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Abstract. The parallel and perpendicular electron mobilities in a GaAs-Al0.45Ga0.55As 
superlattice have been calculated. The scattering of electrons by confined longitudinal 
optical phonons was taken into account. Using the quantum treatment, we offered the 
new wavefunction of electron miniband conduction in the superlattice as well as 
reformulation of the slab model for confined LO-phonon modes. An expression for the 
relaxation time was obtained. Our results show that the relaxation time depends 
significantly on the total energy of electrons. The effect of the band nonparabolicity on 
the relaxation time was analyzed. At 300 K, the calculated results reveal that the 
electron mobility is enhanced when the well width in the superlattice is equal to 45 Å. 
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1. Introduction 
 
Recently there has been much interest in the study of 
electron–phonon interaction in III-V semiconductor 
quantum wells (QWs) and superlattices (SLs) [1-3]. It is 
because of the phonon scattering determines electron 
transport properties at the room temperature and high 
electric fields as well as at low temperatures. For 
instance, cooling the photoexcited carriers, carrier 
tunnelling, and mobility in high-speed heterostructure 
devices are primarily governed by the scattering of 
electrons by polar optical phonons. Some results in 
Raman scattering, cyclotron-resonance and 
magnetophonon-resonance measurements show the 
dominance of electron interaction with LO-phonons and 
reveal important information about the vibration modes 
in the layers forming SL [4-10]. The electron – LO-
phonon interaction was found to be strongly dependent 
on both the geometrical shape and the parameters of the 
constituent materials [11-12]. The polaron effect in 
heterostructures of a small thickness is, however, quite 
different from that in bulk materials. Several models 
have been proposed to describe the electron – confined 
LO-phonon interaction in superlattices. Dielectric 
continuum models [13-14], microscopic lattice 
dynamical models [17-19], or the slab model [20-21]. 
Several theoretical studies have been already reported on 
calculations of the relaxation time caused by the carrier 
scattering due to interaction with optical phonons in 

semiconductor heterostuctures, the cases of single or 
multiple quantum wells being treated [22-25]. 
 

In this work, we have investigated the influence of 
sub-band nonparabolicity on the relaxation time due to 
electron – confined LO-phonon interaction calculated 
using a quantum formalism. We study the dispersion of 
the mobility. The organization of the present paper is as 
follows: Section II summarizes the theoretical 
framework used in the calculations, while Section III 
contains the discussion of numerical results presented 
graphically, and brief conclusion is given. 

 
2. Theoretical model 
 
2.1. Miniband structure and envelope wavefunctions 
 
Using the effective mass Hamiltonian and the transfer 
matrix method, the total energy of electron associated to 
the first miniband and the analytically exact normalized 
wavefunction [26] can be written as follows: 
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2.2. Relaxation time 
 
The Hamiltonian of electron-phonon interaction in low 
dimensional systems depends on the specific phonon 
spectra in the system and is different from the Fröhlich 
Hamiltonian for bulk phonons. The macroscopic 
dielectric continuum model [27-30] gives the functional 
form of the interface modes, confined and half-space LO 
modes. The electron – confined LO-phonon interaction 
Hamiltonian as derived from Fröhlich interaction is 
given by [31, 32] 
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where )(qa  and )(qa+  are the creation and annihilation 
operators for bulk phonons in the q mode, “–” and “+” 
signs denote even and odd confined phonon modes, and 
n is the miniband index, while the coupling constant 

VqiC /2
μ=λ  (13) 

where V is the volume. 

From [33], C can be written explicitly as 
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where LOωh  is the energy of the LO-phonon in the n-th 
miniband, )(∞ε  and )0(ε  are the optical and static 
dielectric constants, respectively, Ω  is the volume, and 
e is the electronic charge. For the slab model [27, 34] 

)(zunα  are defined as 
) /   cos()( wn Lznzu π=+ , n = 1,3,5,… (15) 
) /   sin()( wn Lznzu π=− , n = 2,4,6,… (16) 

αnt  is given by 

2/122 ])/([
1

w
n Lnq

t
π+

=
⊥

α , n = 1,2,3,… (17) 

Finally, 

⎩
⎨
⎧ ≤≤−

=
otherwise        0,

   if       1,
)(

wzw
zH . (18) 

The scattering rate fiw →  appearing is obtained from the 
Fermi Golden Rule 
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Evaluating the matrix element in (21) with the 
Hamiltonian given by (14), we obtain 
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 The δ-function represents the energy conservation 
quantity 
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“±” stands for absorption and emission processes. For 
optical phonon scattering 

cteGkkθkkkkq f
z

i
z

fifi =−+−−= ⊥⊥⊥⊥±
2222 )(cos2 m .

 (22) 
G is the reciprocal lattice vector of SL. LON  is the LO-
phonon occupation number defined as: 
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α  is the overlap integral of the electron 
wavefunction and the z-dependent of the electron – 
confined-phonon Hamiltonian 
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where iψ , fψ  are the electron envelope miniband 
wavefunctions in the initial and final states, respectively 
[31]. L is the period SL; L = Lw + Lb. At 0=±U , fk⊥  

and ik⊥  terms must equal. We define a coordinates 
system and general lines of summation over kf states: 
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where fk⊥ , θ  are the polar coordinates in the planes 

normal to f
zk  defined earlier. 

We use also the following Jacobian 
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Using relations (20), (24), (26), (27) and (28), the 
expression for the scattering time due to the interaction 
electron – confined-phonon 1−τ  is calculated by applying 
the first-order perturbation theory: 
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±γ  is the integration domain over f
zk  represented in 

Fig. 1. 
 

 
 
Fig. 1. Representation of constant-energy lines ( ) const=εξ K  

in plan ( ⊥k , kz). The difference is constant , LOωh . Two 

examples are drawn LO2 ω+Δ h  and LO2 ω−Δ h . 

2.3. Electron mobility 
 
The electron mobility is given by the following 
expression: 

( )ξνξηξ
ξ ξ

ην ετ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

ε∂
∂

−
Ω

=μ ∑ vvfe
N
2

' . (28) 

Here, )( ξεf  is the distribution function for the electron 
in SL and N is the concentration of electrons in the first 
miniband of the superlattice. For the case of non-
degenerated statistics for the electron, TkB>>Δ , in a 
accord with the Maxwellian distribution. Using the 
equation (27), the parallel and perpendicular electron 
mobilities can be represented as 
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2.4. Nonparabolicity effect 
 

According to the Kane model [35-37], the 
eigenfunctions of the Hamiltonian in the direction of the 
superlattice (with kx = ky = 0) associated to a conduction 
band electron [38, 39] with an energy 0 < E < Vb are 
solutions of the Schrödinger equation [40]: 
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The corrective term reflects the nonparabolicity effect 
(via a4). Integration of Eq. (31) through an interface of a 
small arbitrary thickness provides the new boundary 
conditions: 
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This expression that ensures the continuity of the local 
current density generalizes that of [41, 43] where a4 = 0 
in the case of nonparabolicity, the wavefunctions 
corresponding to the new condition (31) generalizes 

those where the continuity of 
zm d

d1
*

Ψ  is used. As the 

latter Hamiltonian without parabolicity, the 
wavefunctions are given in the n-th well and barrier by 
Eqs (2), (3). Due to the new conditions (31), when 
deriving the wavefunction the analysis of the preceding 
sections can be used with λ replaced by μ that we define 
as follows. From Eq. (31), expressions of k, ρ and μ are 
given by: 
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When introducing the new expressions of 
wavevectors k and ρ in Eqs (34) and (35), we obtained 
the new expressions for the dispersion relation and 
wavefunctions inside the barrier and the wells of SL, by 
continuation those of the relaxation times and mobility. 

If the effect of the nonparabolicity becomes 

negligible (a4 = 0), *

*
   μ 

b

w

m
m

=λ→ , defined in the 

parabolic case. Eqs (34), (35) allow an explicit 
relationship of ρ in relation with k. For 

w
b

b EVE maxmax =−  (i.e. 2
0

2
0 λρ=k ) insignificant values of 

ρ and k, we find the parabolic case given by relation (4). 
 
3. Numerical results and discussion 
 
For numerical computation, we have chosen the 

AsAlGa–  GaAs xx-1  with x = 0.45 as a superlattice. The 

parameters pertaining to the system are: 0
* 067.0 mmw = , 

0
* 104.0 mmb = , where m 0  is the free electron mass. The 

dielectric constant in the wells is taken equal to that in 
barrier: 8.12=εd , 9.10=ε∞ , lw = 108 Å, l b  = 38 Å, 

V b  = 495 meV. The energy of the bulk GaAs LO-
phonon 8.36LO =ωh  meV, the static and high frequency 
dielectric constants for GaAs: 35.12s =ε  and 

.48.10ε =∞  

When solving numerically, a partial differential 
equation for the phonon generation rate with the value 
x = 0.45 was defined as: 
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Fig. 2. Representation of the phonon generation rate versus Lb. 
 

 
 
Fig. 3. Density current versus Lb for two different values of 
rapport masses. 
 

 
 
Fig. 4. Density of probability associated to an electron of the 
first miniband in the approximation of the liaisons fortes. Links 
pace of potential  is to indicate the positions of the barrier and 
well of superlattice. 
 

 
 

Fig. 5. Plots of the matrix element as lk f
z  for different i

zk . 
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where 
2

qM  is the electron – confined LO-phonon 

interaction matrix element squared, ELO and qτ  are the 
LO-phonon energy and lifetime, respectively (see Fig. 
2). We observe a strong barrier width Lb dependence of 
the phonon generation rate. When the barrier width Lb 
increases, the phonon generation rate increases reaching 
a maximum, so much as Lb is lower than Lbc critical 
value. We deduce the existence of a critical value Lbc 
which the LO-phonon transit from propagation to 
confinement. The variation of the current density with 
barrier width is plotted in Fig. 3. We further notice that 
the current density decreases with increasing barrier 
width. Accordingly, the tunnelling probability behaves. 
In Fig. 4, we present the density probability associated to 
an electron in conduction miniband. We see that its 
maximum is located in the middle of superlattice 
quantum wells, so the major electrons are found. The 
interaction electron – LO-phonon is strong in the wells 
of superlattice but weak inside the barriers. Another 
quantity that influences the interaction electron – LO-
phonon is the overlap integral given by Eq. (24). It is 
plotted for some value of final wavevector for several 
values of the initial wavevector, see Fig. 5. Thus, the 
final wavevector f

zk  is larger while the quantity 

),(,
f

z
i
z

fi
n kkG →

α  presents larger overlap integrals for 
increasing scattering rates. Fig. 6 illustrates the 
relaxation time due to the interaction electron – confined 
LO-phonon confined as function of the total energy ξε  
for the case of a parabolic miniband: 
• for the total energy ξε  from the interval 

LOLO2 ω<ε<ω−Δ ξ hh , we remark the linear 
increase of the relaxation time, which is interpreted 
as the increase of the transition probability; 

• if LOLO 2 ω+Δ<ε<ω ξ hh , the relaxation time 
decreases, this has been commented above as the 
transition limited in 

)(
L

k
L

I f
z

π
<<

π
−±  (38) 

and for the larger energy miniband the electron 
couples weakly to the phonon (see Fig. 7). 

 

 
 

Fig. 6. Scattering times in GaAs-AlxGa1–xAs superlattice as 

function of the total energy for  2l
π=i

zk . 

 
 
 
Fig. 7. Schema diagram of phonon wavevector. 
 
 

 
 
Fig. 8. Relaxation times in GaAs-Al0.45 Ga0.55 As superlattice 
as function of the total energy for the case parabolic and 
nonparabolicity band. 
 
 

 
 
Fig. 9. Electron mobility dependence for several period of 
GaAs-Al0.45Ga0.55As superlattice. 
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Fig. 8 displays a comparison between the parallel 
relaxation times with or without the effect 
nonparabolicity band. We found this effect to be 
extremely small for the small energies. This result can be 
explained by the nonparabolicity effects on the position 
and widths of minibands. The final results concern the 
electron mobility limited by polar optical phonon 
scattering at 300 K. The electron mobility zzμ  is 
normalized to d3μ  of the bulk GaAs. In Fig. 9, we 
represent the dispersion of mobility with the superlattice 
well width Lw. Our results show that zzμ  exponentially 
decreases with Lw. It is clearly seen from Eq. (29). The 
miniband width factor Δ contributes and depends on Lw. 
At Lw < 45 Å 

1
3

>
μ
μ

d

zz , (39) 

because the phonon is more confined. When Lw becomes 
higher than 45 Å, the mobility rapidly decreases, due to 
reducing phonon scattering rates in the miniband. 
 
4. Conclusion 
 
In conclusion, the new analytic wavefunction is 
associated to electron in conduction minibands. We 
evaluated the expressions of the longitudinal and 
transverse mobility. The dependences of the relaxation 
time on the total energy of electron miniband is studied 
with or without the effect nonparabolicity band. The 
effect is small for the small energies. We show that 
electron mobility decreases exponentially with the well 
width in the superlattice under condition of scattering 
electron – confined LO-phonon. 
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