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systems on irregular graphs
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An extension of the Bassalygo-Dobrushin technique of proving uniqueness of Gibbs fields on irregular graphs,
developed in [Theory of Probab. Appl. 31, 572–589 (1986)], to the case of continuous spins has been pre-
sented.
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1. Introduction and setup

The theory of Gibbs random fields indexed by countable sets (e.g., Gibbs states of lattice
models) is now well elaborated, see [1]. At the same time, only a few papers deal with the field
having index sets presented by irregular graphs. Among them there is a paper by L. A. Bassalygo
and R. L. Dobrushin, [2]. It presents a technique of proving uniqueness if the single-site state
spaces (single-spin spaces) are finite. Our aim is to develop a similar technique, which covers the
case where the single-site state spaces are general metric spaces. In this case, with slight abuse of
terminology we say that the spins are continuous, which is reflected in the title above. The basic
assumption, however, is that the interaction between the spins is bounded. As possible applications
of our theory we mention the theory of Euclidean Gibbs states of the following quantum models. In
each of them, quantum particles are located at sites (one particle per site), which form an irregular
structure. The single-particle Hamiltonians have discrete spectra and the interparticle interaction
is pair-wise and bounded. As a quantum particle, one can take: (a) a free particle moving in a
compact Riemannian manifold (e.g. quantum rotator), see [3,4]; (b) a free particle moving in a
compact subset of R

d; (c) a quantum anharmonic oscillator, see e.g. [5].
Let (L,E) be a graph with (infinite) countable sets of vertices, L, and edges, E. We also suppose

that the graph is simple, i.e., it has no loops, isolated vertices, and multiple edges. Two vertices
`, `′ are called adjacent if there exists an edge 〈`, `′〉. The number n` of the vertices adjacent to
` is called degree. For each ` ∈ L, let X` be a complete separable metric space (Polish space),
B(X`) be the corresponding Borel σ-field, and χ` be a finite Borel measure on (X`,B(X`)). For
an edge 〈`, `′〉, let a bounded symmetric continuous function (potential) V``′ : X` × X`′ → R be
given. Under certain conditions, these objects define a Gibbs random field on the product space
X =

∏
`∈L

X`. If all V``′ equal zero, there exists only one Gibbs field. Thus, one can expect the
same uniqueness if the potentials are sufficiently small, which certainly depends on the underlying
graph. If the latter is regular (each vertex has the same degree), the proof of the uniqueness by
small potentials is quite standard. The case where n`’s are different but globally bounded (there
exists n̂ ∈ N, such that n` 6 n̂ for all ` ∈ L) can be handled similarly. The situation changes
substantially if sup`∈L n` = +∞. This can be seen from the example considered in Section 4 below,
where the graph is so dense that the ferromagnetic Ising model defined on this graph has multiple
Gibbs states for arbitrary non-zero interactions. For sparse graphs of a certain kind, which in
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particular means that the vertices of large degree are at large distances from each other, we prove
that the number of Gibbs fields with Polish single-spin spaces is exactly one if the potentials are
small enough. The proof is based on an extension and refinement of the technique developed in [2],
where all X` were finite.

For a finite set A, by |A| we denote its cardinality (the number of elements in A). Let Lfin stand
for the family of all finite non-void subsets of the vertex set L. A property related with a given
Λ ∈ Lfin is called local, whereas global properties are going to be related with the whole graph. If
we say that something holds for all ` (resp. for all e), it holds for all ` ∈ L (resp. all e ∈ E). As
usual, for Λ ⊂ L, we write Λc = L \ Λ. A sequence D ⊂ Lfin is called cofinal if it is ordered by
inclusion and exhausts L. The latter means that any Λ ∈ Lfin is contained in a certain ∆ ∈ D. The
limits taken along such a sequence will be denoted by limD. For Λ ⊂ L, we set

EΛ = {〈`, `′〉 ∈ E | `, `′ ∈ Λ},

∂EΛ = {〈`, `′〉 ∈ E | ` ∈ Λ, `′ ∈ Λc},

∂LΛ = {`′ ∈ Λc | ∃` ∈ Λ : 〈`, `′〉 ∈ E}. (1.1)

The latter sets are called the edge and the vertex boundary of Λ, respectively. For a one-point Λ =
{`}, its edge and vertex boundaries are written ∂E` and ∂L` respectively. Clearly, the cardinalities
of these both sets coincide, that is, |∂E`| = |∂L`|. We suppose that the graph is locally finite, which

means that, for every `, its degree n`
def
= |∂E`| is finite. Therefrom it follows that

|∂LΛ| 6 |∂EΛ| <∞,

for each Λ ∈ Lfin. For Λ ⊂ L and `, `′ ∈ Λ ∪ ∂LΛ, the sequence ϑ(`, `′) = {`0, `1, . . . , `n}, such that
`0 = `, `n = `′, `1, . . . `n−1 ∈ Λ, is called a path in Λ if 〈`k, `k+1〉 ∈ E for all k = 0, 1, · · · , n− 1. In
principle, a path may intersect itself, that is, certain vertices `k may appear in ϑ(`, `′) more than
once. The length of a path, |ϑ(`, `′)|, is set to be the number of pairs of consecutive vertices; thus,
in the situation above we had |ϑ(`, `′)| = n. A path in L is merely called a path. By ρ(`, `′) we
denote the distance between ` and `′ – the length of the shortest path connecting these vertices.

Definition 1.1. A path ϑ(`, `′) is called a self-avoiding if it has no self-intersections. This means
that each `i appears in ϑ(`, `′) only once. Thus, in a self-avoiding path, only the endpoints `0, `n
can have degree 1.

For a vertex ` and N ∈ N, let LN (`) be the set of all self-avoiding paths of length N origi-
nating at `.

Definition 1.2. The graph is called sparse if there exist positive constants C and η such that, for
every vertex `, there exists N` ∈ N such that, for all N > N`,

|LN (`)| 6 CηN . (1.2)

A particular case of locally bounded graphs was introduced in [2]. For each of them,

ρ(`, `′) > φ (min{n`, n`′}) , (1.3)

where φ : N → [1,+∞) is an increasing function, specific for the graph, such that

+∞∑

k=1

k

φ(2k)
<∞. (1.4)

By (1.3), two vertices of large degrees repel each other. Below, see Lemma 3.2, we prove that such
graphs are sparse in the sense of Definition 1.2.

For a topological space Y , by Cb(Y ) we denote the set of all bounded continuous functions
f : Y → R, and by B(Y ) – the corresponding Borel σ-field. By saying that µ is a measure on Y , we
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mean that µ is a measure on the measurable space (Y,B(Y )). The set of all probability measures
on Y is denoted by P(Y ). For a measurable function f : Y → R, we write

µ(f) =

∫

Y

fdµ. (1.5)

Let X`, ` ∈ L, be the Polish spaces mentioned above. For ∆ ⊆ L, the Cartesian product

X∆ =
∏

`∈∆

X` ,

is equipped with the product topology, so that (X∆,B(X∆)) becomes a standard Borel space. This
means that there exists a Polish space Y and a measurable isomorphism ϕ : X∆ → Y . For more
details we refer the reader to section 4.A, page 73 of [1]. The elements of X∆ are denoted by x∆; we
write X = XL and x = xL. For Λ ⊂ ∆, the just a position x∆ = xΛ × x∆\Λ defines an embedding
XΛ ↪→ X∆ by identifying xΛ with xΛ × x0

∆\Λ, where x0 is a certain fixed element of X. In view of

this embedding, one has B(XΛ) ⊂ B(X∆); thus, one can consider

Bloc =
⋃

Λ∈Lfin

B(XΛ), (1.6)

which is called the σ-field of local events. The tail σ-field is defined to be

Btail =
⋂

Λ∈Lfin

B(XΛc). (1.7)

Suppose now that we have given finite Borel measures χ`, ` ∈ L, and symmetric bounded continuous
functions V``′ : X` ×X`′ → R, 〈`, `′〉 ∈ E. As usual, we write

‖V``′‖ = sup
x`∈X`, x`′∈X`′

|V``′(x`, x`′)|.

For Λ ∈ Lfin, we set

VΛ(xΛ|y) =
∑

〈`,`′〉∈EΛ

V``′(x`, x`′) +
∑

〈`,`′〉∈∂EΛ

V``′(x`, y`′), y ∈ X. (1.8)

Clearly, VΛ(·|y) ∈ Cb(XΛ) for every y ∈ X. Furthermore, for Λ ∈ Lfin, y ∈ X, and B ∈ B(X), we
set

πΛ(B|y) =
1

ZΛ(y)

∫

XΛ

IB(xΛ × yΛc) exp [VΛ(xΛ|y)]χΛ(dxΛ), (1.9)

where IB is the indicator of B,

χΛ =
⊗

`∈Λ

χ`, (1.10)

and

ZΛ(y) =

∫

XΛ

exp [VΛ(xΛ|y)]χΛ(dxΛ). (1.11)

Clearly, each such πΛ is a probability kernel on (X,B(X)). This means that πΛ(·|y) ∈ P(X) for
any y ∈ X, and πΛ(B|·) is measurable for any B ∈ B(X). The family {πΛ}Λ∈Lfin

defines a Gibbs
random field on the graph in the following sense. By construction,

π∆(·|y) =

∫

X

πΛ(·|x)π∆(dx|y), (1.12)

which holds for any Λ ⊂ ∆.
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Definition 1.3. A probability measure µ on X is called a Gibbs random field if for every Λ ∈ Lfin,

µ(·) =

∫

X

πΛ(·|x)µ(dx). (1.13)

The set of all such Gibbs random fields will be denoted by G. If necessary, we write G(V ) to
indicate the dependence on the choice of V = (V``′)〈`,`′〉∈E. The following property, the proof of
which is quite standard, gives an important information about G.

Proposition 1.4 (Feller Property). For every Λ ∈ Lfin and f ∈ Cb(X), it follows that πΛ(f |·) ∈
Cb(X).

Given y ∈ X, let Py be the family of the accumulation points of {πΛ(·|y)}Λ∈Lfin
endowed with

the usual weak topology defined by Cb(X).

Corollary 1.5. For any y ∈ X, it follows that Py ⊂ G.

Proof. As Cb(X) is a measure defining class, the inclusion in question can be obtained by
showing that, for every µ ∈ Py and Λ ∈ Lfin,

µ(f) =

∫

X

πΛ(f |x)µ(dx). (1.14)

By supposition, there exists a cofinal sequence D such that, for all f ∈ Cb(X), µ(f) = limD π∆(f |y).
Let Λ be as in (1.14). Then one finds ∆0 ∈ D such that Λ ⊂ ∆ for all ∆ ∈ D starting from this
∆0. For such ∆, one has

π∆(f |y) =

∫

X

πΛ(f |x)π∆(dx|y). (1.15)

Passing here to the limit along D and taking into account that πΛ(f |·) ∈ Cb(X), one gets (1.14).
�

This statement allows for the following generalization. By Definition 1.3, a convex combination
of Gibbs fields is again a Gibbs field. Let Gex be the set of all extreme elements of G, i.e., those
which cannot be presented as nontrivial convex combinations of other elements of G. If G 6= ∅, then
Gex 6= ∅ and each Gibbs field can uniquely be represented as a convex combination of the elements
of Gex, see Theorem 7.26, page 133 in [1]. In particular, |G| = 1 if |Gex| = 1. Given µ ∈ G is extreme
if and only if it is trivial on the tail σ-field (1.7), see Theorem 7.7, page 118 in [1]. This means that
µ(A) = 1 or µ(A) = 0 for any A ∈ Btail.

Proposition 1.6. For every µ ∈ Gex and any cofinal sequence D, the sequence {π∆(·|y)}∆∈D

converges weakly to µ for all y ∈ A, where A ∈ Btail may depend on D and is such that µ(A) = 1.

Proof. For any f ∈ Cb(X), one has limD π∆(f |y) = µ(f) for all y ∈ Af , such that Af ∈ Btail

and µ(Af ) = 1, see claim (a) of Theorem 7.12, page 122 in [1]. But the weak topology is metrizable.
Therefore, there exists a countable set {fn}n∈N ⊂ Cb(X) such that the fact limD π∆(fn|y) = µ(fn),
for all n ∈ N, yields the convergence in question. Thus, as the set A mentioned above one can take
the intersection of all Afn

. �

Proposition 1.7. The set G is non-void.

Proof. In view of Corollary 1.5, to get the property in question it is enough to show that Py 6= ∅
for some y ∈ X. As the spaces X` are Polish, for every ε` > 0, one finds a compact A`(ε`) ⊂ X`

such that χ`(X`\A`(ε`) < ε` ·χ`(X`). By Prohorov’s theorem, Py 6= ∅ if the family {π∆(·|y)}∆∈Lfin

is uniformly tight. Set

v` =
∑

`′∈∂L`

‖V``′‖. (1.16)

Given ε > 0, we pick {ε`}`∈L such that

ε =
∑

`

ε`e
2v` .
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Thereby, for Λ ∈ Lfin, we set

Cε
Λ = {x ∈ X | ∀` ∈ Λc : x` ∈ A`(ε`)}.

Furthermore, we write Cε = Cε
∅ and Cε

` = Cε
{`}. Clearly, Cε is compact. Now let y ∈ Cε

Λ for some

Λ ∈ Lfin. By (1.9), it follows that, for any ` and z ∈ X,

π{`}(C
ε|z) = ICε

`
(z)

[
1 −

1

Z`(y)

∫

X`\A`(ε`)

exp

(
∑

`′∈∂L`

V``′(x`, z`′)

)
χ`(dx`)

]
ICε

`
(z)
[
1 − ε`e

2v`
]
.

(1.17)

Integrating both sides of this estimate by (1.12) we get for ∆ ∈ Lfin containing this `

π∆(Cε|y) > π∆(Cε
` |y)

[
1 − ε`e

2v`
]
,

which can be iterated to the following one

π∆(Cε|y) > π∆(Cε
∆|y)

∏

`∈∆

[
1 − ε`e

2v`
]

= ICε
∆
(y)

∏

`∈∆

[
1 − ε`e

2v`
]

=
∏

`∈∆

[
1 − ε`e

2v`
]

> 1 − ε.

This yields the relative weak compactness of the sequence {π∆(·|y)}D and hence completes the
proof. �

Along with the measures (1.9) we will use the following ones

νΛ(dxΛ|y) =
1

ZΛ(y)
exp [VΛ(xΛ|y)]χΛ(dxΛ). (1.18)

Note that νΛ(·|y) ∈ P(XΛ). A function f : X → R is called local if it is measurable with respect to
the σ-field (1.6). The smallest (in the sense of inclusion) ∆ ∈ Lfin such that f is B(X∆)-measurable
is called the support of f . In this case

π∆(f |y) = ν∆(f |y). (1.19)

For V = 0, every πΛ(·|y) is independent of y and the family {πΛ}Λ∈Lfin
is consistent in the

Kolmogorov sense. Then by the Kolmogorov lemma, G(0) is a singleton. We are going to prove
that, for sparse graphs, the set G(V ) contains at most one element if V is nonzero but ‖V ‖ is small.
Here

‖V ‖ = sup
〈`,`′〉∈E

‖V``′‖.

Set

κ(V ) = 16 [exp (4‖V ‖) − 1] . (1.20)

Our main result is as follows:

Theorem 1.8. Let the graph be sparse. Then there exists κ∗ ∈ (0, 1) such that the set G(V )
contains one element only if κ(V ) 6 κ∗.

The proof is based on an extension and refinement of the Bassalygo-Dobrushin technique,
developed below in a sequence of lemmas.

2. The main lemma

For 〈`, `′〉 ∈ E, we set, c.f. (1.20),

κ``′ = 16 [exp (4‖V``′‖) − 1] . (2.1)
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Then, for a path ϑ(`, `′), we define

R[ϑ(`, `′)] = 4ς(`)+ς(`′)
n−1∏

i=0

κ`i`i+1
, (2.2)

where ς(`) = −1 if n` = 1 and ς(`) = 0 if n` > 2. Finally, for ∆ ∈ Lfin, we set

S∆(`, `′) =
∑

R[ϑ(`, `′)], (2.3)

where the summation is performed over all self-avoiding paths in ∆ connecting ` with `′.

Definition 2.1. Given `0 ∈ ∆ ∪ ∂L∆, a subset Λ ⊂ ∆ ∈ Lfin is called proper for `0 if

∑

`∈Λ

S∆(`, `0) 6 1. (2.4)

Lemma 2.2 (Main). Let Λ be proper in ∆ for some `0 ∈ ∂L∆, and let y, z ∈ X differ at this `0
only. Then ∣∣∣∣

ν∆(dxΛ|y)

ν∆(dxΛ|z)
− 1

∣∣∣∣ 6
∑

`∈Λ

S∆(`, `0). (2.5)

The proof of this lemma is based on the following technicalities. First, by the triangle inequality,
it follows that, for α, β ∈ R,

|αβ − 1| 6 |α− 1| + |β − 1| + |α− 1| · |β − 1| . (2.6)

Similarly, see Assertion 2 in [2], for any n ∈ N and real α1, . . . , αn, one has

if

n∑

i=1

|αi| 6 1, then

∣∣∣∣∣

n∏

i=1

(1 + αi) − 1

∣∣∣∣∣ 6 2

n∑

i=1

|αi|. (2.7)

Let (Y,B(Y ), P ) be a probability space and u, v be positive measurable functions on Y . Then, c.f.
(1.5), ∣∣∣∣

∫
u(y)P (dy)∫
v(y)P (dy)

− 1

∣∣∣∣ =
∣∣∣∣
P (u)

P (v)
− 1

∣∣∣∣ 6 sup
y∈Y

∣∣∣∣
u(y)

v(y)
− 1

∣∣∣∣ . (2.8)

Now let u, v, w be positive measurable functions and w be such that P (w) = 1. Set

M+(u, v) = max{sup
y∈Y

u(y); sup
y∈Y

v(y)}, M−(u, v) = min{ inf
y∈Y

u(y); inf
y∈Y

v(y)}

and suppose that M−(u, v) > 0. Then

∣∣∣∣

∫
w(y)u(y)P (dy)∫
v(y)P (dy)

− 1

∣∣∣∣ 6
M+(u, v)

M−(u, v)
− 1. (2.9)

Let y0 ∈ Y be such that

v(y0) 6

∫
v(y)P (dy), (2.10)

which obviously exists. Suppose that there exist positive γ, ε, δ, such that

|w(y) − 1| 6 γ,

∣∣∣∣
u(y)

u(y0)
− 1

∣∣∣∣ 6 ε,

∣∣∣∣
u(y)

v(y)
− 1

∣∣∣∣ 6 δ.

Then ∣∣∣∣

∫
w(y)u(y)P (dy)∫
v(y)P (dy)

− 1

∣∣∣∣ 6 δ + εγ + δεγ. (2.11)
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Let us prove this. Set

γ(y) = w(y) − 1; ε(y) =
u(y)

u(y0)
− 1; δ(y) =

u(y)

v(y)
− 1.

As P (w) = 1, one has P (γ) = 0. Moreover, |γ(y)| 6 γ, |ε(y)| 6 ε, and |δ(y)| 6 δ. Then

∫
w(y)u(y)P (dy)∫
v(y)P (dy)

=
1

P (v)

[∫
u(y)P (dy) +

∫
γ(y)u(y)P (dy)

]

=
1

P (v)

[∫
v(y)P (dy) +

∫
v(y)δ(y)P (dy)

+

∫
γ(y)u(y0)P (dy) + u(y0)

∫
γ(y)ε(y)P (dy)

]

= 1 +

∫
δ(y)Q(dy) +

u(y0)

v(y0)
·
v(y0)

P (v)
·

∫
γ(y)ε(y)P (dy),

where Q(dy) = v(y)P (dy)/P (v). Thereafter, the estimate (2.11) is straightforward.

Proof of Lemma 2.2: The measure (1.18) can be written in the following form

ν∆(dx∆|y) =
1

Z∆(y)
exp

[
V∆(x∆) +

∑

`∈∆

V``0(x`, y`0)

]
χ̃∆(dx∆),

χ̃`(dx`) = exp




∑

`′∈∂L∆\{`0}

V``′(x`, y`′)


χ`(dx`).

Since the configuration on ∂L∆ \ {`0} is going to be fixed by the very end of the proof and the
concrete choice of the single-point measures plays no role, we can change χ’s to χ̃’s, which is
equivalent to considering the case of ∂L∆ = {`0}. Therefore, in this section we deal with the
following finite graph

G
def
= (∆aug,Eaug

∆ ), ∆aug = ∆ ∪ {`0}, E
aug
∆ = E∆ ∪ ∂E`0. (2.12)

The proof of the lemma is based on an inductive construction employing transformations of G.
Given n, q ∈ N, let Gn,q be the family of all finite graphs such that n` 6 n for all vertices, and the
number of the vertices of degree n is q. We still suppose that the graphs have no loops, multiple
edges, and isolated vertices. By G2,0 we denote the family of minimal graphs, i.e., such that n` = 1
for all vertices. As we are going to compare different graphs, by the end of this section we write νG

and SG instead of ν∆ and S∆ respectively. Finally, for a set of vertices Λ and ` ∈ Λ, we write

Λ` = Λ \ {`}. (2.13)

Given G ∈ G2,0, let `1 be the only neighbor of `0. Then the projection of the measure (1.18) onto
B(XΛ) can be written in the form

νG(dxΛ|y) =
J(x`1 , y)

K(y)
·

F (xΛ`1
)χΛ`1

(dxΛ`1
)∫

X`1

F (xΛ`1
)χΛ`1

(dxΛ`1
)
, `1 ∈ Λ (2.14)

νG(dxΛ|y) =
F (xΛ`

)χΛ`
(dxΛ`

)∫
X`
F (xΛ`

)χΛ`
(dxΛ`

)
, `1 ∈ ∆ \ Λ.

where

J(x`1 , y) = exp [V`1`0(x`1 , y`0)] , K(y) =

∫

X`1

J(x`1 , y)χ`1(dx`1).
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Thereby,
νG(dxΛ|y)

νG(dxΛ|z)
= 1

if `1 ∈ ∆ \ Λ. Otherwise,

∣∣∣∣
νG(dxΛ|y)

νG(dxΛ|z)
− 1

∣∣∣∣ 6 exp (4‖V`1`0‖) − 1 =
κ`1`0

16
= SG(`1, `0) =

∑

`∈Λ

SG(`,`0).

Given n, q ∈ N, suppose now that, for any G ∈ Gn,q having the form (2.12), the property stated in
Lemma 2.2 holds true. Let us show that this property holds also for any G ∈ Gn,q+1. For such a

graph, let b be the vertex for which nb = n. Then we introduce a new graph, G̃, obtained from G by
unglueing the vertex b. This means that instead of b, G̃ has vertices b1, . . . , bn, for which nbi

= 1,
i = 1, . . . , n. Each of bi’s is adjacent to the corresponding `i ∈ ∂Lb. All other vertices and edges of
G and G̃ coincide. Thus, the new vertex set is ∆̃aug = ∆aug

b ∪Γ, where Γ = {b1, . . . , bn}. Therefore,

G̃ ∈ Gn,q.
The following three cases: b ∈ Λ, b = `0, b ∈ ∆ \ Λ, will be considered separately.

Case I: b ∈ Λ.

Here ∆̃ = ∆b ∪ Γ, Λ̃ = Λb ∪ Γ. We set, c.f. (1.18) and (2.13),

ν�
G
(dx∆̃|y) =

1

Z∆̃(y)
exp

[
V∆b

(x∆b
|y) +

n∑

i=1

V`i,b(x`i
, xbi

)

]
χ∆b

(dx∆b
)χΓ(dxΓ), (2.15)

where

χΓ(dxΓ)
def
=
⊗

`∈Γ

χb(dx`) =

n⊗

i=1

χb(dxbi
). (2.16)

Here we consider the case where b and `0 are not adjacent. The construction in the opposite case
is quite similar. The projection of the measure (2.15) onto B(XΛ̃) can be written in the form

ν�
G
(dxΛ̃|y) = ν�

G
(d(xΛb

× xΓ)|y) = F (xΛb
× xΓ|y)χΛb

(dxΛb
)χΓ(dxΓ), (2.17)

whereas its projection onto B(XΓ) is

ν�
G
(dxΓ|y) = Φ(xb1 , . . . xbn

|y)χΓ(dxΓ), (2.18)

where

Φ(xb1 , . . . xbn
|y)

def
=

∫

XΛb

F (xΛb
× xΓ|y)χΛb

(dxΛb
). (2.19)

With the help of these functions, the projection of the ‘old’ measure onto B(XΛ) can be written

νG(dxΛ|y) =
F (xΛb

× (xb × · · · × xb)|y)∫
Xb

Φ(xb, . . . , xb|y)χb(dxb)
· χΛb

(dxΛb
)χb(dxb). (2.20)

Therefore,

νG(dxΛ|y)

νG(dxΛ|z)
=

F (xΛb
× (xb × · · · × xb)|y)

F (xΛb
× (xb × · · · × xb)|z)

∫
Xb

Φ(xb, . . . , xb|z)χb(dxb)∫
Xb

Φ(xb, . . . , xb|y)χb(dxb)
. (2.21)

Now by means of (2.6) one gets

∣∣∣∣
νG(dxΛ|y)

νG(dxΛ|z)
− 1

∣∣∣∣ 6 A+B +A ·B, (2.22)
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where

A =

∣∣∣∣
F (xΛb

× (xb × · · · × xb)|y)

F (xΛb
× (xb × · · · × xb)|z)

− 1

∣∣∣∣ 6 sup
xb1

,...,xbn∈Xb

∣∣∣∣
F (xΛb

× (xb1 × · · · × xbn
)|y)

F (xΛb
× (xb1 × · · · × xbn

)|z)
− 1

∣∣∣∣

= sup
xb1

,...,xbn∈Xb

∣∣∣∣
ν�
G
(dxΛ̃|y)

ν�
G
(dxΛ̃|z)

− 1

∣∣∣∣ . (2.23)

and

B =

∣∣∣∣∣

∫
Xb

Φ(xb, . . . , xb|z)χb(dxb)∫
Xb

Φ(xb, . . . , xb|y)χb(dxb)
− 1

∣∣∣∣∣ .

By (2.8), it follows that

B 6 sup
xb∈Xb

∣∣∣∣
Φ(xb, . . . , xb|z)

Φ(xb, . . . , xb|y)
− 1

∣∣∣∣ 6 sup
xb1

,...,xbn∈Xb

∣∣∣∣
Φ(xb1 , . . . , xbn

|z)

Φ(xb1 , . . . , xbn
|y)

− 1

∣∣∣∣

= sup
xb1

,...,xbn∈Xb

∣∣∣∣
ν�
G
(dxΓ̃|y)

ν�
G
(dxΓ̃|z)

− 1

∣∣∣∣ . (2.24)

In order to proceed further in estimating A and B let us compare S�
G
(`, `0) with SG(`, `0). As the

potentials V``′ for `, `′ ∈ ∆aug
b are the same in both measures (1.18) and (2.15), the quantities

under comparing are calculated by (2.2), (2.3) with one and the same κ``′ . Furthermore, by (2.15)
it follows that

κbi`i
= κb`i

, i = 1, . . . n.

Thus, taking into account that nbi
= 1, i = 1, . . . , n and nb > 1, one gets, see (2.2)

n∑

i=1

S�
G
(bi, `0) = SG(b, `0)/4. (2.25)

Furthermore, every self-avoiding path ϑ(`, `0) in ∆̃aug which starts at ` ∈ Λb always avoids Γ.
Therefore,

S�
G
(`, `0) = Sb

G(`, `0) 6 SG(`, `0), for any ` ∈ Λb. (2.26)

Here and in the sequel, for a ∈ ∆aug, by Sa
G
(`, `′) we denote the quantity calculated according to

(2.3) with the summation taken over all paths which avoid a. The latter two estimates yield

∑

`∈Λ̃

S�
G
(`, `0) 6

∑

`∈Λ

SG(`, `0); (2.27)

hence, Λ̃ is proper in ∆̃ for `0 due to the same property of Λ in ∆ with respect to `0. Hence, as
a subset of Λ̃, by (2.25) Γ is also proper in ∆̃ for `0. Thereafter, by the inductive assumption and
(2.23), (2.24) we get

A 6
∑

`∈Λb

S�
G
(`, `0) +

n∑

i=1

S�
G
(bi, `0) 6 1,

B 6

n∑

i=1

S�
G
(bi, `0) 6 1.
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Now we apply these estimates in (2.22) and obtain

∣∣∣∣
νG(dxΛ|y)

νG(dxΛ|z)
− 1

∣∣∣∣ 6
∑

`∈Λb

S�
G
(`, `0) +

n∑

i=1

S�
G
(bi, `0) +

n∑

i=1

S�
G
(bi, `0)

+

(
∑

`∈Λb

S�
G
(`, `0) +

n∑

i=1

S�
G
(bi, `0)

)
·

n∑

i=1

S�
G
(bi, `0)

6
∑

`∈Λb

S�
G
(`, `0) + 3

n∑

i=1

S�
G
(bi, `0)

6
∑

`∈Λb

SG(`, `0) +
3

4
SG(b, `0) 6

∑

`∈Λ

SG(`, `0) 6 1, (2.28)

which complete the proof for this case.

Case II: b = `0.

Now ∆ = ∆̃ and ∆̃aug = ∆ ∪ Γ, where as above Γ = {b1, . . . , bn}. Since we can compare the
measures with boundary conditions which differ at one point only, we introduce

ν
(j)
�

G
(dx∆|y, z) =

1

Z
(j)
�

G
(y, z)

exp




∑

〈`,`′〉∈E∆

V``′(x`, x`′)

+

j∑

i=1

V`i`0(x`i
, zbi

) +

n∑

i=j+1

V`i`0(x`i
, ybi

)


χ∆(dx∆),

where j = 0, . . . , n, ybi
= y`0 , zbi

= z`0 , for all i = 1, . . . , n, and y`0 , z`0 are the same as in (2.5).
Thereby, we have

νG(dxΛ|y)

νG(dxΛ|z)
=

n∏

i=1

ν
(i−1)
�

G
(dx∆|y, z)

ν
(i)
�

G
(dx∆|y, z)

. (2.29)

The boundary conditions for ν
(i−1)
�

G
and ν

(i)
�

G
differ at the vertex bi, the degree of which in G̃ is 1.

Then, similarly to (2.25), we have that for any ` ∈ Λ,

n∑

i=1

S�
G
(`, bi) = SG(`, `0)/4. (2.30)

Therefore, Λ is proper in ∆̃ for every bi, i = 1, . . . , n. Thus, by the inductive assumption, it follows
that ∣∣∣∣∣∣

ν
(i−1)
�

G
(dx∆|y, z)

ν
(i)
�

G
(dx∆|y, z)

− 1

∣∣∣∣∣∣
6
∑

`∈Λ

S�
G
(`, bi), for all i = 1, . . . , n

Now we apply this estimate in (2.29) together with (2.7), (2.30) and obtain

∣∣∣∣
νG(dxΛ|y)

νG(dxΛ|z)
− 1

∣∣∣∣ 6 2

n∑

i=1

∑

`∈Λ

S�
G
(`, bi) 6

1

2

∑

`∈Λ

SG(`, `0), (2.31)

which completes the proof for this case.

Case III: b ∈ ∆ \ Λ.

By (2.3), it follows that

∑

`∈Λ

SG(`, `0) =
∑

`∈Λ

Sb
G(`, `0) +

(
∑

`∈Λ

SG(`, b)

)
· SG(b, `0). (2.32)
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The following three cases of the location of b will be considered separately:

(a) b is far from both `0 and Λ;

(b) b is close to `0 and far from Λ;

(c) b is far from `0 and close to Λ;

Subcase III a:

Here

SG(b, `0) 6 1 and
∑

`∈Λ

SG(`, b) 6 1. (2.33)

In contrast to the cases considered above, we set ∆̃ = ∆b and ∆̃aug = ∆b ∪ {b, `0}. Thereby,

ν�
G
(dx∆b

|xb, y) =
1

Z�
G
(xb, y)

exp

[
V∆b

(x∆b
|y) +

∑

`∈∆b

V`b(x`, xb)

]
χ∆b

(dx∆b
), (2.34)

which by (1.19) and (1.15) yields

νG(dx∆|y) =

∫

X∆

ν�
G
(dx∆b

|ξb, y)νG(dξ∆|y) =

∫

Xb

ν�
G
(dx∆b

|xb, y)νG(dxb|y). (2.35)

For any Λ ⊂ ∆b, the projection of the measure (2.34) onto B(XΛ) can be written in the form

ν�
G
(dxΛ|xb, y) = F (xΛ|xb, y)χΛ(dxΛ), (2.36)

where F is a positive continuous function of all its arguments. Therefore,

νG(dxΛ|y)

νG(dxΛ|z)
=

∫
Xb
F (xΛ|xb, y)νG(dxb|y)∫

Xb
F (xΛ|xb, z)νG(dxb|z)

. (2.37)

The right-hand side of the latter is of the type of the left-hand side of (2.11) and hence can be
correspondingly estimated. By (2.33), the set {b} is proper for `0; hence, as was established in
Case I, ∣∣∣∣

νG(dxb|y)

νG(dxb|z)
− 1

∣∣∣∣ 6 SG(b, `0)
def
= γ. (2.38)

By (2.34), (2.36), it follows that

ν
G̃
(dxΛ|xb, y)

ν
G̃
(dxΛ|xb, y)

=
F (xΛ|xb, y)

F (xΛ|xb, z)
,

where the configuration xb can be treated as a parameter, see the very beginning of the proof of
the lemma. Therefore, in this expression one can redefine G̃ by setting ∆̃aug = ∆b ∪{`0}. Thus, for
every ` ∈ ∆b, one has

S�
G
(`, `0) = Sb

G(`, `0), (2.39)

which yields

∣∣∣∣
F (xΛ|xb, y)

F (xΛ|xb, z)
− 1

∣∣∣∣ =

∣∣∣∣
ν�
G
(dxΛ|xb, y)

ν�
G
(dxΛ|xb, z)

− 1

∣∣∣∣ 6
∑

`∈Λ

S�
G
(`, `0) =

∑

`∈Λ

Sb
G(`, `0)

def
= δ. (2.40)

Afterwards, one employs the inductive assumption, by which δ 6 1. Finally, we set

ε =
1

2

∑

`∈Λ

SG(`, b). (2.41)
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D.Kȩpa, Yu.Kozitsky

Furthermore, as in (2.31) we get

∣∣∣∣
F (xΛ|xb, y)

F (xΛ|ξb, y)
− 1

∣∣∣∣ =
∣∣∣∣
ν�
G
(dxΛ|xb, y)

ν�
G
(dxΛ|ξb, y)

− 1

∣∣∣∣ 6
1

2

∑

`∈Λ

SG(`, b), (2.42)

holding for any xb, ξb ∈ Xb. Finally, we pick ξb ∈ Xb such that

F (xΛ|ξb, y) 6

∫

Xb

F (xΛ|xb, y)νG(dxb|y).

Thereby, we fix xΛ ∈ XΛ, y`0 , z`0 ∈ X`0 and obtain by (2.11) that

∣∣∣∣
νG(dxΛ|y)

νG(dxΛ|z)
− 1

∣∣∣∣ =

∣∣∣∣∣

∫
Xb
F (xΛ|xb, y)νG(dxb|y)∫

Xb
F (xΛ|xb, z)νG(dxb|z)

− 1

∣∣∣∣∣ 6
∑

`∈Λ

Sb
G(`, `0) +

1

2

∑

`∈Λ

SG(`, b)SG(b, `0)

6
1

2

∑

`∈Λ

SG(`, b)SG(b, `0) ·

(
∑

`∈Λ

Sb
G(`, `0)

)

6
∑

`∈Λ

Sb
G(`, `0) +

∑

`∈Λ

SG(`, b)SG(b, `0) =
∑

`∈Λ

SG(`, `0),

which completes the proof for this subcase.

Subcase III b:

Here ∑

`∈Λ

SG(b, `0) > 1. (2.43)

Therefore,

∑

`∈Λ

Sb
G(`, `0) +

∑

`∈Λ

SG(`, b) <
∑

`∈Λ

Sb
G(`, `0) +

∑

`∈Λ

SG(`, b)SG(b, `0) =
∑

`∈Λ

SG(`, `0) 6 1. (2.44)

As above, we fix xΛ ∈ XΛ, y`0 , z`0 ∈ X`0 , take arbitrarily ξb ∈ Xb, and introduce the following
functions

Φ(xb) =
F (xΛ|xb, y)

F (xΛ|ξb, y)
, Ψ(xb) =

F (xΛ|xb, z)

F (xΛ|ξb, y)
=
F (xΛ|xb, z)

F (xΛ|xb, y)
Φ(xb). (2.45)

Thereby

∣∣∣∣
νG(dxΛ|y)

νG(dxΛ|z)
− 1

∣∣∣∣ =

∣∣∣∣∣

∫
Xb
F (xΛ|xb, y)νG(dxb|y)∫

Xb
F (xΛ|ξb, z)νG(dξb|z)

− 1

∣∣∣∣∣ 6 sup
xb∈Xb

|Ψ(xb) − 1| . (2.46)

The latter estimate has been obtained by means of (2.9). But by (2.6), (2.40), (2.42), and (2.44),
we get

sup
xb∈Xb

|Ψ(xb) − 1| 6
1

2

∑

`∈Λ

SG(`, b) +
∑

`∈Λ

Sb
G(`, `0) +

1

2

∑

`∈Λ

SG(`, b) ·

(
∑

`∈Λ

Sb
G(`, `0)

)

6
∑

`∈Λ

Sb
G(`, `0) +

∑

`∈Λ

SG(`, b) <
∑

`∈Λ

SG(`, `0),

which completes the proof for this subcase.

Subcase III c:

Here ∑

`∈Λ

SG(`, b) > 1.
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Then
∑

`∈Λ

Sb
G(`, `0) + SG(b, `0) <

∑

`∈Λ

Sb
G(`, `0) +

∑

`∈Λ

SG(`, b)SG(b, `0) =
∑

`∈Λ

SG(`, `0) 6 1. (2.47)

Thereby, the set Λ ∪ {b} is proper for `0 and hence can be considered as in Case I, which yields

νG(dxΛ × dxb|y)

νG(dxΛ × dxb|z)
6
∑

`∈Λ

Sb
G(`, `0) + SG(b, `0). (2.48)

But
νG(dxΛ|y)

νG(dxΛ|z)
=

∫
Xb
νG(dxΛb |y)

∫
Xb
νG(dxΛb |z)

.

Thus, the estimate (2.5) is obtained from (2.48), (2.47) by means of (2.8).
In what follows, we have proven that the estimate (2.5) holds for proper subsets Λ for any

G ∈ Gn,q if it holds for G ∈ Gn,1. In the case G ∈ Gn+1,1, one splits the only vertex of degree n+ 1
and obtains a graph in Gn,q, for which the property in question holds true. �

3. The proof of Theorem 1.8

The proof of Theorem 1.8 will be based on Lemma 2.2 and on the property of Gex described
by Proposition 1.6. We begin, however, by proving another lemma.

Lemma 3.1. Suppose that, for every `, there exists a cofinal sequence {∆n}n∈N, such that

lim
n→∞

∑

`′∈∂L∆n

S∆n
(`, `′) = 0. (3.1)

Then |Gex| = 1.

Proof. Let C loc
b (X) be the set of all bounded local continuous functions f : X → R. It is a

measure defining class, which means that if for given µ, µ̃ ∈ P(X), one has µ(f) = µ̃(f) for all
f ∈ C loc

b (X), then µ = µ̃. The proof of the lemma will be done by showing that if µ, µ̃ ∈ Gex(V ),
then

µ(f) = µ̃(f) for all f ∈ C loc
b (X). (3.2)

Given f ∈ C loc
b (X), let Λ be its support. Then we pick the cofinal sequence {∆n}n∈N such that

(3.1) and the following

π∆n
(·|y) ⇒ µ, π∆n

(·|ỹ) ⇒ µ̃, n→ +∞,

hold true for all y ∈ A, ỹ ∈ Ã, such that µ(A) = 1 and µ̃(Ã) = 1, see Proposition 1.6. For chosen
f and ∆n, such that Λ ⊂ ∆n, we have, see (1.19),

π∆n
(f |y) =

∫

XΛ

f(x)ν∆n
(dxΛ|y). (3.3)

Let n ∈ N be such that Λ is proper in ∆n for any ` ∈ ∂L∆n, see (3.1). Then we fix this n and
consider the set {`1, . . . , `N} = ∂L∆n. For j = 0, 1, . . . , N , we introduce y(j) ∈ X as follows

y
(j)
`1

= y`1 , . . . , y
(j)
`N−j

= y`N−j
, y

(j)
`N−j+1

= ỹ`N−j+1
, . . . , y

(j)
N = ỹ`N

.

Thereafter, by (2.7), (2.8), (3.3), and (2.5), we get

∣∣∣∣
π∆n

(f |y)

π∆n
(f |ỹ)

− 1

∣∣∣∣ =

∣∣∣∣∣∣

N∏

j=1

π∆n
(f |y(j−1))

π∆n
(f |y(j))

− 1

∣∣∣∣∣∣
6

∣∣∣∣∣∣

N∏

j=1

ν∆n
(dxΛ|y

(j−1))

ν∆n
(dxΛ|y(j))

− 1

∣∣∣∣∣∣
6 2

∑

`∈∂L∆n

∑

`∈Λ

S∆n
(`, `′),

(3.4)
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which by (3.1) yields that µ = µ̃. �

Proof of Theorem 1.8. If κ(V ) 6 κ∗ for a certain κ∗ > 0, then by (2.3), it follows that

S∆(`, `′) 6
∑

ϑ(`,`′)

κ
|ϑ(`,`′)|
∗ ,

where the summation is taken over all self-avoiding paths. We fix any Λ ∈ Lfin and choose a strictly
increasing sequence {pn}n∈N ⊂ N, such that Λ is contained in every ball Bp1

(b) = {` ∈ L|ρ(`, b) 6

p1} with b ∈ Λ. Then we fix any b ∈ Λ and set ∆n = Bpn
(b) and

Nn = inf
`∈Λ, `′∈∂L∆n

ρ(`, `′).

Thereby, Nn → +∞, as n → +∞, and one finds n∗ ∈ N, such that Nn > N`, for all n > n∗ and
` ∈ Λ, where N` is the same as in Definition 1.2. Take κ∗ < η−1, where η is as in Definition 1.2.
Then, for any ` ∈ Λ, one has

∑

`′∈∂L∆n

S∆n
(`, `′) 6 C

+∞∑

N=Nn

(κ∗η)
N ,

which yields (3.1) and thereby completes the proof of the theorem. �

Finally, let us show that the Bassalygo-Dobrushin graphs are sparse.

Lemma 3.2. Suppose that the distance ρ has the property (1.3), (1.4). Then the graph is sparse
in the sense of Definition 1.2.

Proof. By induction, one can show that

|LN (b)| 6 nb max{n`1 · · ·n`N−1
n`N

}, (3.5)

where the maximum is taken over all self-avoiding paths {b, `1, . . . , `N−1, `N}. Thus, if n̂ = sup` n`

is finite, then
|LN (b)| 6 n̂ · n̂N .

In case sup` n` = +∞, for given p ∈ N, we let Bp = {` ∈ L|ρ(`, b) 6 p} and np = max`∈Bp
n`.

Suppose that np > nb, which can be achieved by taking big enough p. Then we pick `p ∈ Bp, such
that np = n`p

, and dp ∈ N, such that

max{p, φ(np)} − 1 6 2dp 6 max{p, φ(np)}. (3.6)

Let us show that n` 6 np for every ` ∈ Bdp
. If p > φ(np), then Bdp

⊂ Bp and n` 6 np by
the definition of np. This is also true for φ(np)/2 6 p 6 φ(np), as Bdp

is still a subset of Bp. If
p 6 φ(np)/2, then for any ` ∈ Bdp

,

ρ(`, `p) 6 ρ(`, b) + ρ(b, `p) 6 dp + p 6 φ(np).

Then n` 6 np by (1.3). Now let the path ϑ(b, `) be of length N with dp/2 6 N 6 dp. Then it does
not leave Bdp

and hence n`i
6 np for any `i ∈ ϑ(b, `). Let kp ∈ N be the largest possible k, for which

2k 6 np. Given `i, `j ∈ ϑ(b, `), such that 2k 6 n`i
, n`j

6 2k+1, by (1.3) one has ρ(`i, `j) > φ(2k).
Therefore, the number of such vertices in ϑ(b, `) does not exceed

mk =
N

φ(2k)
+ 1 =

N + φ(2k)

φ(2k)
6

5N + 1

φ(2k)
,

where we have taken into account that N > dp/2 > (φ(np)− 1)/4. Thereby, for chosen N , by (3.5)
it follows that, see (1.4),

|LN (b)| 6

kp∏

k=0

2(k+1)mk 6 exp

{
ln 2

+∞∑

k=0

k + 1

φ(2k)
(5N + 1)

}
.

Then the constants C and η can be calculated from the latter expression. To find Nb one picks p
such that np > nb. Then as Nb one takes the smallest N obeying N > dp/2. �
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4. A dense graph

Here we consider an example of the dense graph mentioned in the introduction. The graph is
an expanding tree; its set of vertices is

L =
+∞⋃

n=0

Ln. (4.1)

The set L0 = {b} is a singleton and L1 = ∂Lb, nb = k. Each ` ∈ Ln, n > 1, is adjacent to k + n− 1
elements of Ln+1 and with one element of Ln−1. Here k > 2 is a fixed number; there are no
connections within each of Ln, see figure 1.

b

Figure 1. A dense graph for k = 2.

For this graph, one has

|LN (b)| =
k(k +N − 2)!

(k − 1)!
; (4.2)

hence, it does not possess the property established by Definition 1.2.
On this graph, we define a ferromagnetic Ising model: for each ` ∈ L, we set X` = {1,−1} and

χ`({1}) = χ`({−1}) = 1/2. Furthermore, for 〈`, `′〉 ∈ E, we set

V``′(x`, x`′) = ax`x`′ , a > 0,

and ∆n = ∪n
s=0Ls. Therefore, ∂L∆n = Ln+1. Let ν+

∆n
, n ∈ N, be the measure (1.18) corresponding

to y = (y`)`∈L such that y` = +1 for all ` ∈ L. Let also σn be the projection of ν+
∆n

onto B(Xb).
To simplify notations, we write σn(ξ) = σn({ξ}), ξ = ±1. Our aim is to show that, for arbitrary
a > 0,

lim
n→+∞

σn(1)

σn(−1)
> 1, (4.3)

which means that the corresponding limiting Gibbs field1 is not invariant under the change of
signs x` 7→ −x`, for all ` ∈ L; hence, G is never singleton. To this end we construct the following
recurrence. Given non-negative integer s, let us take some ` ∈ Ls and then set Λs = {`}, and

Λs+1 = ∂LΛs ∩ Ls+1, Λs+2 = ∂LΛs+1 ∩ Ls+2, . . . , Λn+1 = ∂LΛn ∩ Ln+1, . . . , .

For n > s, we let

Λ
def
=

n⋃

q=s

Λq.

By σs
n, s = 0, 1, . . . , n+1, we denote the projection of the measure νΛ with the boundary condition

y`′ = +1 for all `′ ∈ Λn+1. Then σn+1
n (ξ) = δξ,1 and σ0

n = σn. Thereafter, the recurrence in

1Its existence can be proven by repeating the proof of Proposition 1.7.

327
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question is

σn(ξ) =
1

Zn

k∏

j=1



∑

ξj=±1

eaξξjσ1
n(ξj)


 , (4.4)

and for s > 1,

σs
n(ξ) =

1

Zn,s

k+s−1∏

j=1



∑

ξj=±1

eaξξjσs+1
n (ξj)


 =

1

Zn,s

[
eaξσs+1

n (1) + e−aξσs+1
n (−1)

]k+s−1
, (4.5)

where Zn,s is a normalizing factor. Now we set un,s = σs
n(1)/σs

n(−1) and un = un,0. Then by (4.5)
it follows that

un =

(
e2aun,1 + 1

un,1 + e2a

)k

, un,s =

(
e2aun,s+1 + 1

un,s+1 + e2a

)k+s−1

, un,n = e2a(k+n−1). (4.6)

For p ∈ N and t, γ > 1, let us consider

ψp(t, γ)
def
=

(
γt+ 1

t+ γ

)p

=

p∑

l=0

p!

l!(p− l)!
·

(
(t− 1)(γ − 1)

t+ γ

)l

> 1 + p ·
(t− 1)(γ − 1)

t+ γ
. (4.7)

Since un,s = ψk+s−1(un,s+1, e
2a), we have

un,s − 1 > (k + s− 1) ·
(un,s+1 − 1)(e2a − 1)

un,s+1 + e2a

> · · · >

(
(k + p− 2)!

(k + s− 2)!
·

p−s∏

q=1

e2a − 1

un,s+q + e2a

)
· (un,p − 1), (4.8)

which holds for any p > s. For any fixed γ > 1 and for p > (γ + 1)/(γ − 1), there exists ε ∈ (0, 1),
such that ψp(γ

ε, γ) > γε. As un,n = e2a(k+n−1), one has,

un,p > e2εa, for all n > p > (e2a + 1)/(e2a − 1). (4.9)

Let p be the smallest such number, which means that un,q < e2εa < e2a for all q < p. Then by
(4.6) and (4.8), it follows that for all n > p,

un,1 − 1 >
(k + p− 2)!

2p−1(k − 1)!
·
(
1 − e−2a

)p−1
· (e2εa − 1) > 0,

which readily yields (4.3).

5. Acknowledgement

The authors are grateful to Ph. Blanchard and V. Ustymenko for valuable discussions. The
financial support by the DFG through the project 436 POL 113/115/0–1 and through SFB 701
“Spektrale Strukturen und topologische Methoden in der Mathematik” is cordially acknowledged.

328



Bassalygo-Dobrushin uniqueness for continuous spin systems

References

1. Georgii H.-O. Gibbs Measures and Phase Transitions, Studies in Mathematics, 9, Walter de Gruyter,
Berlin-New York, 1988.

2. Bassalygo L.A., Dobrushin R.L. Uniqueness of a Gibbs Field with a Random Potential – an Elementary
Approach. Teor. Veroyatnost. i Primenen., 1986, 31, 651–670 (in Russian) [English translation: Theory
Probab. Appl., 1987, 31, 572–589].

3. Albeverio S., Kondratiev Yu.G., Minlos R.A., Shchepan’uk G.V. Ground state Euclidean Gibbs mea-
sures for quantum lattice systems on compact manifolds, Rep. Math. Phys., 2000, 45, 419–429.

4. Albeverio S., Kondratiev Yu.G., Minlos R.A., Shchepan’uk G.V. Uniqueness problem for quantum
lattice systems with compact spins, Lett. Math. Phys., 2000, 52, 185–195.

5. Kozitsky Yu., Pasurek T. Euclidean Gibbs measures of interacting quantum anharmonic oscillators.
J. Stat. Phys., 2007, 127, 985–1047.

Єдинiсть типу Бассалиго-Добрушин для систем з
неперервним спiном на регулярних графах

Д.Кепа, Ю.Козицький

Iнститут математики, Унiверситет Марiї Кюрi-Склодовської, Люблiн, Польща

Отримано 31 сiчня 2008 р.

Подається розширення технiки Бассалиго-Добрушина для доведення єдиностi гiббсових полiв на

нерегулярних графах для систем неперервних спiнiв.

Ключовi слова: випадковi гiббсовi поля, специфiкацiя Гiббса, Польський простiр

PACS: 05.20.Gg, 05.30.Ch
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