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We will show an invariance principle for the diffusive motion of a particle interacting with a random frozen
configuration of infinitely many other particles in R

d. The interaction is described by a symmetric, translation
invariant pair potential with repulsion at zero distance and proper decay at infinity.
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1. Introduction

In this article we are going to show an invariance principle, i.e. convergence of a process to
Brownian motion under a space-time scaling, for the diffusive motion of a particle interacting with
infinitely many other particles in R

d, d > 2. To this end we will use a general approach developed
by A. De Masi, P.A. Ferrari, S. Goldstein, and W.D. Wick [3] and C. Kipnis and S.R.S. Varadhan
[5].

The random environment we consider is a random configuration γ, i.e. a locally finite subset
of R

d, chosen with respect to a grand canonical Gibbs measure µE with respect to a potential VE.
A particle x performs a diffusive motion (Xt)t>0 in R

d \ γ and interacts with the (frozen) points
in γ via a symmetric, translation invariant pair potential VI. De Masi et al. also discussed this
situation in the case of a positive, compactly-supported C∞ interaction potential. Furthermore,
they assumed VI = VE. We will assume that VI has a singularity at the origin, that is repulsion of
particles at distance zero, and a proper decay at infinity. But it has to be neither positive nor of
finite range. The case that VI is the Lennard-Jones potential is included. Furthermore, it does not
have to be the same potential VE to which the Gibbs measure corresponds. By using newer results
(cf. [7,10]) on diffusions in random environment we can construct the corresponding stochastic
process in this setting, which describes the motion of the particle in the random environment, and
then apply the technique by De Masi et al. to obtain an invariance principle. The main idea of this
approach is to write (Xt)t>0 as a functional of its environment process (ξt)t>0, i.e. the motion of
the environment as seen from the particle. (ξt)t>0 is a process on the configuration space Γ. De
Masi et al. formulated conditions on this environment process which imply an invariance principle
for the original process (Xt)t>0.

2. Configuration spaces

Here we will briefly recall the framework of configuration space analysis. For a general overview
we refer to e.g. [1,2].

The configuration space Γ := Γ(Rd) is defined as the set of all locally finite subsets of R
d, i.e.

Γ := {γ ⊂ R
d : |γ ∩ K| < ∞ for any K ⊂ R

d compact}.
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Here |γ ∩ K| denotes the cardinality of the set γ ∩ K. The sets γ ∈ Γ are called configurations.
We will think of a configuration γ as a set of indistinguishable particles in R

d. Every γ ∈ Γ can be
identified with a positive Radon measure on R

d via

γ ≡
∑

y∈γ

δy ,

where δy denotes the Dirac measure with mass in y ∈ R
d, and the empty configuration is identified

with the zero measure. Then, as a subset of the set of all positive Radon measures, Γ is naturally
topologized by the (subspace topology induced by the) vague topology, i.e., the weakest topology
on Γ such that all maps

Γ 3 γ 7→ 〈f, γ〉 :=

∫

Rd

f(x)dγ(x) =
∑

y∈γ

f(y)

are continuous, where f ∈ C0(R
d), i.e., f is a continuous function on R

d with compact support.
Let B(Γ) denote the Borel σ-algebra on Γ corresponding to this topology. In particular, γ 7→ 〈f, γ〉
is B(Γ)-measurable for all f ∈ C0(R

d). For B ∈ B(Rd) we define NB : Γ → N0 ∪ {+∞} by
NB(γ) := γ(B) = |γ ∩ B|. Then

B(Γ) = σ
(

{NΛ : Λ ⊂ R
d open, pre-compact}

)

.

Consider a pair potential V , i.e., a Lebesgue-measurable function V : R
d → R ∪ {+∞}, such

that V (−x) = V (x) for any x ∈ R. The relative energy of interaction between a particle at point
x ∈ R

d and a configuration γ ∈ Γ via the potential V is defined as

EV (x, γ) :=

{

∑

y∈γ V (x − y), if
∑

y∈γ |V (x − y)| < +∞,

+∞, otherwise.

A probability measure µ on (Γ,B(Γ)) is called a (grand canonical) Gibbs measure with respect to
activity parameter z > 0 and potential V if it satisfies the Georgii-Nguyen-Zessin identity (GNZ):
for any positive B(Rd) × B(Γ)-measurable function H it holds that

∫

Γ

∑

x∈γ

H(x, γ)dµ(γ) =

∫

Γ

∫

Rd

H(x, γ ∪ x)e−EV (x,γ)zdxdµ(γ). (1)

There exist equivalent definitions of Gibbs measures, e.g. via Dobrushin-Lanford-Ruelle approach.
To this end, cf., e.g., [8].

A system of non-negative measurable symmetric functions k
(n)
µ on (Rd)n is called the system

of correlation functions of µ if for any non-negative measurable symmetric function f (n) on (Rd)n

we have that
∫

Γ

∑

{x1,...,xn}⊂γ

f (n)(x1, . . . , xn)dµ(γ)

=
1

n!

∫

(Rd)n

f (n)(x1, . . . , xn)k(n)
µ (x1, . . . , xn)dx1 · · · dxn. (2)

A constant ξ > 0 is called Ruelle bound if it satisfies

k(n)
µ 6 ξn, n ∈ N. (3)

It is well-known that tempered Gibbs measures corresponding to superstable, lower regular, inte-
grable (in the sense of (10)) pair potentials have correlation functions with Ruelle bound, cf. [11].
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3. Construction of the process

We want to describe the diffusive motion of a particle x ∈ R \ γ, where γ ∈ Γ is a configuration
randomly chosen with respect to some Gibbs measure. From now on assume that d > 2, then R

d\γ
is connected for any γ.

Consider a symmetric, translation invariant pair potential V , i.e., V (x − y) = Ṽ (|x − y|),
x, y ∈ R

d, for some proper function Ṽ : (0,+∞) → R. We assume repulsion at zero distance and
decay of the potential at infinity, i.e.,

lim
|x|→0

V (x) = +∞ and lim
|x|→+∞

V (x) = 0. (4)

Assume that the relative energy EV (x, γ) is finite for every x ∈ R
d \ γ. (This holds under the

assumptions of Theorem 1 and Theorem 2 below.) Let

ργ(x) := e−EV (x,γ),

then

βγ(x) :=
∇ργ(x)

ργ(x)
= −

∑

y∈γ

∇V (x − y),

the logarithmic derivative of ργ , is well-defined Lebesgue-a.e. The motion of the particle in R
d \ γ

should be described by the following stochastic differential equation (SDE):
{

dXt = βγ(Xt)dt + dWt,

X0 = x0 (∈ R
d \ γ).

(5)

Here Wt is a standard Brownian motion on R
d.

Define the set

Γad := {γ ∈ Γ : ∀r > 0∃c = c(γ, r) with |γ ∩ B(x, r)| 6 c · log(2 + |x|)∀x ∈ R
d} (6)

of admissible configurations. Here B(x, r) denotes the ball with center x and radius r. For many
classes of probability measures ν on Γ we have ν(Γad) = 1, in particular for Ruelle measures
corresponding to superstable pair potentials, cf. [6,9].

The following result is due to N.V. Krylov and M. Röckner [10].

Theorem 1. Assume that the potential V satisfies (4) and the following assumptions:

(i) V ∈ C1(Rd \ {0});

(ii) there exist constants c > 0, α > d/2, ε ∈ [1, 2) such that

|V (x)| + |∇V (x)| 6 c(1 + |x|2)−α for |x| > 1; (7)

∆V (x) 6 c
(

eε(V (x)+U(x)) − 1
)

for |x| > 0 (8)

in the sense of distributions on R
d \ {0}, where U(x) := c(1 + |x|2)−α.

Let γ ∈ Γad. Then (5) has a unique strong solution defined for all times if x0 ∈ R
d \ γ.

Yu.G. Kondratiev, A.Yu. Konstantinov and M. Röckner [7] have discussed earlier the slightly
different stochastic differential equation

{

dXt = βγ(Xt)dt +
√

2dWt,

X0 = x0 (∈ R
d \ γ),

(9)

with positive definite diffusion operator (H,C∞
0 (Rd)),

Hu = −∆u − 〈β,∇u〉,

on L2(Rd, ργdx). They proved the following result:
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Theorem 2. Assume that V satisfies the following conditions:

(i) V ∈ C2(Rd \ {0}), and V > −a for some a > 0;

(ii) exp(− 1
2V ) ∈ W 2,2

loc (Rd,dx); ∇V ∈ L4
loc(R

d, exp(−V )dx);

(iii) there exist constants c, k0 > 0 and α > d such that

|V (x)| + |∇V (x)| + |∆V (x)| 6 c(1 + |x|)−α for |x| > k0.

Let γ ∈ Γad. Then (H,C∞
0 (Rd)) is both L1- and L2-unique, i.e., its closure in L1(Rd, ργdx),

L2(Rd, ργdx) generates a C0-semigroup on L1(Rd, ργdx), L2(Rd, ργdx), resp.

Furthermore, they constructed a weak solution for (9) under the conditions of Theorem 2.

Lemma 3. Assume that V satisfies the conditions from Theorem 2. Then ∇V ∈ L1(Rd, exp(−V )dx).
Furthermore, V satisfies the integrability condition

∫

Rd

∣

∣

∣
e−pV (x) − 1

∣

∣

∣
dx < ∞. (10)

for every (inverse temperature) p > 1.

Proof. We have that
∫

B(0,k0)c

|∇V (x)| exp(−V (x))dx 6

∫

B(0,k0)c

c(1 + |x|)−α exp(c(1 + |k0|)−α)dx < ∞.

With condition (ii) from Theorem 2 this implies the first assertion.
For the second part let p > 1. Of course,

∫

B(0,k0)

∣

∣

∣
e−pV (x) − 1

∣

∣

∣
dx < ∞.

Outside B(0, k0) we have
∫

B(0,k0)c∩{V 60}

∣

∣

∣
e−pV (x) − 1

∣

∣

∣
dx =

∫

B(0,k0)c∩{V 60}

(

ep|V (x)| − 1
)

dx

6

∫

B(0,k0)c∩{V 60}

(

epc(1+|x|)−α − 1
)

dx < ∞,

∫

B(0,k0)c∩{V >0}

∣

∣

∣
e−pV (x) − 1

∣

∣

∣
dx =

∫

B(0,k0)c∩{V >0}

(

1 − e−pV (x))dx

6

∫

B(0,k0)c∩{V >0}

(

1 − e−pc(1−|x|)−α

)dx < ∞.

Hence, the assertion follows.

Assume that V satisfies the conditions from Theorem 2. Then the operator H is L2-unique
or, equivalently, essentially self-adjoint (cf., e.g., [4, Corollary 1.2]). Hence, the corresponding pre-
Dirichlet form

E(f, g) =

∫

Rd

〈∇f,∇g〉ργdx, f, g ∈ C∞
0 (Rd), (11)

on L2(Rd, ργdx) has a unique Dirichlet extension (E ,D(E)). Since we assume that the dimension
d > 2, we have that

{x ∈ R
d : ρ(x) > 0} = R

d \ γ

is connected. Therefore, we can apply [4, Theorem 3.7 (i)] plus a localization argument to obtain
the ergodicity of the corresponding semigroup.
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4. Environment process and invariance principle

For x0 ∈ R
d define the space shift by x0 on Γ via

Θx0
γ := γ + x0 := {y + x0 : y ∈ γ}, γ ∈ Γ.

Then, for a process Xt ∈ R
d \ γ, t > 0, the corresponding environment process is defined as

ξγ
t := Θ−Xt

γ, t > 0. (12)

ξγ is a process on Γ starting in γ − X0.
Let VE (E stands for environment) be a symmetric, translation invariant potential on R

d, and
let µE be an extremal grand canonical Gibbs measure on (Γ,B(Γ)) with respect to VE and activity
parameter z > 0, which is invariant and ergodic with respect to space shifts Θx0

. We assume,

that µE has correlation functions k
(n)
µE

with Ruelle bound ξ > 0. Furthermore, let VI satisfy the
assumptions of Theorem 1 and Theorem 2.

The space shift Θx0
acts on the relative energy via

Θx0
EI(x, γ) := EI(x, γ + x0) =

∑

y∈γ

VI(x − (y + x0)) = EI(x − x0, γ). (13)

Lemma 4. Let p > 1. Then e−EI(x0,·) ∈ Lp(Γ, µE) for every x0 ∈ R
d. Moreover,

sup
x0∈Rd

‖e−EI(x0,·)‖Lp(Γ,µE) < ∞.

Proof. For x0 ∈ R
d define θ := θx0

: R
d → R, θx0

(x) :=
∣

∣1 − e−pVI(x−x0)
∣

∣ > 0. Because of
the integrability condition (10) for any inverse temperature, in particular for p, we have that
θx0

∈ L1(Rd, dx). For any γ ∈ Γ it holds that

∏

y∈γ

(1 + θ(y)) = 1 +

|γ|
∑

n=1

∑

{y1,...,yn}⊂γ

θ(y1) · · · θ(yn). (14)

Since f (n)(x1, . . . , xn) := θ(x1) · · · θ(xn), x1, . . . , xn ∈ R
d, n ∈ N, is a non-negative symmetric

function on (Rd)n for any n, we have that

∫

Γ

∑

{x1,...,xn}⊂γ

f (n)(x1, . . . , xn)dµE(γ) =
1

n!

∫

(Rd)n

f (n)(x1, . . . , xn)k(n)
µE

(x1, . . . , xn)dx1 · · · dxn,

(15)

n ∈ N. From the Ruelle bound it follows
∫

Γ

∣

∣

∣
e−EI(x0,γ)

∣

∣

∣

p

dµE(γ) =

∫

Γ

e−p
�

y∈γ VI(x0−y)dµE(γ) =

∫

Γ

∏

y∈γ

(

1 + (e−pVI(x0−y) − 1)
)

dµE(γ)

6

∫

Γ

∏

y∈γ

(

1 + θ(y)
)

dµE(γ)
(14)
= 1 +

∫

Γ

|γ|
∑

n=1

∑

{y1,...,yn}⊂γ

θ(y1) · · · θ(yn)dµE(γ)

(15)

6 1 +
∞
∑

n=1

1

n!

∫

(Rd)n

θ(x1) · · · θ(xn)k(n)
µE

(x1, . . . , xn)dx1 · · · dxn

(3)

6

∞
∑

n=0

1

n!
ξn‖θ‖n

L1 = eξ‖θ‖
L1 < ∞.

This proves the first part of the assertion.
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However, the term C := eξ‖θx0
‖

L1 in the last equation is independent of x0, since, by translation
invariance of the Lebesgue measure, ‖θx0

‖L1 = ‖θ0‖L1 for all x0. Thus,

sup
x0∈Rd

∫

Γ

∣

∣

∣
e−EI(x0,γ)

∣

∣

∣

p

dµE(γ) 6 C < ∞.

Define

dµ∗(γ) :=
1

Z
e−EI(0,γ)dµE(γ), (16)

where

Z :=

∫

Γ

e−EI(0,γ)dµE(γ) < ∞

by Lemma 4. Since
µE({e−EI(0,·) = 0}) = µE({γ : 0 ∈ γ}) = 0

we obtain that µE and µ∗ are equivalent measures, i.e., they have the same nullsets.
For µE-a.e. γ we have that 0 /∈ γ and that γ ∈ Γad. Hence, there exists (Xγ

t )t>0, the corre-
sponding solution of (5) with V = VI and x0 = 0, i.e.,

{

dXγ
t = βγ(Xγ

t )dt + dWt,

Xγ
0 = 0,

(17)

with
βγ = −

∑

y∈γ

∇VI(x − y).

Let (ξγ
t )t>0 denote the corresponding environment process with start in γ.

Similarly to [3, p. 846] one can prove the following lemma:

Lemma 5. (ξt)t>0 is reversible and ergodic with respect to µ∗.

Lemma 6. Let
Φ(γ) := ∇xEI(0, γ) =

∑

y∈γ

∇VI(y) = −βγ(0). (18)

Then Φ ∈ L1(Γ, µ∗).

Proof. Using the Georgii-Ngyuen-Zessin identity (1) we obtain that

∫

Γ

|Φ(γ)| dµ∗(γ) 6

∫

Γ

∑

y∈γ

|∇VI(y)| 1

Z
e−EI(0,γ)dµE(γ)

=

∫

Γ

∫

Rd

|∇VI(y)| 1

Z
e−EI(0,γ∪y)e−EE(y,γ)zdydµE(γ)

=
z

Z

∫

Rd

|∇VI(y)| eVI(y)

∫

Γ

e−EI(0,γ)e−EE(y,γ)dµE(γ)dy.

It follows from Lemma 4 and the Cauchy-Schwarz inequality that
∫

Γ

e−EI(0,γ)e−EE(y,γ)dµE(γ) < C, x ∈ R
d,

for some constant C < ∞ independent of x. Hence, we obtain from the first part of Lemma 3 that
∫

Γ

|Φ(γ)| dµ∗(γ) 6
zC

Z

∫

Rd

|∇VI(y)| eVI(y)dy < ∞.
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Rewrite (Xt)t>0 in terms of the environment process:

Xt = −
∫

0

Φ(ξs)ds + Wt. (19)

Then, we can apply [3, Theorem 2.5] to obtain

Theorem 7. For ε → 0,
Xε

t := εXε−2t

converges (in the sense of finite-dimensional distributions) in µE-measure to a Brownian motion
on R

d.
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Принцип iнварiантностi для дифузiй у випадковому

середовищi

С.Штрукмайер

Факультет математики, Унiверситет Бiлефельда, Нiмеччина

Отримано 31 сiчня 2008 р.

Ми показуємо принцип iнварiантностi для дифузiйного руху частинки, що взаємодiє з випадковою

нерухомою конфiгурацiєю нескiнченною кiлькiстю iнших частинок у IRd. Взаємодiя описується си-
метричним, трансляцiйно iнварiантним парним потенцiалом з вiдштовхуванням на нульовiй вiдстанi
i характерним спаданням на безмежностi.

Ключовi слова: принцип iнварiантностi, випадкове середовище, конфiгурацiйний простiр, дифузiя
iз сингулярною взаємодiєю
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