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Abstract. Conduction electrons moving in a non-homogeneous field of coherent light beams
(CLB) are investigated. It is shown that a conduction electron simultaneously takes part in
two oscillations. More exactly, an electron oscillate with the frequency w and in addition, it
carry out a forced oscillation with the frequency w, <<w (wis the CLB frequency) inside a
one-dimensional potential well that is induced in the semiconductor by the CLB.
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1. Introduction

It is well known in solid-state physics that for a spatially
periodic Hamiltonian, a quasi-momentum, and corre-
sponding Bloch wave functions exists [1]. Analogously,
for a periodic time dependent Hamiltonian of the crys-
tal, one expects existence of quasi-energies and the Bloch-
type states defined by the term «steady states» [2,3]. Such
steady states are used, for example, in the theory of sus-
ceptibility [4,5], in the theory of multiple-quantum tran-
sitions for discrete levels [6,7], in the theory of kinetic
phenomena in the field of intense electromagnetic wave
[8,9]. In these theories considered were only periodic time
dependencies of electromagnetic wave vector potential.
The spatial period of this potential is neglected. There-
fore, it would not be correct to consider various phenom-
ena produced in solids by intense coherent laser beams
(CLB). In the present paper, an investigation on how a
high frequency CLB field influences on the motion of
conduction electrons in solid state is carried out. It is
shown that a force acts on the conduction electrons in the
field of CLB, which implies that quasi-energy of an elec-
tron becomes a function of coordinate in this case. The
high-frequency non-homogeneous field of CLB, inside of
semiconductor bulk, creates periodic one-dimensional
potential wells for conduction electrons moving along
the OZ axis. For that reason the conduction electron take
part simultaneously in two motions stimulated by the CLB

field. Namely, it oscillates with the frequency w in the
field of CLB and, in addition, it performs a forced oscilla-
tion with the frequency w, << (wis the CLB frequency)
inside the one-dimensional well induced by the CLB.

2. Conduction electrons motion
in the field of CLB

Let’s consider the motion of conduction electron in an
infinite wide conduction-band. The CLB vector poten-
tial is given as

Ar.t)='y Acostat =T -4, ) (1)
J

where frequency w satisfies the condition wt>>1 (Tis
electron collision time).

Now, we write down the non-relativistic classical equa-
tion of motion of the conduction electrons in a CLB field
md—zr—eé(r )+ 29 i ) ®)

dt 2 L C dt ’ i}

where E(F,t) and H(F,t) are CLB electric and magnetic

fields strengths, V = d—: is the initial velocity of electron.
Taking F(t) in the form
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r(t)=R()+p(t) )

where ﬁ(t) is a function that changes slowly during CLB
field action, and p(t) is an oscillating additive, that is
considered further on to being a small parameter. Now
we rewrite (3) as

25 2=
%“jﬁ—f :%E(§+ f),t)+
+%§.§Q—?,H(ﬁ+ﬁ,t)§+§£,ﬁ(ﬁ+ﬁ,t)§ @

Than we expand E(F,t) and H (F,t) into Taylor’s se-
ries with respect to the small parameter p

E(§+ ﬁ,t): E(ﬁ,t)+ ﬁﬁs—’théf)z 0%E f’t +..
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Due to restrictions to the lowest order of the infinitesi-
mal we write (4) in the form:
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We can solve equation (6) by the iteration approxi-
mation method, assuming that ‘E >> ‘H . First, put down
the equation in the first approximation

d?p e =(=
dt—z—aE(R,t) 7)

Integration of (7) gives:
do e -~ - =
= —rno)z EJ COS((/.I—kj R—¢J),

dt
©_Efre). ®)
mw

p=-

Now, we rewrite (6) with respect (7) and (8) in the

form
25 2
d%:- e2 > DEZ(R,I) )
dt 2m-w

Averaging the right-hand side of (9) over the CLB
field period gives the following equation, which describes
the electron motion in the average CLB field
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D%Ai AjrCos[(le —Ej,)§+¢j —¢j,].

(10)

Thus, it follows from (10) that the CLB high-fre-
quency electromagnetic field acts on the electrons with
the force

¢’ ‘Z%ZZ\J- Z\j100s[(|2j _lzj')7+¢j ‘¢j']E
]

(11)

The expression for this force was obtained earlier by
one of the authors [11] using standard method a quantum
transport equations for the quantum-mechanic operators
for the construction of the quantum kinetic equations for
electrons and magnons in the field of CLB.

Now we shall analyze the character of electron mo-
tion in a field of CLB in more details. With this aim, we
shall re-write (11) as:

9=
a°RY) Rz(t) =00, (12)
dt
AE; i,
where ® =——"1 has the meaning of the CLB high-
m

frequency potential, which is entered for the description
the average motion at a charge in non-homogeneous elec-
tric field [10];

2 . ~ o\
AEA,—AY =4§]CZ%AJAJ'COS[(|(J- —kj,)R+¢j —¢j,] is

the mean value of quasi-energy of conduction electrons
in the field of CLB.

Thus, the action of a non-homogeneous CLB field on
the motion of conduction electrons can be presented as
the result of an effective potential field. The potential of

this effective field is equal to AE Ay /m. It means that

conduction electrons in the field of CLB a force acts as
F= —grad @E A Ao ﬁ, caused by the coordinate depend-
ik

ence of the main value of quasi-energy of conduction elec-
tron in the field of CLB. Note, that in the spatial homo-
geneous field of an electromagnetic wave, when the am-

plitude of its electrical field E does not depend on coor-
dinate 1 ( E(t) = Ep sinat ), quasi-energy of conduction
electrons is equal to

AE; 5, =0E

Thus, in this case, quasi-energy of conduction elec-
trons is connected only with the spatial homogeneous field
of electromagnetic wave, which produces only a shift of
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electron energy spectrum as whole on the quantity
AE =¢? Eg / (4mw23 [8]. It is possible to specify some such
cases when the calculation of a value AE is necessary:

1. The system contains some types of carriers with
different charges or effective masses. In this case for each
type of carriers there will be a shift AE that results a
change of distance between appropriate branches of a
spectrum.

2. The initial energy spectrum is non-parabolic, i.e.
electron effective mass have different values in different
parts of a conductivity band.

3. The conduction electrons mechanical trajectory in
the field of CLB

Consider the instance where the outer surface z =0 of
semiconductor is exposed to two symmetrically oriented
CLB that converge in the bulk of the semiconductor at a
small angle 2vand whose vector-potential is given by the
following expression (Fig. 1)

A(F,t)= A cos(at —kyx—k,z—¢ )+

+ Ay cos(at - kyx+k,z—¢1),  AJOY. (13)

Received as a result of an interference between these
two CLB, the interference picture with good precision
can be approximated by a standing laser wave with the
spatial period L =Ag/2sind (A is the CLB wavelength
in the semiconductor bulk) [12]. Thus, in the bulk of semi-
conductor, CLB may be approximated by the laser stand-
ing wave

E = Eg sin(k,2) sin(at), (14)

= w = W~ . C .
where Ej=—A =— A, is the average electric field in-
C C

tensity of the standing laser wave (CLB).

\[¥

Fig. 1. Interference scheme for two CLB illuminating the front
surface z = 0 of a semiconductor sample. (L=Ag/2sind is the
period of interference picture).
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The high-frequency potential W corresponding to the
interference picture in the bulk of semiconductor, pro-
duced by CLB, is equal to

eE .
W= %gsnz k,z
mow

In Fig. 2 the structure of dimensionless high-frequency

Bﬂg H is shown. Therefore,

potential W/WOE/\/ =
u
0 Mo 5

the high-frequency potential W may be considered as a
periodic potential well for the conduction electrons mov-
ing along the OZ axis in the inside of semiconductor bulk.

Let a conduction electron, which is moving with ve-

(15)

. e . C .
locity vg (Vg = ‘/Z—VO is the initial velocity of conduc-
m

tion electron in the point z = 0) along OZ axis could be
located inside of a potential well, created by CLB. The
fulfillment of the following condition is necessary

e
—Vy <W
m0

(16)

which, together with the condition | [)| << L ,imposes the

a restrictions of the amplitude of an electric field of CLB,
creating a potential well

2w1/mv0 <Ep<< M 2L
e e

Thus, if at the center of a potential well has Ej =0,
conduction electron with energy equal €V is located in-

(17)
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Fig. 2. The structure of dimensionless high-frequency potential
= ff
W@\//WO, W = B—O Eas a function of the dimensionless
1 2mw E

coordinate kz.
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side the potential well, in which the boundary conditions
(17) are valid.

Now we shall consider a movement of a conduction
electron inside of the potential well in more details. Sub-
stituting (14) and (15) into (8) and (9) we obtain the fol-
lowing equations for determining z and x

2
d—22+w§z:o, x:—ﬁs'nax, (18)
dt Wy,
_ EEO . . .
where w, = is the electron oscillation frequency

V2me

inside the one-dimensional potential well, produced by
CLB.

The first of the equations under the number (18) is
the free electron harmonic oscillation one. Its solution is

z=C; cosw,t +C,sinw,t (19)
and with accounting the initial conditions C; =0,
v
C, =—2 has the form
z
Vo .
Z=——9INW,t. (20)

z

Making use of (20), we write down equations, which
describe the conduction electron mechanical trajectory
as:

Z:Z)_OZSiant’ x:—vzo\/isin(wzt)sin(ax).

1))

ow 6 X0 fi2 [k 2

In Fig. 3, the conduction electron mechanical trajec-
tories in a field of CLB for the following meanings of
w w w,Z,
parameters: — =10, — =11, 2™ =71 7>0

w, w, c
are shown.

Depending on a ratio between frequency of a CLB
field wand a frequency of oscillations of conduction elec-
trons inside a potential well w,, the conduction elec-
trons mechanical trajectories will be various. From

Fig. 3a, for example, when @ —10 , follows that the con-
z

duction electron mechanical trajectory inside a poten-

tial well will be made. It means that the electron alter-

nately being reflected from walls of a potential well will

make inside oscillations it with frequency is follows ¢, .

From Fig. 3bis follows that in a case when wﬁ =11, that
z

the conduction electron mechanical trajectory will be
open. It means, that having made some oscillations in-
side of a potential well the electron can abandon and
further move only under the activity of the field of CLB.

Thus, the electron in the field of CLB takes part si-
multaneously in two motions. Namely, it oscillates with

eE02 in the field of
maow

CLB and performs forced oscillations at the frequency

the frequency wand amplitude &=

w; <<winside of a one-dimensional well, produced
along OZ axis by CLB.
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Fig. 3. The conduction electrons mechanical trajectories in a field of CLB for the following meanings of parameters: a — — =10,

ﬂ:]_o’ wzzﬂ:l’ z>0 b —

z wZ
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Conclusions

The above reported results enable us to make the follo-
wing conclusions:

1. The action of an inhomogeneous CLB field on the
motion of conduction electrons can be presented as the
result of an effective potential field. The potential of this

effective field is equal to AE; ; /m.This means that on

Aj Aj'

conduction electrons in the field of CLB are acts the force
F= —grad @E A Ao ﬁ caused by that the quasi-energy of
iR

the conduction electrons in the field of CLB becomes a
function of coordinate 7 .

2. The high-frequency non-homogeneous field of
CLB produced inside of a semiconductor bulk creates
periodic one-dimensional potential wells for conduction
electrons moving along the OZ axis.

3. Inthe field of CLB, conduction electrons take part
simultaneously in two motions. Namely, they oscillate

eE02 in the field

with the frequency wand amplitude @ =
of CLB and perform forced oscillations at the frequency
w, <<w inside a one-dimensional well induced by CLB.

Acknowledgments

One of authors (Dr. O.Yu. Semchuk) thanks the Royal
Swedish Academy of Sciences and Swedish Natural Sci-
ence Research Council (NFR) for financial support for
fulfillment of this work.

110

References
1. Kittel C, Quantum Theory of Solids, Willey, New York, 1987.
2. Hideo Sambe. Steady States and Quasi-energies of a Quan-

10.

11.

12.

tum-Mechanical System in an Oscillating Field // Phys.Rev,
A7(6), pp. 2203-2213 (1973).

Ya. B. Zeldovich, Dispersion and radiation by quantum sys-
tem in a strong electromagnetic wave // Sov. Phys. Uspekh,
14(1), pp. 139-151 (1973).

R.H. Young, W.J. Deal, Jr. and N.P. Kesther, Quasi-peri-
odic states of an oscillation Hamiltonian // Mol. Phys, 17,
pp. 369-375 (1969).

P.W. Langhoff, S.T.Epstein and M.Karplus, Aspects of time-
dependent perturbation theory// Rev.Mod. Phys, 44(3), p. 602
(1972).

J.H. Shirley, Solution of Shrodinger equation with a Hamil-
tonian periodic in time// Phys. Rev, 138, p. 8974-80 (1965).
W.W. Hisks, R.A. Hess, and W.S. Cooper, Combined Zee-
man and high-frequency Stark effects with applications to
neutral-helium lines useful in plasma diagnostics// Phys.Rev,
A5(3), pp. 490-507 (1972).

V.P. Seminozhenko, Kinetics of interacting quasiparticles in
strong external fields// Phys. Rep, 91(3), pp.103-181 (1982).
V.P. Seminoshenko and A.A. Yatsenko, Kinetic equations
for electrons and phonons in a strong constant electric field
/I Phys. Letters, T5A(4), pp. 267-268 (1980).

Gaponov A.V. and. Miller M.A., Potential wells for charger
particles in a high-frequency electromagnetic field //Sov.
Phys. JETP, 7(1), pp.168-169 (1958).

Semchuk O.Yu., Grechko L.G. and Ogenko V.M., Field in-
fluence on the parameters of ferromagnetic semiconductor
superlattices formed by coherent light beams// Phys Stat Sol
(b), 157, pp. 451-458 (1990).

V.L. Vinetskii, N.V. Kukhtarev, S.G. Odulov and M.S. Soskin,
Dynamic self-diffraction of coherent light beams // Sov. Phys.
Usp., 22(9), pp.742-756 (1979).

500, 4(2), 2001



