---,84) € D[0,1]* : s, Rt,,1 < p < d}. (1.4)
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Then (see Neuhaus [17], Bickel and Wichura [5] ) z € D[0,1]¢ if and only if, for each t € [0,1]°,

T = s_‘ltlgleqm(s) (1.5)
exists for each of the 2¢ quadrants Q = Qr, ... r,(t), and
r(t) =rq. .- (1.6)

Thus, in this sense, the functions of D[0,1]¢ are “continuous from above, with limits from
below”.

2. Results

The following theorem extends the classic result of Lindeberg and Feller.

Theorem 2.1. Let {X,,,n € Z¢} be a random field of independent random variables such that
EX,=0,EX2 =02 <oo,n€ Z¢ . Then (1.2) holds if and only if (1.3) holds and

Sn/Bn = N(0,1) as n — oq, (2.1)

where N(0,1) denotes the standard normal distribution.

Here, and subsequently, => denotes the weak convergence of measures.

We would like to note that some special cases of Theorem 2.1 can be deduced from the results
presented by Wichura [25], Bickel and Wichura [5] and Lagodowski and Rychlik [16], but even in
those cases only implication (1.2) implies that (2.1) have been proved.

Let {Xy,n € Z{} be a random field of independent random variables with zero means and
finite variances. Assume, for each n = (nq,...,n4) € Zj‘f_,

EX2=b1b@ .. blY) = Hb . (2.2)

niy "n2

Then, by (2.2), for each n = (n1,...,nq) € Z¢ and k = (k1,...,kq) € Z¢ we have,

BS2=) EX{=Y Hb( ) = HB@ |Bal (2.3)

k<n k<n:i=1

where B = S bg 1<i<dBy=(BY,....B\)).

Let, by definition, Xqg = SO =Bo=0.Let t = (t1,...,tq) €[0,1]¢, and let
m(t) = max{k > 0 :By < t}, M(t) = min{k > 0: t <By}.

Set
mn(t) =m(tBy), My(t) =M (tB,),  t€[0,1]¢, (2.4)

where, by definition, tB, = (tlB,(zll), . ,tdBr(Li)).
Let, for every t € [0,1]¢ and any n € Zi,

Ya(t) =Sy, e/ |Bal /. (2.5)

Then {Y,,n € Z%} is a random field of D[0,1]¢— valued random elements.
Let us observe that if (2.2) and (1.2) hold, then Feller’s condition (1.3) has the following form

EX? N (i)
tnax B2 = ﬁlfr}flj[l(]g;lz)) = lill(lérlgflgmb /B )) >0 as n— oo. (2.6)
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In what follows we shall also need the following condition

(4 /g
BB P (B = 0 e m 20

Let us observe, that (2.6) is a consequence of (2.7) and also follows from (1.2). On the other
hand, in general, (2.7) is not a consequence of (1.2) or (2.6). If (2.7) holds, then we sometimes say
that the random field {Y,,n € Z¢} satisfies a stronger version of Feller’s condition.

Theorem 2.2. Let {X,,,n € Zjir} be a random field of independent random variables with zero
means and finite second moments satisfying (2.2). If (1.2) and (2.7) hold, then

Yn=W as n— oo, (2.8)

where W = {W(t) : t € [0,1]?} is a Gaussian process with zero means and covariances

d
Cov(W(t), W (s)) = |min(t,s)| = Hmin(ti,si). (2.9)
i=1

Let us observe that W, in (2.8), is a Brownian motion process on the space D[0, 1]¢. Furthermore,
if (2.2) holds, then by (2.3)
B2 =ES2=|Bn|, mnez?l. (2.10)

Let log, z = logz, if > e and log, x = 1, if © < e. Let, for k = (ky,ks,...,kq) and
n=(ny,ng,...,nq),

d d
=[]0, [log, Bu| =]]log, BY.
i=1 i=1

Let ¢,,,n > 1,be a sequence of random variables defined on a probability space ({2, .4, P).
Almost sure limit theorems state that

1 n
Do de‘sik(w) = pu, as n — oo, foralmostevery w €, (2.11)
" k=1

where ¢, is the unit mass at point x and = denotes weak convergence to the probability measure
w. In the simplest form of the almost sure central limit theorem

(= X1+ +Xi)/VE k> 1,

where X7, X5, ..., are independent and identically distributed random variables with zero mean
and variance one, di, = 1/k, D,, = logn, and p is the standard normal law N (0, 1); see, e.g., Schatte
[22,23] and [24]. See also Berkes [3], Atlagh and Weber [2], Berkes and Cséki [4] for surveys.

The general form of the multiindex version of (2.11) is

1
Do Z dyd¢, = p, as n— oo, foralmostevery w €€, (2.12)
k<n

where (), k € Zi, is a multiindex sequence of random elements.
The multiindex version of the classical central limit theorem is as follows.

Theorem 2.3. Let {X,,,n € Z¢} be a random field of independent random variables with zero
means and finite second moments satisfying (2.2). If (1.2) and (2.7) hold, then

1 bxt1
05, (w 12 = N(0,1), as n — oo, (2.13)
|10g+ Bn| 1;] |Bk| Sk (w)/|Bu|
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for almost every w € €.

Let us observe that Theorem 2.3 presents generalization, to sequences of independent noniden-
tically distributed random variables, Theorem 1.1 obtained by Fazekas and Rychlik [9].

The following Theorem 2.4 is a multiindex version of the classical almost sure functional central
limit theorem. In fact it is a multiindex version of the classical almost sure version of Prokhorov’s
[18] functional central limit theorem. Theorem 2.4 also generalizes Theorem 1.2 presented by
Fazekas and Rychlik [9].

Theorem 2.4. Let {X,,,n € Z{} be a random field of independent random variables with zero
means and finite second moments satisfying (2.2). If (1.2) and (2.7) hold, then

1 bk+1
llog, Bu| < | Bk |

i) =W, as n— oo, (2.14)

for almost every w € , where W is the Wiener measure generated by a Brownian motion process
on the space D[0, 1]%.

Denote the usual integer part by [], moreover, for n=(nins ...,nq)€ Z%¢ and
t =(t1,t2,...,tq)€ [0,1]* denote the vector ([nit1], [nats),. .., [natd]) € Z% by [nt]. Then, from
Theorems 2.3 and 2.4, we easily get Theorems 1.1 and 1.2 of Fazekas and Rychlik [9].

Theorem 2.5. Let {X,,n € Zjir} be a random field of independent and identically distributed
random variables with zero mean and second moment one, then for almost every w € 2

1 1

|log n| k;l Koscwyyia = N1, a5 n— oo, (2.15)

and
Z =W, as n—oo, (2.16)
|log+ n| & |k|

where, forn =(ny,na, ..., nq) € Z¢, [log, n| =[], log; n; and Yy (t) = Sy /K[t €0, 14
z.
3. Proofs

3.1. Proof of Theorem 2.1.

The proof of Theorem 2.1 is almost the same as the proof of Theorems 1 and 2 presented by
Feller [10], p. 518-520, but we present it here for the sake of completeness.

Assume (1.2) holds. Then, as we noted above, (1.3) also holds. Let ¢, and Fx denote the char-
acteristic function and the distribution function of the random variable Xy, respectively. Choose
¢ > 0 arbitrarily, but fixed. We have to show that

[T #x(¢/Ba) = exp(=¢?/2) as n— oo (3.1)
k<n

On the other hand, for every k,n € Zf,ir, k < n, we have

(=) -1+ = (exp(ix/Bp) —1— ==+ )Fk{da:}. (3.2)

¢ b /*‘” , icr
Bn 282 B, 2B2

— 00

Furthermore, by (1.3) and Lemma 1 of Feller (1971), p. 512, for every ¢ >0

b
o)~ 1| < Sk < Clamit) (28 < 53)
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for n sufficiently large. Thus, from the Taylor series expansion and (3.3), we get

D

k<n

g ()~ (oul )~ ] <

k<n

<e?> (bg/B) = €C*. (3.4)

k<n

@k(BC —1

Hence, by (3.4), for every fixed { we have

¢
Z log gok Z(gok(B—) —1) as n— oc. (3.5)

k<n k<n n
Thus, it is enough to prove that the right hand side of (3.5) tends to —% as n — oo. For this
purpose we estimate the integrand in (3.2) by Lemma 1 of Feller [10], p. 512. It follows that for

|x] < €By the integrand is dominated by

CCC?) 3 2,52
B <elC]”2%/By.

On the other hand, for |z| > eB, we use the upper bound ({x)?/B2. Hence, we get

2 2
> loug) —1+ 9
k<n n

2B2

<el¢)? + / 2 Fi{dz}. (3.6)
nk<n |z|>€eBn

Since € > 0 can be chosen arbitrarily small and (1.2) holds, the right hand side of (3.5) is
therefore asymptotically the same as —¢?/2, which gives (2.1).

Assume (2.1) and (1.3) hold. If (1.3) holds, then (3.5) also holds. On the other hand, if (2.1)
holds, then the imaginary part of the right hand side in (3.5) goes to zero as n — oo. Thus, for
every fixed € > 0 and any (, as n — o0,

CQ €$
> - > /MEB (1— Cos— Fk{dx} = Z/ (1- COSE)Fk{dz} +o(1). (3.7)

k<n k<n "’ |%|>€Bn

Furthermore, the integrand on the right hand side of (3.7) is < 2 < 222/(eBy)?, and that on
the left hand side, < ¢?22/(2B2). Hence, taking this into account an dividing (3.7) by ¢?/2, we
get

4
_ 22 ) K
1 /|$|<EBn F{dz} < e 32 Z /|I|>Ean Fi{dz} +o(1) < o +o(1). (3.8)

n k<n N k<n

Now, choosing ¢ sufficiently large we see that the right hand side of (3.8) can be made arbitrarily
small, and this is evidently the same as (1.2), which completes the proof of Theorem 2.1.

3.2. Proof of Theorem 2.2.

We shall first establish that the finite dimensional distributions of {Y,,n € Z¢} weakly
converge to the corresponding finite dimensional distributions of W = {W (t) : t € [0,1]}.
Let us observe that by Theorem 2.1, for every t € [0,1]%, we have

1/2

Smn®)/ |Bmawy| '~ = N(0,1) as n— oo. (3.9)

On the other hand, if t = (t1,...,tq), then

d
| Brnae)| /1Bl < [t =[] ti < |Bataw)| / 1Bal < |Bunwy+1| / | Bal., (3.10)

i=1
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and, by (2.7), for each n = (nq,...,n4),

d
1> |Bu|/|Bny1| = H(Bnl n7+1) H( n+1 7(1+1>

=1
d
> 1;[1 (1 — Jnax by /B +1> —1 as n— oo (3.11)
Thus, by (3.9), (3.10) and (3.11), we get
Spnt)/ |Bal'? = W(t) as n — oc. (3.12)

Consider now two time points s and t with 0 < s < t < 1. It is obvious that the difference
Ya(t)=Ya(s) = (Sma(e) = Smn(s)/ | Bal (3.13)

is the sum of independent random variables obeying the Lindeberg condition (1.2). Hence, by
Theorem 2.1 and (2.7), Yn(t)—Ya(s) converges to the normal distribution with the mean zero and
variance equal to

d
nli—{lgo };[(tl T 112?<Xd(1<12?<){n b )/B( ))) =t —s[= E(ti )
d
< JLH;O(|an(t)| - ’an(s)’)/ |Bn| < nh—>ngo H(tz — s+ ( Hkllagxnlb /B ))
i=1 ;

< lim H(tl — 8; + max ( max b(z /B(l )=t—s|= H(tl — 8;).

1<i<d 1<k <ny bl
Thus, we get
Ya(t)—Ya(s) =W (t) - W(s), as n — oc. (3.14)

On the other hand, for all real numbers ¢; and co

c1Yn(s)+e2(Ya(t)=Ya(s)) ={c1Sma(s) + c2(Smn(t) — Sma(s))}/ |Ba|'/?,

which is again a sum of independent random variables satisfying the Lindeberg condition (1.2).
Thus, by Theorem 2.1, (2.7), (3.13) and 3.14), for all ¢; and ¢y

c1Yn(s)+c2(Yn(t) — Ya(s)) = W(s) + co(W(t) — W(s)) as n — oc. (3.15)

As a consequence of (3.15) and the Cramér-Wald Device, Theorem 7.7 of Billingsley [6], we
have

(Ya(s),Ya(t)=Ya(s)) = (W(s), W(t) - W(s)) as n— oo.
Thus, by Corollary 1 to Theorem 5.1 of Billingsley [6], we get

(Ya(s),Yn(t)) = (W(s),IW(t)) as n — oo.

A set of three or more time points can be treated in the same way, and hence the finite-
dimensional distributions of {Y,,n € Z¢} weakly converge to the corresponding finite-dimensional
distributions of W = {W(t) : t €[0, 1]¢}.

We shall now show that the random field {Yo,n € Z¢}, in (D[0,1]%,D,), is tight. For the
tightness of this random field it is enough to prove that there exists a positive number C' such that
for each s and t in [0,1]9, 0 <s <t < 1,

d
lim supE [Yu (t)—Ya(s)]* < Ct —s| = C ][ [t: — s . (3.16)

n—oo
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The condition (3.16) is a direct consequence of Theorems 2 and 3 of Wichura [25] or Theorems
2, 3 and 4 of Bickel and Wichura [5].
It is obvious that, by (1.2), (2.2), (2.3) and (2.7), we have

imsupE(Yn(t)~Ya(s)® < limsup(|Bp, )| — |Bmus)|)/ |Bal

n—oo

d
< limsup H(tz — 5+ (. max b;(;))/Bf(f))

n—oo 14 I<kisng ™

<
I hmsup ( i S; + 12?5( (lgl’gcllaé(nlbkl /Bnl )) = |t — S| s

which gives (3.16) with C' = 1, and completes the proof of Theorem 2.2.

3.3. Proof of Theorem 2.3.

In the proofs of Theorems 2.3 and 2.4 we shall also follow some ideas of Fazekas and Rychlik
[9]. Let (B, p) be a complete separable metric space and let {,,,n € Zi, be a multiindex sequence
of random elements in B. Let u. denote the distribution of ¢.

Lemma 3.1. (Fazekas and Rychlik [9], Theorem 2.1 and Remark 2.2)
Assume that for any pair h,1 € Zi, h <1, there exists a B— valued random element ¢y, ; with
the following properties. If h = 1, then ¢, ; = 0, and if k, 1 GZ_”f_, then for h = min{k, 1} the following

pairs of random elements are independent: ¢y and (y,,; ¢ and (i Cpx and (- Assume
that there exist C' > 0,e > 0, and d increasing sequences {cgf ), n > 1}, of positive numbers with
nllngocgf) = oo,cfﬁrl/cgf) =0(1), as n — oo, for each i = 1,2,...,d, such that

d (3) —2(1+¢)
2 Cli
E{p"(C1,¢na) A1} < CH {10g+ log | (1)> } ; (3.17)

(
i=1 Ch

7

for h = (h1,ha, ..., hq) < (I1,12,...,1q) =1 Let 0 < dg) < log(c,(;}rl/cg)), assume that

Zd,(:) =00 for 1=1,2,...,d.
k=1

Let J
die = [[d) and Dn=" . (3.18)
i=1 k<n

Then for any probability distribution x4 on the Borel o— algebra of B the following two state-
ments are equivalent

1
Do Z dkde (w)y = H, as mn— oo, foralmost every w € () (3.19)
k<n
1
Do Z dkpe, = [, as mn— oo. (3.20)
k<n

Lemma 3.1 remains valid if condition (3.17) is replaced by the following

d (2)
E(p* (G G A1} < C TR (3.21)
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for h <1, where 3> 0.
Proof of Theorem 2.3. Let

1

1
TR R

1/2
| Bil k<1 <k<I

for h < L. Thus, the independence conditions are satisfied. Furthermore, by Theorem 2.1,

(e = 1/2ZX1:>N(O 1), as k— oo.
|Bk| 1<k

On the other hand, we have
|Bn|
E{Cl Chl}2 |B|E{Z .

k<h ‘

Therefore (3.21) holds with c,(j) = B,(Ci), 1 < i < d. Moreover, taking into account (1.2) and
(2.7), we have

dz(:) = log(Bl(:J)rl/Bz(j)) log(1 + ka/B( )) bgciJ)rl/Bl(ci) as k= o0

for every ¢ = 1,2,...,d. Thus, we can choose d,(j) = b,(fll /B,(:) and, in consequence, dy =
bk+1/ |Bk| Since

Z d(Z) Zlog+ Bl(cz—i)-l/Bl(ci)) = log, Br(h)tl log b(1i) « log Br(zi)v as  n — 09,

and

D, = HD,(lii) “ HlogB(?, as n— oo,

therefore

d
Dy =[] log, B) = [log, Ba|

i=1
is an appropriate choice. Thus, Theorem 2.3 is a consequence of (3.21) and Lemma 3.1.

3.4. Proof of Theorem 2.4
Let

1
Ck(t) :Yk(t) :Snzk(t)/ |Bk|1/27 Ch,k(t) :W{Smk(t)_Smin{h,mk(t)}}a
k

for h < k,t € [0,1]¢. Thus, the independence conditions presented in Lemma 3.1 are satisfied.
Furthermore, by Theorem 2.2, we have

Y« = W, as k — oo,

in the space (D[0,1]%,D4). Moreover, by the maximal inequality of Wichura [25], Theorem 1, we
have

1 49FS2 | Bn|
E{p? < —F 1 < b — a2
{p (Cka Ch,k)} |B | {f<hS } ‘Bk‘ ‘Bk‘
Therefore (3.21) is satisfied with c,f =B ,i ), 1 <7 < d. Thus, similarly to the proof of Theorem

2.3, we easily note that Theorem 2.4 is a consequence of (1.2), (2.7), Lemma 3.1 and inequality
(3.21) and the proof is complete.
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3.5

. Proof of Theorem 2.5

Under the conditions of Theorem 3.5, in (2.2) we can take bﬁf} =1,n;>1,1<i<d.
Thus, if n € Z¢, t€[0,1]¢, then myu(t) = [nt] and |By| = |n|. Therefore Theorem 2.5 is a

consequence of Theorems 2.3 and 2.4.
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Maixe neBHi GyHKLiOHaNbHI LLeHTPasbHIi rPaHNYHI TeopemMu ans
GaraTtonapamMmeTpU4YHUX CTOXAaCTUYHUX MPOLECIB

€.5.Yepebak-Mpososuyl, 3.Puxnik?, M.Ypbanek?

1 dakynsTeT MaTemaTyiku, TexHiuHWii yHiBepcuTeT Xellyea, Monblua
2 IHCTUTYT MaTemMaTuKkun, YHiBepcuteT Mapii Kiopi-Cknogoscbkoi, JTobniH, MNMonbLua

OtpumaHo 31 ciyHg 2008 p.

Mwu nofaemo mMaiixke NeBHi LLeHTPasbHI FPaHUYHi TEOpeMU At CTOXaCTUYHMX NPOLECIB 3 YHaCOBUM napa-
METPOM, LLO 3MIHIOETLCS Y a-BMMIPHOMY OOMHUYHOMY KyOGi. Halloio MeTolo € y3arasibHEeHHS1 KIaCu4Hoi
GYHKLIOHaNbHOI LeHTpanbHOI rpaHnyHoi Teopemu MNpoxopoBsa (1956) ana Takux npouecis. Mu [oBoanmo
GaraToBMMIpHI aHanorn Teopemu TUny MmiseHko-KaHTteni.

Knio4oBi cnoBa: marixe nesHa LeHTpaabHa rpaHuyHa Teopema, bararonapaMeTpudHni CTOXaCcTUYHUNI
npouec, Teopema tuny [niBeHko-KaHtesni, norapugpmidHe cepeaHe

PACS: 02.50.Cw
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