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We give in the paper a brief overview of how the Gibbs fields and related dynamics approaches are applied
in image processing. We discuss classical pixel-wise models as well as more recent spatial point process
models in the framework of the Gibbs fields approach. We present a new multi-object adapted algorithm for
object detection based on a spatial birth-and-death process and a discrete time approximation of this process.
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1. Probabilistic approach in image analysis

Statistical physics and probabilistic approaches have been brought in image analysis starting
with the famous paper by Besag in 1974 [5]. Ten years later, the papers, based on Gibbs modelling,
either in texture analysis [6] or in image restoration [16], mark the beginning of a new field in
image processing: the Markov Random Field modelling. Since then, Gibbs fields methods have
been intensively developed in the Bayesian framework. These early works generated an explosion
of applications of Gibbs fields methods to high-dimensional inverse problems of image processing
such as restoration, denoising, deblurring, classification, segmentation, feature extraction, surface
reconstruction, stereo matching, etc. Recently, there has been observed a growing interest in this
field as a result of numerous applications of marked Markov processes in image analysis.

The basic idea in [16] was to rewrite a restoration procedure in the language of statistical
physics using concepts of statistical ensembles, equilibrium and non-equilibrium dynamics. From
this point of view, a digital image is considered as a configuration (random variables forming a set
of random vectors) {X} of a Gibbs field on the lattice with P (X) as joint probability distribution.
The implicit assumption behind the probabilistic approach in image analysis is that, for a given
problem, there exists a probability distribution such that its ground state represents a regularized
solution of the problem. Thus, the first crucial step in the probabilistic approach is the choice
of the distribution P (X), or equivalently in the case of Gibbs random field approach, the choice
of the energy function H(X). The probability distribution should contain flexible information on
relevant image attributes and constraints such as regularity of contours or absence of noise. As
there is no real general theory for selecting a model, the choice of a proper distribution P (X) is
generally based on the intuition of the desirable properties, see e.g. [15,17,23,35,43].

The basic characteristic of the distributions is their decomposition as a product of factors
depending only on a few variables (the so-called, a local interaction property). Moreover, distribu-
tions usually involve only a few types of factors. One of them arises from the observable image (the
data term) and has the form of an external field term. Other factors are due to generic or prior
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knowledge on the structure of images. Prior terms in the distribution function are specified by
potentials associated with local interactions defined on finite sets of neighboring variables. Thus,
each variable directly depends only on its neighborhood, although from a global point of view, all
variables are mutually dependent through the combination of successive local interactions.

Once the model specification is achieved, most commonly by using the Bayesian framework,
the problem of maximizing the distribution P (X) arises. The very high dimensionality of images
(number of pixels), as well as the non-convexity of the energy H(X), usually excludes any direct
and deterministic method for the maximization problem. At the same time, the factorization of
P (X) permits to use stochastic iterative algorithms involving local changes at each step, i.e. when
only one variable (or a few) can be modified at each step, all other ones being fixed. In this scheme,
the resulting image is constructed as the limit configuration of a stochastic iterative procedure.
At each iteration, the new configuration is obtained according to a transition distribution which
depends on the current configuration. Using the local interaction property, computations of the
transition probabilities become also local, i.e. they involve only a finite set of neighboring variables.
In this connection, a choice of stochastic dynamics which is maximum adapted to a specific problem
under consideration is a crucial step in the construction of the algorithm.

Let us stress that the probabilistic formulation offers a variety of necessary tools to analyze the
problems. Statistical tools permit parameter learning, generating typical configurations and infer-
ring unknown variables in different ways including minimization problem, capturing and combining
all sorts of priors within the Bayesian machinery.

The goal of this paper is to present a brief overview of how the Gibbs field approach is applied
in image processing. In the paper we discuss two aspects of modelling: constructions of the energy
function capturing the key structural information concerning the images of interest, as well as the
choice of a proper stochastic dynamics for the iterative procedure. Starting with a short description
of classical pixel-wise (lattice based) models for restoration, segmentation and texture analysis
problems, we will address more recent works on spatial point processes in the framework of the
Gibbs fields approach used for object detection problems.

2. Lattice based models: the Bayesian paradigm

In this section we give a general overview of lattice based models which represent the classical
approach when using Gibbs fields in image analysis. We consider a lattice spin system (an image
lattice) in a finite volume S ⊂ Z2, |S| = m, with a spin space Λ. Then any random variable
Xi, i ∈ S at any site of S takes the values in the spin space Λ, Ω = Λm is called the configuration
space, and any configuration

X ∈ Ω = Λm, X = {Xi, i ∈ S}, Xi ∈ Λ,

corresponds to a given image. Various types of spin spaces are used in practice. Most common
examples are Λ = {0, . . . , 255} (the grey level space) for image restoration or texture analysis, or
Λ = {1, . . . ,M} for semantic labelling or image segmentation involving M classes.

In practice, an observable image (an observation) is obtained as a configuration Y ∈ Ω which
usually has a form different from the original image X ∈ Ω. We will call the configuration X the
true or the ideal configuration which is a representation of the underlying scene X, seen through a
sensor. X is the unknown which can be interpreted as a version of Y , cleaned from artifacts (noise,
blurring, etc.) due to the acquisition process. For some applications, X is a first interpretation of
the data Y (segmented image or description of the objects composing the scene).

The goal is to search the solution X among a set of images compatible with the observed
data Y . A proper estimate should fit the data and it should fulfill some criteria reflecting the
prior knowledge we have on the solution, such as regularity, smoothness, etc. In other words, prior
expectation and fidelity to data should be properly balanced. The Bayesian approach consists in
modelling X knowing data Y . Therefore, we construct the posterior distribution P (X|Y ). As this
distribution is hardly accessible, as well as the joint distribution P (X,Y ), we use the Bayes rule to
set the problem in terms of a likelihood P (Y |X) modelling the sensor and a prior P (X) reflecting
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the knowledge we have on the solution. Therefore, the expected solution maximizes the posterior
distribution on the configuration space, i.e.

X̂ = arg max
X∈Ω

P (X|Y ),

= arg max
X∈Ω

P (Y |X)P (X). (1)

where Y = {yi, i ∈ S} denotes data (the observation). This constitutes the Maximum A Posteriori
estimator (MAP). Note that if we have no information on the solution, the prior is taken as a
uniform distribution. Then we obtain the Maximum Likelihood estimator (ML).

To obtain the solution of (1), we have to address an optimization problem. Due to the interac-
tion involved in the prior definition, this problem is usually non-convex. Therefore, deterministic
algorithms, such as gradient descent, do not work for optimization as they only produce a local
minima. However, because of the performances in terms of computation time, they can be used,
if a “good enough” initial configuration is available or can be computed. Algorithms such as dy-
namic programming are also rejected because of the size of the configuration space and the lack
of natural ordering. In some specific cases, for example, the Ising model, the optimization problem
can be rewritten as a minimal graph cut problem, for which efficient methods based on graph flow
maximization can be used [7]. However, these approaches are lacking generality. In such a situ-
ation, the only alternative which provides optimal and general algorithms is to consider MCMC
simulations embedded in a simulated annealing scheme. The Metropolis-Hasting dynamics or the
Gibbs sampler are the most popular MCMC schemes in this context.

Although some alternatives to the MAP exist, such as the Maximum Posterior Mode estimator
(MPM), or the Mean Field (MF) approximation, reducing the computation complexity, the MAP
remains very popular, particularly in the case of Gibbs distributions when the posterior distribution
is simply connected with the associated energy function:

P (X|Y ) =
1

Z
e−H(X|Y ). (2)

Here H(X|Y ) is the energy function, Z is the normalizing factor. Thus, under the Gibbs fields
approach with the posterior distribution given by equation (2) in the Gibbs form, the solution of
problem (1) is a configuration (or configurations) minimizing the total energy of the system:

Emin = arg minH(X|Y ), X̂ ∈ Emin . (3)

The energy function H(X|Y ) in (2) is defined as the sum of an interaction term, derived from
the prior and associated finite-range potentials {UC}, and a data driven term:

H(X|Y ) = Φ1(X) + Φ2(Y |X). (4)

Embedded into a simulated scheme, the solution of problem (1) can be obtained by iteratively
simulating the following distributions:

PT (X|Y ) =
1

ZT

exp

{

−H(X|Y )

T

}

. (5)

If the temperature parameter T decreases slowly enough during iterations, it has been proven that
simulated configurations converge to a ground state (3) of the posterior, see e.g. [16,24,25,43].

For a given problem, we have to select a model (likelihood and prior), to select an optimization
algorithm (i.e. to choose a dynamics or equivalently to choose proposition kernels in the MCMC
scheme) and to select parameters involved in the model (i.e. to define an estimation procedure).
Below there are concrete examples to illustrate these issues.

3. Stochastic annealing as a method for global optimization

The common way to simulate a Gibbs distribution as defined in equation (5) is to consider a
proper stochastic dynamics which is reversible with respect to the targeted distribution (5). For
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example, the Metropolis-Hastings (MH) or other Glauber type dynamics are appropriate candidates
for this purpose in case of discrete spin spaces.

Let us remind that the MH algorithm is associated with the following two step single spin
dynamics. If we denote by p the proposal distribution on the spin space Λ = {x1, . . . , xk} defined
by the symmetric transition matrix px,y, then one can randomly pick up a new configuration value

x̃i ∈ Λ at the site i ∈ S following p. We denote by X̃ the new configuration

X̃ = {x1, . . . , x̃i, . . . xm},

which differs from the configuration X only at one site i ∈ S. Then the new configuration X̃ is
accepted with probability

QX,X̃ = exp

{

− 1

T
[H(X̃|Y ) − H(X|Y )]+

}

,

where [u]+ = u as u > 0 and [u]+ = 0 as u < 0, and correspondingly, rejected with probability
1−QX,X̃ . Values of the new configuration X(n+1) = {Xi(n+1), i ∈ S} are chosen consequently
over all sites of the volume S.

As T → ∞, the Gibbs distribution becomes uniform over all possible realizations. In this case,
a typical realization looks random. On the other hand, as T → 0, the only probable realizations
are the ones that minimize the energy function. Consequently, when parameter T tends to zero,
the Gibbs distribution generated by (5) will be more and more concentrated in the vicinity of
the ground states Emin, i.e. configurations where H(X|Y ) reaches global minima. In the case of a
discrete single spin space Λ, the limit distribution will be the uniform distribution on Emin.

If we are inside the iterative scheme depending on parameter T , then the problem is how to
define the right decreasing speed of parameter T = T (n) during iterations in order to escape from
local minima of H(X|Y ):

lim
n→∞

P (X(n) = X| X(0) = X0) = ν(X), ∀X0 ∈ Ω, (6)

where ν(X) is a probability measure concentrated on Emin.
In [16,25], it was shown that (6) holds for the MH scheme, if

lim
n→∞

T (n) · log n > R,

where the large enough constant R depends on the energy function H(X|Y ). This controlled
decrease of parameter T is called the annealing schedule.

The idea behind the simulated annealing comes from physics, see [26]. If cooled down slowly
enough, large physical systems tend to the states of minimal energy, called ground states. These
ground states are usually highly ordered crystals. The emphasis is on “slow cooling”, and in fact,
annealing means controlled cooling. If, for example, melted silicate is cooled down too quickly one
gets the meta-stable material known as glass. Glass is a fluid, and not a ground state but one of
the states of local minima. The analogy to physics also explains why the parameter T is called
temperature. It corresponds to the factor kT with absolute temperature T and the Boltzmann
constant k.

4. Some examples of inverse problems in image processing

4.1. Image restoration

Image restoration problems were first real and important applications of the Gibbs fields ap-
proach in image analysis, see e.g. [15,16,43]. Consider that we have some data (an image) Y ,
corrupted by noise and/or a linear distortion:

Y = K(X) ⊕ η, (7)
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where η represents the noise and K is a linear operator for distortion.
The restoration problem consists in recovering X from Y . Embeding the problem into a Bayesian

framework, we maximize the following posterior:

P (X|Y ) =
P (Y |X)P (X)

P (Y )
∝ P (Y |X)P (X). (8)

Assuming, for example, that we have an additive independent Gaussian noise, in the case of image
denoising (K is the identity), we then have:

P (Y |X) = exp

{

−
∑

s∈S

(ys − xs)
2

2σ2
− log

√
2πσ2

}

, (9)

where σ2 is the noise variance.

Initial image Noisy image (σ = 20) Restored image

Noisy image (σ = 50) Restored image

Figure 1. Image denoising using a Φ-model.

The prior P (X) aims at regularizing the solution, i.e. smoothing the resulting image and is
usually modelled by a pairwise interaction Gibbs field:

P (X) =
1

Z
exp







−
∑

c=〈s,s′〉

Vc(xs, xs′)







. (10)

A Gaussian Gibbs field with Vc(xs, xs′) = (xs −xs′)2 could achieve this goal. However, a Gaussian
prior field leads to blur edges. To avoid blurring, more sophisticated priors are considered to
preserve edges [17,33], such as the Φ-model:

Vc(xs, xs′) =
−β

1 + (xs−xs′ )
2

δ2

, (11)

where β is a parameter representing the strength of the prior and δ is the minimum grey level gap
to define an edge. To summarize, the Hamiltonian to be minimized, in the case of image denoising,
is written as follows:

Hres(X|Y ) =
∑

c=〈s,s′〉

−β

1 + (xs−xs′ )
2

δ2

+
∑

s∈S

(ys − xs)
2

2σ2
, (12)

297



X.Descombes, E.Zhizhina

where c are sets of two neighboring pixels (sites). For each pixel we usually consider four or eight
closest pixels. Another classical example is image deconvolution, when the image is blurred due
to the movements of the camera or defocusing. In this case the operator K is a convolution by a
kernel K. A denoising result obtained by the Hamiltonian defined in equation (12) and using the
Langevin dynamics, see [13], is shown in figure 1 for different levels of noise.

4.2. Segmentation problem

The segmentation consists in partitioning the image in such a way that each region may repre-
sent a given object or feature of the image, see e.g. [3,9,10,29,32,41,44]. Let S ⊂ ZZ2 be the image
lattice. A partition of S is a set of regions {Ri, i ∈ Λ = {1, . . . , I}}, such that ∪i∈ΛRi = S and
Ri ∩ Rj = ∅ when i 6= j. Consider a random field Y = (ys)s∈S , where ys ∈ Λ. The likelihood term
P (Y |X) model the grey level distribution of the pixels belonging to a given class or region. For
example, we may consider that each class representing a given feature (sea, sand, crops in remote
sensing data or grey, white matter and CSF for brain images, as in the example given in figure 2)
exhibits a Gaussian distribution and is therefore characterized by its means and variance. We then
write the likelihood as follows:

P (Y |X) = exp

{

−
∑

s∈S

∑

i∈Λ

(

(ys − µi)
2

2σ2
i

− log
√

2πσ2
i

)

δ(xs = i)

}

, (13)

where δ(a) is equal to 1, a is true and 0 otherwise.

Initial image Maximum Likelihood Potts model

Figure 2. Magnetic Resonnance Image segmentation using a Potts model.

By maximizing the likelihood function, we obtain a first segmentation which is not spatially
homogeneous (see figure 2). To regularize the solution, i.e. to obtain smooth regions without holes,
we consider a Gibbs field P (X) as prior. The most widely used prior in image segmentation is the
Potts model [5,16], which is written as follows:

P (X) =
1

Z
exp







−
∑

c={s,s′}

βδ(xs 6= xs′)







, (14)

where β > 0 represents the strength of the prior. The Hamiltonian to be minimized is then written
as follows:

Hseg(X|Y ) =
∑

c={s,s′}

βδ(xs 6= xs′) +
∑

s∈S

∑

i∈Λ

(

(ys − µi)
2

2σ2
i

− log
√

2πσ2
i

)

δ(xs = i). (15)

Figure 2 shows the segmentation results with and without the Potts model. We can see that
the prior removes the local errors due to data.

Although the Potts model succeeds in regularizing the solution, it is not always adapted for
image segmentation [32]. Indeed, the obtained solution is at least an approximation of the Hamil-
tonian ground state. Therefore, in the presence of the phase transition phenomenon the smallest
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regions may disappear in the segmentation process. Indeed, it has been shown in [31] that, in case
of a non-homogeneous external field, phase transition may occur, and as a result the geometry
of objects is affected by the Potts model, and especially the elongated areas may disappear. To
overcome this problem, several models have been proposed [41,44]. The main idea of these models
is to distinguish local noise on configurations from edges and lines. To define the edges, higher
range interactions are needed. In [10], a binary model is proposed (the chien-model) taking into
account the links between neighboring cliques (supports of the potential). This model has been
generalized to the m-ary case in [9]. This model, although regularizing, preserves fine structures
and linear shapes in images. In this model, the set of cliques is composed of 3 × 3 squares. Three
parameters (n, l and e) are associated to these patterns.
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Figure 3. The different classes induced by a binary 3 × 3 model and their number of elements.
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Figure 4. Equations associated with edge constraints.

Before constructing the model, different configurations induced by a 3× 3 square are classified
using the symmetries (symmetry black-white, rotations, etc.). This classification and the number
of elements in each class are described in figure 3. A parameter C(i) is associated to each class and
it refers to the value of the potential function for the considered configuration. So, under the hy-
pothesis of isotropy of the model, which induces some symmetries, plus the black/white symmetry,
we have fifty one degrees of freedom for such a topology (cliques of 3× 3). The construction of the
model consists in imposing constraints by relations between its parameters. Two energy functions
which differ only by a constant are equivalent, so we suppose that the minimum of the energy
is equal to zero. We suppose that constant realizations are ground states for the prior model, so
we have the first equation for the parameters given by C(1) = 0. We then define the different
constraints with respect to those two constant realizations. The first class of constraints concerns
the energy of the edges which is noted e per unit of length. Due to symmetries and rotations we
just have to define three orientations of the edges corresponding to the eight ones induced by the
size of cliques. These constraints and the derived equations are represented in figure 4. Similar
constraints are considered to define the energy associated with lines.

To extend the binary chien-model in an m-ary model, we define the energy of a given config-
uration as the sum of several energies given by the binary model. Consider a configuration and a
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+= +

Figure 5. M-ary extension of the chien-model.

given label σ0. We put all pixels of the configuration that are in state σ0 to 0 and the others to
1. We then have a binary configuration. The energy of the m-ary model is the sum of the energies
obtained by all these deduced binary configurations for the m labels (see figure 5). The potential
associated with each configuration is then a linear combination of the three parameters e, l and n:

∀i = 0, . . . , 51 C(i) = ε(i)e + λ(i)l + η(i)n, (16)

and coefficients ε(i), λ(i), η(i) are defined through the relations between potentials C(i). Then the
resulting distribution is written:

Pe,l,n(X) =
1

Z(e, l, n)
exp [−eN0(X) − lN1(X) − nN2(X)] , (17)

where:

N0(X) =
∑

i=1,...,51

ε(i)#i(X), N1(X) =
∑

i=1,...,51

λ(i)#i(X), N2(X) =
∑

i=1,...,51

η(i)#i(X),

#i(X) being the number of configurations of type i in the realization X.

Initial image Noisy image

Segmentation using Ising model Segmentation using the Chien model

Figure 6. Ising model vs Chien model.

A comparison of Potts and Chien models for fine structures segmentation is shown in figure 6.
We have reversed 15% of the pixels in this binary image. The Chien model appears to be much
more adapted to image modelling than the Potts model.
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4.3. Texture modelling

Another important domain of image processing where Gibbs fields play a leading role is texture
modelling, see e.g. [6,12,20,30]. To characterize the objects or specific land cover in an image, the
pixel grey level by itself is not always relevant. As shown in figure 7, the radiometry (grey level
information) is adapted for the purpose of distinguishing the different fields. Within the urban
area, the grey levels are almost uniformly distributed. Therefore, to decide if a pixel belongs to
an urban area or not, the grey level information is not sufficient. To distinguish urban areas, we
then have to consider the local distribution of grey levels. In the Gibbs field approach, we assume
that, locally, the grey levels are distributed according to a Gibbs distribution, and we estimate the
parameters associated with this Gibbs distribution. The parameter values are used in order to make
a decision, instead of the grey level values. If the goal is to analyze texture, for example to make a
decision about urban area vs fields, then simple models leading to fast estimation techniques are
preferred. When the goal is to model the textures themselves in order to synthesize them, generic
models are addressed. In this context, the relevance of Gibbs modelling is shown in [20], where
high range pairwise interactions are considered. Herein, we only derive a very simple model, i.e. the
four connected isotropic Gaussian Markov Random Fields, to extract urban areas from satellite
images [12].

Initial image ( c© CNES/SPOTIMAGE) β map Urban area

Figure 7. Urban areas detection using a Gaussian Gibbs Field model.

Let us consider an image X = (xs), s ∈ S, where xs ∈ Λ. The grey level space (or state space)
is typically Λ = {0, 1, . . . , 255}. We assume that locally the considered image is a realization of a
Gibbs field with the following Hamiltonian:

Hθ(X) = β





∑

c={s,s′}

(xs − xs′)2 + λ
∑

s∈S

(xs − µ)2



 , (18)

where θ = (β, λ, µ) are the model parameters. Different estimator can be used to obtain the
parameter value. For instance, the Maximum Likelihood (ML) estimator is given as:

θ̂ML = arg max
θ

Pθ(X). (19)

The algorithm for the ML estimator usually requires a long computational time. Therefore, different
criteria, easier to estimate, can be used, such as Maximum of the Pseudo Likelihood (MPL):

θ̂MPL = arg max
θ

∏

s∈S

P (xs|xt, t ∈ S/{s}), (20)

where conditional probabilities in (20) are found using Hθ(X). In our example parameter β is
estimated. The higher β, the higher probability to be in an urban area. After estimating β on each
pixel by considering a local window, the β map is segmented to delineate urban areas, as shown
in figure 7, see [30].
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5. Spatial point processes for object detection problems

5.1. Marked Point Processes and Reversible Jump MCMC

In this section we discuss stochastic algorithms in the framework of the Gibbs fields approach
for feature extraction problems. These problems become critical in remote sensing with the devel-
opment of high resolution sensors for which the object geometry is well defined. In lattice based
models each pixel is considered to be a random variable. In this setting a local definition of con-
straints is more natural, and it is difficult to include strong non-local geometrical constraints into
lattice based models. In addition, the pixelwise approach seems to be non-adequate in cases of
geometrical noise arising from “trash” information on the scene such as cars or shadows. Conse-
quently, new problems required new models, and the marked point process framework is found
very proper for feature extraction problems from remotely sensed data.

The main idea behind a marked point process is to model random sets of objects within a
stochastic framework. Random sets of objects are represented in the model by marked point con-
figurations in a continuous space. The shape and the size of each object is described by a mark,
and the location of the object by a point. The probability distribution on the configuration space
is defined by a density function with respect to the Poisson measure in a finite volume (Radon
Nykodim derivative), see [40]. This density consists of several terms, and generally the posterior
distribution including a prior and a data term can be written as a Gibbs reconstruction of the
Poisson measure. Following the scheme described above for seeking global minimizers of the en-
ergy function, we consider various stochastic dynamics with a given stationary Gibbs measure, such
as spatial birth-and-death processes or Reversible Jump Markov Chain Monte Carlo (RJMCMC)
algorithms [1,2,18,19,21,22,37,38], the latter being an extension of the Metropolis-Hastings method
adapted for general state spaces. The main property of these two schemes is their ability to manage
a random number of points in the configuration.

These iterative algorithms work by choosing a new configuration according to a transition
distribution from the current one by proposing a local change. The birth and death algorithms
permit the creation of a new object or the removal of an existing object. In addition, the RJMCMC
algorithms permit other operations on objects such as splitting, merging, translations, as well as
modifications of the marks of objects using, for example, rotations or dilations. Finally, these
algorithms are embedded into a simulated annealing scheme.

Thus, the main advantages of a marked point process in image analysis consist in their geo-
metrical adaptativity and generality. Any geometrical properties can easily be introduced into the
model through the object geometry. Different types of objects (trees, roads, buildings, etc.) can be
considered within the same model but of course with appropriate interactions. Moreover, interac-
tions between the points permit to model some prior information on the object configuration, and
the data are taken into account at the object level, thus improving robustness of the algorithms.
Together with these evident positive features there is one large drawback of RJMCMC algorithms,
they converge very slowly. The slow convergence is caused by the structure of the algorithms: at
each step of the iterated scheme, only one operation with one or two objects from the current
configuration can be realized. Moreover, the rejection principle of the Metropolis scheme, although
ensuring the convergence, introduces computation without any change in the current configuration.

RJMCMC approach has been used in order to detect different features such as road network [28,
39], buildings [34] or trees [36]. We briefly present two models - for road and tree extraction - in the
framework of RJMCMC algorithms approach, and then introduce a new model for object detection
based on an approximation of a continuous time dynamics.

5.1.1. Quality Candy model: road network extraction

Road network extraction from satellite images is a challenging problem which finds numerous
applications in cartography. Different approaches have been proposed but a few provide a fully
automatic extraction, and Gibbs fields models among them, see e.g. [28,39,42]. We present one of
them, based on a marked point process modelling, referred to as the Quality Candy model. The
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considered objects are segments which are determined by a point (the position of the center) and
marks (the orientation and the length).

The prior knowledge models the high connectivity and the low curvature of a road network.
Each segment has two attractive areas surrounding the ends of the segment and a repulsive area
around the center of the segment. If a segment intersects the attractive area of another segment, we
have an attractive interaction with an increasing intensity under decreasing orientation difference
between these two segments. If a segment intersects the repulsive area of another segment, we
have a repulsive interaction with a decreasing intensity when the orientation difference between
the segments tends to π/2. In addition, there is some repulsive energy (a penalty term) associated
with the segments having one or two unconnected ends. These terms allow us to control the shape
of the network and the crossings, and the connectivity of the network. The data term contributes
to the energy through a sum of local energy functions on each segment. For a given segment,
the local energy depends on a statistical test between the pixel distribution within the segment
projection on the lattice and the pixel distribution in two masks covering the left and right sides of
this projection. The higher the contrast between the segment and the neighboring masks, the lower
the energy. The optimization is performed by an RJMCMC algorithm embedded into a simulated
annealing scheme. The RJMCMC perturbation kernel includes birth and death, translation and
rotation. A key point in increasing the convergence speed is a new kernel referred to as ”birth
and death in a neighborhood” which consists in proposing a new segment in the neighborhood of
segments from the current configuration. An example of the result is shown in figure 8. On this
aerial image, tree shadows partially eclipse the road. The prior permits the detection process to
provide a connected network by reconstructing the missing information.

Aerial image ( c©) IGN Detected network

Figure 8. Road network detection using the Quality Candy model.

5.1.2. RJMCMC for tree detection

Tree detection from aerial images provides important information for forestry management
and monitoring. Using an ellipse as object, marked point process can perform this task. In [36],

Tree plantation ( c©) IFN Detected trees

Figure 9. Tree detection using a marked point process.

the authors proposed a prior penalizing overlapping ellipses and a data term depending on the
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Bhattacharya distance between the pixel distribution inside the ellipse projection on the lattice
and the pixel distribution in a crown surrounding this ellipse. This model detects a collection of
non-overlapping or slightly overlapping ellipses that exhibit a contrast with their surrounding pixels
in the considered image. The RJMCMC kernels considered for the optimization contain birth and
death, rotation and dilation of ellipses. In case of plantations, the trees are regularly placed along
two directions. When this information is available, we also consider a birth and death kernel to
favor birth of trees according to this periodicity. The result of this approach is shown in figure 9.

5.2. A new object based algorithm

To improve the convergence properties of RJMCMC algorithms we recently proposed a new
multi-object adjusted algorithm for object detection [11], based on a spatial birth and death process,
reversible with respect to the given Gibbs distribution, see [4,27], and a discrete time approximation
of this process. The reversibility is provided by the so-called detailed balance conditions on birth
and death rates. In our scheme, the birth intensity is constant, whereas death intensities depend on
the energy function and the current configuration. This choice of rates has been made to optimize
the convergence speed. Indeed, the volume of the space for birth is much bigger than the number
of discs in the configuration. It is therefore faster to update the death map than the birth map.

Then we embed the defined stationary dynamics into a simulated annealing procedure when
the temperature of the system tends to zero in time. Thus we obtain a non-stationary stochastic
process, such that all weak limit measures have a support on configurations giving the global
minimum of the energy function under a minimal number of discs in the configuration. The final
step is discretization of this non-stationary dynamics. This last step leads to a non-homogeneous,
in time and in space, Markov chain with transition probabilities depending on temperature, energy
function and discretization step. We prove that:

1) discretization process converges to the continuous time process under fixed temperature as
the step of discretization tends to zero;

2) if we apply the discretization process to any initial measure with a continuous density w.r.t.
the Lebesgue-Poisson measure, then, in the limit, when the discretization step tends to 0,
time tends to infinity and the temperature tends to 0, we get a measure concentrated on the
global minima of the energy function with a minimal number of discs.

These results confirm that the proposed algorithm based on the discretization scheme together
with the cooling procedure solves the problem of searching configurations giving the global minima
of the energy function.

We applied this framework to object detection from images. The crucial advantage of our
approach is that each step concerns the whole configuration and there is no rejection. Thus we
obtained better performances in terms of computational time, which permit to address real images
containing several million of pixels. We take an energy function involving prior knowledge on
the object configuration such as partial non overlapping between objects and a data term which
permits the objects to fit the image under study. Further in this section we briefly present the main
constructions and theorems on convergence of the invented algorithm following [11].

5.2.1. The model

We consider finite systems of partially overlapping discs {dx1
, . . . , dxk

} of the same radius r
with a hard core distance ε < r between any two elements, lying in a bounded domain V ⊂ R2.
Let

γ = {xi} ∈ Γd(V ), xi ∈ V ⊂ R2,

be a configuration of the centers of discs and Γd(V ) denotes the configuration space of the discs
centers in V . Notice, the set Γd(V ) can be decomposed into strata:

Γd(V ) =

N
⋃

n=0

Γd(V, n),
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where each stratum Γd(V, n) is the set of configurations containing n discs, Γd(V, 0) = {∅}, and
N is the maximal number of discs in V . As a reference measure in the space Γd(V ) we take the
Lebesgue-Poisson measure λ.

On the space Γd(V ) we define a real-valued smooth function H(γ) bounded from below which
is called the energy function. It can be written as a vector function

H = (0, H1(x1), H2(x1, x2), . . . ,HN (x1, . . . , xN )) (21)

with H(∅) = 0. In practice, this energy is a sum of two terms. The first one represents prior
knowledge on the discs configuration and is defined by interactions between neighboring discs; the
second term is defined by the data for each object, and it can be negative.

The Gibbs distribution µβ on the space Γd(V ) generated by the energy H(γ) is defined by the

density pV (γ) =
dµβ

dλ
(γ) with respect to the Lebesgue-Poisson measure λ:

pV (γ) =
z|γ|

Zβ,V

exp{−βH(γ)}, (22)

with positive parameters β > 0, z > 0 and a normalizing factor Zβ,V :

Zβ,V =

∫

Γd(V )

z|γ| exp{−βH(γ)}dλ(γ) = 1 +
N

∑

n=1

zn

n!

∫

V n
d

e−βHn(x1,...,xn)dx1 . . . dxn.

Now we formulate some assumptions on the energy function HV (γ). Denote by

H̄ = min
γ∈Γd(V )

H(γ),

where Γd(V ) is the closure of Γd(V ), and let

TV = {γ̄ ∈ Γd(V ) : H(γ̄) = H̄}

be a set of all global minimizers of the function H(γ). The set TV can be written as

TV =
N
⋃

n=0

TV,n,

where TV,n is a set of configurations from TV which are also configurations from Γd(V, n), i.e.
contain exactly n discs.

We assume that
1) the set TV is finite and situated in Γd(V ),
2) for any configuration γ̄ ∈ TV,n

∂Hn

∂ym
i

(x̄1, . . . , x̄n) = 0,

for any i = 1, . . . , n, x̄i = (y1
i , y2

i ) ∈ V, m = 1, 2, and the matrix

A (γ̄) =

{

∂2Hn

∂ym1

i ∂ym2

j

(x̄1, . . . , x̄n)

}

at point γ̄ = (x̄1, . . . , x̄n) is strictly positively defined. Under the above assumptions the following
theorem holds.
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Theorem 1. [11] Let n0 ∈ [0, . . . , N ] be the minimal number for which the set TV,n is not

empty. Then the Gibbs distributions µβ weakly converge as β → ∞ to a distribution µ∞ on Γd(V )
of the form

µ∞ =
∑

γ̄∈TV,n0

Cγ̄δγ̄ if n0 > 0, and µ∞ = δ{∅} if n0 = 0. (23)

Here δγ̄ is the unit measure concentrated on the configuration γ̄, and the coefficients Cγ̄ hold the

equality
∑

γ̄∈TV,n0

Cγ̄ = 1.

5.2.2. A continuous-time equilibrium dynamics

Now we define a continuous time birth and death process via its generator as follows:

(Lβ f)(γ) =
∑

x∈γ

eβE(x,γ\x)(f(γ\x) − f(γ)) + z

∫

V (γ)

(f(γ ∪ y) − f(γ))dy, (24)

where
V (γ) = V \D(γ), D(γ) = (∪x∈γBx(ε)) ∩ V,

Bx(ε) is a disk with a center at point x ∈ V and radius ε, and

E(x, γ\x) = H(γ) − H(γ\x).

In this context, the birth intensity b(γ, x) in the unordered configuration γ at x and the death
intensity d(γ\x, x) from the configuration γ at position x are respectively given by:

b(γ, x)dx = z dx, d(γ\x, x) = eβE(x,γ\x).

Under this choice of the birth and death intensities, the detailed balance condition holds:

b(γ, x)

d(γ\x, x)
=

pV (γ)

pV (γ\x)
= ze−βE(x,γ\x),

and consequently, see for example [38], the corresponding birth-and-death process associated with
the stochastic semigroup Tβ(t) = etLβ is time reversible, and its equilibrium distribution is the
Gibbs stationary measure µβ with density (22).

The convergence to the stationary measure µβ is guaranteed by the general result by C. Preston,
see [37]. We consider a family B(λ) of measures ν on the space Γd(V ) with a bounded density p̃ν(γ)
with respect to Lebesgue-Poisson measure λ. This, in particular, implies that any density pν(γ) of
the measure ν ∈ B(λ) w.r.t. a Gibbs measure µβ (for any β):

pν(γ) =
dν

dµβ

(γ)

is also bounded, and consequently, pν(γ) ∈ L2(Γd(V ), µβ). Then we can define the evolution
νt ≡ T (t)ν of the measure ν ∈ B(λ) as follows:

〈νt, F 〉 = (Tβ(t)pν , F )µβ
, ∀F ∈ L2(Γd(V ), µβ).

Theorem 2. Let ν ∈ B(λ). Then for any F ∈ L2(Γd(V ), µβ) we get

〈Tβ(t)ν, F 〉 ≡ 〈νt, F 〉 = (Tβ(t)pν , F )µβ
→ 〈F 〉µβ

. (25)

The proof of theorem 2 follows from the general theorems, see e.g. [37].
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5.2.3. Approximation process

Here we define a discrete time approximation of the proposed continuous birth and death
process generated by (24).

We consider Markov chains Tβ,δ(n), n = 0, 1, 2, . . . on the same space Γd(V ). The process Tβ,δ(n)
can be described as follows: a configuration γ is transformed to a configuration γ′ = γ1 ∪ γ2,
where γ1 ⊆ γ, and γ2 is a configuration of centers of discs such that γ ∩ γ2 = ∅ and is distributed
w.r.t. the Poisson law with intensity z.

This transformation embeds a birth part given by γ2 and a death part given by γ\γ1.
The transition probability for the death of a particle at x (i.e. a disc with the center at x) from

the configuration γ is given by:

px,δ =



















eβE(x,γ\x) δ

1 + eβE(x,γ\x) δ
=

axδ

1 + axδ
, if γ → γ\x,

1

1 + axδ
, if γ → γ (x survives).

(26)

with ax = ax(γ) = eβE(x,γ\x). Moreover, all the particles are killed independently, and both
configurations γ1 and γ2 are independent.

The transitions associated with the birth of a new particle in a small domain ∆y ⊂ V (γ) have
the following probability distribution:

qy,δ =







z∆yδ, if γ → γ ∪ y,

1 − z∆yδ, if γ → γ ( no birth in ∆y).
(27)

Finally, the transition operator Pβ,δ for the process

Tβ,δ(n) = Pn
β,δ

has the following form:

(Pβ,δf) (γ) =
∑

γ1⊆γ

∏

x∈γ1

1

1 + axδ

∏

x∈γ\γ1

axδ

1 + axδ
=

Ξ−1
δ (γ1)

N−|γ1|
∑

k=0

∫

Vk(γ1)

(zδ)k

k!
f(γ1 ∪ y1 ∪ . . . ∪ yk)dy1 . . . dyk , (28)

where Ξδ(γ) = Ξδ(V (γ), z, δ) is the normalizing factor for the conditional Lebesgue-Poisson
measure under given configuration of discs γ.

Using approximation technique, see [14], we proved that the approximation process Tβ,δ(t) ≡
Tβ,δ

([

t
δ

])

converges to the continuous time process Tβ(t) uniformly on bounded intervals [0, t] as
the discretization step δ tends to 0. Let us denote L = B(Γd(V )) a Banach space of bounded
functions on ΓV with a norm

‖F‖ = sup
γ∈Γd(V )

|F (γ)|.

Theorem 3 [11]. For each F ∈ L

‖Tβ,δ(t)F − Tβ(t)F‖L = sup
γ

|(Tβ,δ(t)F )(γ) − (Tβ(t)F )(γ)| → 0, (29)

as δ → 0 for all t > 0 uniformly on bounded intervals of time.

We denote by Sβ,δ(n) an adjoint to Tβ,δ(n) semigroup acting on measures, such that for any
ν ∈ B(λ):

〈Sβ,δ(n)ν, F 〉 = (pν , Tβ,δ(n)F )µβ
.
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We now formulate the main result about convergence under a cooling procedure.
Theorem 4 [11]. Let F ∈ B(Γd(V )) and an initial measure ν ∈ B(λ). Then under relation

δ eβb < const (30)

with b = supγ∈Γd(V ) supx∈γ E(x, γ\x) we have

lim
β→∞, t→∞, δ→0

〈F 〉Sβ,δ([ t
δ
])ν = 〈F 〉µ∞

, (31)

where measure µ∞ is defined in Theorem 1, and 〈F 〉Sβ,δ([ t
δ
])ν = 〈Sβ,δ([

t
δ
])ν, F 〉.

5.3. Application to object detection from numerical images

5.3.1. Model

Let us consider a digital image Y = (ys)s∈S on a finite subset of the lattice S ⊂ ZZ2. We
consider configurations of center of discs γ = {xi} ∈ Γd(V ). A hard core distance ε, which avoids
two disks to be centered in the same pixel, is taken to be equal to the data resolution: ε = 1 pixel.
To define the energy H, we first consider some prior knowledge. We want to minimize the overlap
between the objects. However, to obtain a more flexible model w.r.t. data and the object shape,
we do not forbid but only penalize the overlapping objects. We define a pairwise interaction as
follows:

H2(xi, xj) = max

(

0, 1 − ||xj − xi||
2r

)

∀{xi, xj} ∈ γ2 : ||xj − xi|| > 1, (32)

where ||.|| is the Euclidean norm and r is the radius of the underlying disc.
A data term is then added for each object to fit the disc configuration onto data. We consider

that there is an object, modelled by a disc centered in pixel s, in the image, if the grey level values
of the pixels inside the projection of the disc onto the lattice are statistically different from those of
the pixels in the neighborhood of the disc. To quantify this difference we compute the Bhattacharya
distance between the associated distributions. Denote D1(s) the projection of the disc with radius
r centered in s onto the lattice S, and D2(s) the surrounding crown:

D1(s) = {t ∈ S : ||t − s|| 6 r} and D2(s) = {t ∈ S : r < ||t − s|| 6 r + 1}. (33)

We consider the mean and the variance of the data of these two subsets:

µ1(s) =

∑

t∈D1(s)
yt

∑

t∈D1(s)
1

and µ2(s) =

∑

t∈D2(s)
yt

∑

t∈D2(s)
1

,

σ2
1(s) =

∑

t∈D1(s)
y2

t
∑

t∈D1(s)
1

− µ1(s)
2 and σ2

2(s) =

∑

t∈D2(s)
y2

t
∑

t∈D2(s)
1

− µ2(s)
2. (34)

Assuming Gaussian distributions, the Bhattacharya distance between the distributions in D1(s)
and in D2(s) is then given by:

B(s) =
1

4
(µ1(s) − µ2(s))

2
√

σ2
1(s) + σ2

2(s) − 1

2
log

2σ1(s)σ2(s)

σ2
1(s) + σ2

2(s)
. (35)

From this distance between the two distributions, a first order energy term is built:

∀xi ∈ γ, H1(xi) =







(

1 − B(i)
T

)

if B(i) < T,
(

exp
{

−B(i)−T

3B(i)

}

− 1
)

if B(i) > T,
(36)

where i is the closest point to xi on the lattice, and T is a threshold parameter. Finally, under the
hard core constraint, the global energy is written as follows:

H(γ) = α
∑

xi∈γ

H1(xi) +
∑

{xi,xj}∈γ2, xi 6=xj

H2(xi, xj), (37)

where α is a weighting parameter between the data term and the prior knowledge.
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5.3.2. Algorithm

The algorithm simulating the process is defined as follows:

• Computation of the data term: For each site s ∈ S compute H1(s) from the data

• Computation of the birth map: To speed up the process, we consider a non-homogeneous
birth rate to favor birth where the data term is low (where the data tends to define an object):

∀s ∈ S, b(s) = 1 + 9
maxt∈S H1(t) − H1(s)

maxt∈S H1(t) − mint∈S H1(t)
. (38)

The normalized birth rate is then given by:

∀s ∈ S, B(s) =
zb(s)

∑

t∈S b(s)
. (39)

This non-homogeneous birth rate refers to a non-homogeneous reference Poisson measure. It
has no impact on the convergence to the global minima of the energy function but does have
an impact on the speed of convergence in practice by favoring birth in relevant locations.

• Main program: initialize the inverse temperature parameter β = β0 and the discretization
step δ = δ0, alternate birth and death steps

– Birth step: for each s ∈ S, if xs = 0 (no point in s) add a point in s (xs = 1) with
probability δB(s) (note that the hard core constraint with ε = 1 pixel is satisfied).

– Death step: consider the configuration of points x = {s ∈ S : xs = 1} and sort it from
the highest to the lowest value of H1(s). For each point taken in this order, compute
the death rate as follows:

dx(s) =
δax(s)

1 + δax(s)
, (40)

where:

ax(s) = exp {−β (H(x/{xs}) − H(x))} (41)

and kill s (xs = 0) with probability d(s).

– Convergence test: if the process has not converged, decrease the temperature and the
discretization step by a given factor and go back to the birth step. The convergence
criterion is usually given in practice by a fixed number of iterations.

5.3.3. Results

The first application concerns tree crown extraction from aerial images. We consider 50cm
resolution images of poplars. An example of the obtained results is given in figure 10. The results
are satisfactory. One can remark a few false alarms on the border of the plantation, due to shadows.

The second application concerns the problem of flamingo population counting. A generalization
of this work to ellipses was done to better fit the flamingo shape [8]. The obtained result is given in
figure 11 for the initial image of the flamingo colony, and in figure 12 for a fragment of the whole
image of the detected birds. The birds were correctly detected. This colony was automatically
counted in about 20 minutes, and we got 3682 detected flamingos while the expert manually counted
3684 individuals. This represents the main advantage with respect to more standard optimization
techniques based on a RJMCMC sampler. Indeed, the speed of convergence and the computational
efficiency of the proposed algorithm allows us to deal with huge datasets in a reasonable delay.
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Figure 10. The result on a poplar plantation (left: initial image c© IFN; right: detected trees).

Figure 11. Bird population c© Station Bi-
ologique Tour du Valat.

Figure 12. Extract of the detected birds from
the image shown in figure 11.

6. Conclusions

In this paper, we have given a brief overview of Gibbs field approaches in image processing. This
survey is far from being complete. Indeed, numerous different topics, such as movement detection,
stereo-matching, texture synthesis or shape from shading, can be addressed within this framework.
We have divided the models in two classes. The first class represents a discrete modelling of the
solution, i.e. when we are searching for a numerical image obtained from the data by a restoration
or a segmentation process. We have shown that Gibbs fields represent an elegant way to introduce
prior information on the solution, such as regularity and smoothing constraints. In the recent
years, new models have been proposed to overcome the posterior modelling, consisting in defining
independently a prior and a likelihood, by using for example the Conditional Random Fields or the
Couple Fields approaches [3,29]. One can directly model the joint distribution as a Gibbs field. In
this case local interactions can depend on data, for example, smoothing constraint can depend on
the data gradient. The second class contains the models defined in a continuous plane. The main
characteristic of these models is that they manipulate objects instead of pixels. Therefore, they
make it possible to take into account the geometrical information in the data and in the expected
results. These models are more recent. We have described some recent developments regarding the
dynamics associated with the optimization problem in order to speed up the convergence. In this
paper, we have not addressed the parameter estimation problem. In case of lattice based models,
different efficient approaches have been proposed. This point is still an open issue for marked point
processes. Recent developments of high resolution sensors generate a new class of image analysis
problems focusing on automatic data flow handling. And, this new context, Gibbs fields approach
appears to be just as promising and useful, as it used to be 30 years ago.
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Пiдхiд до перетворення образiв з використанням

гiббсiвських полiв i пов’язаної з ними динамiки

К.Декомб1, О.Жижина 2

1 Арiана, Об’єднана група CNRS/INRIA/UNSA, Францiя
2 Iнститут проблем перетворення iнформацiї, Москва, Росiя

Отримано 31 сiчня 2008 р.

Стаття мiстить стислий огляд застосувань полiв Гiббса i вiдповiдних динамiк в теорiї розпiзнаван-
ня образiв. Обговорюється як класична пiксельна модель так i новiтнi просторовi точковi моделi в

термiнах теорiї полiв Гiббса.

Запропоновано новий мультиоб’єктний адаптивний алгоритм для визначення об’єктiв, що базується

на процесi народження i знищення та його апроксимацiї.

Ключовi слова: гiббсiвськi поля, зворотнi задачi в перетвореннi образiв, стохастична динамiка,
виявлення об’єктiв, маркованi точковi процеси
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