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Harmonic analysis on configuration spaces is used in order to extend explicit expressions for the images
of creation, annihilation, and second quantization operators in L2-spaces with respect to Poisson point pro-
cesses to a set of functions larger than the space obtained by directly using chaos expansion. This permits,
in particular, to derive an explicit expression for the generator of the second quantization of a sub-Markovian
contraction semigroup on a set of functions which forms a core of the generator.
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1. Introduction

This work is based on the previous papers [4,6] and complements the results presented therein
concerning the relation between Poissonian white noise analysis and the combinatorial harmonic
analysis on configuration spaces. As it has been shown in [4], both analyses are related. In this work,
we widen these relations towards annihilation and creation operators, and the second quantization
operators as well.

In order to introduce the framework and the notation used throughout this work, in section 2
we recall the structure and concepts of Poissonian white noise analysis presented in [5] as well as
the main notions and results of combinatorial harmonic analysis on configuration spaces presented
in [4,10]. Within combinatorial harmonic analysis framework, in sections 3 and 4 we described
the annihilation, creation, and second quantization operators defined on the Lebesgue-Poisson and
Poisson spaces. The annihilation and creation operators are well-known in both spaces, see e.g.,
[8,11] for the Poissonian case and [3] for the Lebesgue-Poissonian one. Through the localization of
the support of the Poisson measures, explicit expressions for these operators on the Poisson space
can be given. The relation between the Poissonian annihilation and creation operators and the
Lebesgue-Poissonian ones is given in section 3. In section 4 we give an explicit formula for the second
quantization operator on the Poisson space stated in [1]. The interplay between combinatorial
harmonic analysis and Poissonian white noise analysis allows us to derive this expression on a core
of the second quantization operator. This is not obtainable in the framework of second quantization
alone.
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2. Framework

Throughout this work X indicates a geodesically complete connected oriented (non-compact)
C∞-Riemannian manifold, describing the position space of the particles. In particular, X can be
any d-dimensional Euclidean space Rd, for d ∈ N. There exists a sequence of open relative compact
sets Λn such that Λn ⊂ Λn+1, n ∈ N, and

⋃
n∈N

Λn = X.

2.1. Configuration spaces and Poisson measures

The configuration space Γ := ΓX over X is defined as the set of all locally finite subsets of X,

Γ := {γ ⊂ X : |γ ∩ K| < ∞ for every compact K ⊂ X} ,

where |·| denotes the cardinality of a set. As usual we identify each γ ∈ Γ with the non-negative
Radon measure

∑
x∈γ δx ∈ M(X), where δx is the Dirac measure with mass at x,

∑
x∈∅ δx is, by

definition, the zero measure, and M(X) denotes the space of all non-negative Radon measures on
the Borel σ-algebra B(X) on X. This procedure permits to endow Γ with the topology induced by
the vague topology on M(X). We denote the corresponding Borel σ-algebra on Γ by B(Γ).

Let σ be a non-atomic and non-degenerated Radon measure, i.e., σ({x}) = 0 for all x ∈ X and
σ(O) > 0 for all non-empty open sets O ⊂ X. Technically, the more challenging case is σ(X) = ∞.
We define the Poisson measure πσ with intensity σ as the unique probability measure on (Γ,B(Γ))
with respect to which the following equality holds

∫

Γ

dπσ(γ) exp

(
∑

x∈γ

ϕ(x)

)
= exp

(∫

X

dσ(x)
(
eϕ(x) − 1

))

for all ϕ ∈ D. Here D := D(X) denotes the Schwartz space of all real-valued C∞-functions on X
with compact support.

Remark 1 One may also introduce the Poisson measure through its Laplace transform. This ap-
proach yields, through the Minlos theorem, a probability measure πσ defined on (D′, Cσ(D′)), where
D′ is the dual space of D with respect to the space of real-valued functions L2

Re(X,σ) ⊂ L2(X,σ)1

and Cσ(D′) is the σ-algebra generated by the cylinder sets

{ω ∈ D′ : (〈ω, ϕ1〉, . . . , 〈ω, ϕn〉) ∈ B} , ϕi ∈ D, B ∈ B(X), n ∈ N.

An additional analysis shows that this measure is actually supported on generalized functions of
the form

∑
x∈γ δx, γ ∈ Γ. Hence πσ can be considered as a measure on Γ. For more details see

e.g. [5] as well as the references therein.

Let us now consider the space of finite configurations

Γ0 :=

∞⊔

n=0

Γ(n),

where Γ(n) := Γ
(n)
X := {γ ∈ Γ : |γ| = n} for n ∈ N and Γ(0) := {∅}. For n ∈ N, there is a natural

bijection between the space Γ(n) and the symmetrization X̃n�Sn of the set X̃n := {(x1, . . . , xn) ∈

Xn : xi 6= xj if i 6= j} under the permutation group Sn over {1, . . . , n} acting on X̃n by permuting
the coordinate index. This bijection induces a metrizable topology on Γ(n) and we endow Γ0

with the topology of disjoint union of topological spaces. By B(Γ(n)) and B(Γ0) we denote the
corresponding Borel σ-algebras on Γ(n) and Γ0, respectively. In order to construct a measure on
(Γ0,B(Γ0)) let us consider the above introduced measure σ on X and the product measures σ⊗n on
Xn, for n ∈ N. For each n ∈ N, let us also consider the image measure σ(n) on Γ(n) of the measure

1Throughout this work all Lp-spaces, p > 1, consist of complex-valued functions. A subscript “Re” will be added

to indicate the corresponding real space.
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σ⊗n under the mapping X̃n 3 (x1, . . . , xn) 7→ {x1, . . . , xn} ∈ Γ(n). For n = 0 we set σ(0)({∅}) := 1.
Then, we define the so-called Lebesgue-Poisson measure λσ on Γ0 (with intensity σ) by the sum
of measures

λz :=
∞∑

n=0

1

n!
σ(n).

The space L2(Γ0, λσ) can be regarded as a realization of the symmetric Fock space over L2(X,σ)
(denoted by ExpL2(X,σ)) by a space of functions. To an element (f (n))∞n=0 ∈ ExpL2(X,σ) :=⊕∞

n=0 L̂2(Xn, σ⊗n), where L̂2(Xn, σ⊗n) denotes the subspace of L2(Xn, σ⊗n) of all symmetric
functions, one associates the function G ∈ L2(Γ0, λσ) given by

G({x1, . . . , xn}) := n!f (n)(x1, . . . , xn), n ∈ N.

Such a correspondence defines a unitary isomorphism between the spaces ExpL2(X,σ) and L2(Γ0, λσ).

In particular, the image of a Fock coherent state e(f) :=
(

f⊗n

n!

)∞
n=0

under this isomorphism is the

(Lebesgue-Poisson) coherent state eλ(f) : Γ0 → C defined for any B(X)-measurable function f by

eλ(f, η) :=
∏

x∈η

f (x) , η ∈ Γ0.

The unitary isomorphism between the symmetric Fock space and L2(Γ0, λσ) provides natural
operators on the space L2(Γ0, λσ) by carrying over standard Fock space operators. In particular,
the annihilation and the creation operators, which images in L2(Γ0, λσ), are well-known, see e.g. [3],

(
a−

λ (ϕ)G
)
(η) :=

∫

X

dσ(x)G(η ∪ {x})ϕ(x), η ∈ Γ0, (1)

and (
a+

λ (ϕ)G
)
(η) :=

∑

x∈η

G(η\{x})ϕ(x), λσ − a.a. η ∈ Γ0. (2)

For more details and proofs see e.g. [5] and the references therein.

2.2. Some aspects of Poissonian white noise analysis

The description of elements of the space L2(Γ, πσ) by a corresponding chaos decomposition
provides a unitary isomorphism between the spaces L2(Γ, πσ) and L2(Γ0, λσ). This fact is recalled
here (see the presentation in [5] and the references therein for more details and proofs).

As we mentioned in subsection 2.1, the Poisson measure πσ can be either considered on
(Γ,B(Γ)), on M(X), or on D′, where, in contrast to Γ, the spaces M(X) and D′ are linear.
One has Γ ⊂ M(X) ⊂ D′, but πσ(Γ) = 1. In what follows we shall always keep in mind the
embeddings Γ ⊂ M(X) ⊂ D′.

Given a −1 < ϕ ∈ D let us consider the coherent state eπ(ϕ) defined by

eπ(ϕ, ω) := exp

(
〈ω, log(1 + ϕ)〉 −

∫

X

σ(x)ϕ(x)

)
(3)

for ω ∈ D′. The holomorphy of eπ(·, ω), ω ∈ D′, on a neighborhood of zero permits to consider its
Taylor expansion which, by the Cauchy formula, the polarization identity, and the kernel theorem
(see e.g. [2,7,9]), provides the decomposition

eπ(ϕ, ω) =
∞∑

n=0

1

n!
〈Cσ

n(ω), ϕ⊗n〉, ω ∈ D′,

where Cσ
n : D′ → D′⊗̂n, n ∈ N, are the so-called generalized Charlier kernels, which are pointwisely

defined. For an explicit formula see (11) below. For ϕ(n) ∈ D⊗̂n
C

, n ∈ N (DC := the complexi-
fication of the space D), we define the corresponding smooth Charlier monomial of order n by
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〈Cσ
n (ω), ϕ(n)〉, ω ∈ D′. These monomials are orthogonal in L2(Γ, πσ), which permits the use of

an approximation procedure to extend the class of smooth Charlier monomials to πσ-a.s. defined
measurable monomials 〈Cσ

n , f (n)〉 with kernels f (n) ∈ L̂2(Xn, σ⊗n) in such a way that the orthog-
onality property still holds for this extension. Note that a priori it is not clear in which sense, if at
all, expression (11) extends as well.

Let us now consider the space P(D′) of smooth continuous polynomials on D′, P(D′) :={
Φ : Φ(ω) =

∑N
n=0〈C

σ
n(ω), ϕ(n)〉, ϕ(n) ∈ D⊗̂n

C
, ω ∈ D′, N ∈ N0

}
. Since this space is densely embed-

ded into L2(Γ, πσ) [13, section 10, Theorem 1], it follows that for any F ∈ L2(Γ, πσ) there exists a

sequence
(
f (n)

)∞
n=0

, f (n) ∈ L̂2(Xn, σ⊗n),
∑∞

n=0 n!
∣∣f (n)

∣∣2
L2(Xn,σ⊗n)

< ∞ such that

F =

∞∑

n=0

〈
Cσ

n , f (n)
〉

(4)

and, moreover, by the orthogonality property, ‖F‖2
L2(Γ,πσ) =

∑∞
n=0 n!

∣∣f (n)
∣∣2
L2(Xn,σ⊗n)

. And vice

versa, any series of the form (4) with f (n) ∈ L̂2(Xn, σ⊗n) and
∑∞

n=0 n!
∣∣f (n)

∣∣2
L2(Xn,σ⊗n)

< ∞

defines a function from L2(Γ, πσ). As a result, through the so-called chaos decomposition (4) we
have defined a unitary isomorphism between L2(Γ, πσ) and the symmetric Fock space ExpL2(X,σ),

Iπ

(
∞∑

n=0

〈Cσ
n , f (n)〉

)
:=
(
f (n)

)∞
n=0

.

Using the identification of ExpL2(X,σ) and L2(Γ0, λσ), the chaos decomposition (4) provides
a natural unitary isomorphism Iλπ between the spaces L2(Γ0, λσ) and L2(Γ, πσ):

Iλπ(G) =

∞∑

n=0

〈
Cσ

n , f (n)
〉

,

f (n)(x1, . . . , xn) :=
1

n!
G ({x1, . . . , xn}) , n ∈ N, f (0) := G(∅).

In addition, the chaos decomposition permits to extend the definition (3) of a coherent state
eπ(ϕ) to other classes of functions ϕ. For this purpose, we first observe that given a −1 < ϕ ∈ D,
for each γ ∈ Γ we can write (3) as

eπ(ϕ, γ) = exp

(
−

∫

X

dσ(x)ϕ(x)

)∏

x∈γ

(1 + ϕ(x)). (5)

Using the chaos decomposition one can extend the definition of coherent state to functions f ∈
L2(X,σ) by eπ(f, γ) :=

∑∞
n=0

1
n! 〈C

σ
n(γ), f⊗n〉, but we may lose the explicit formula (5). Indeed, if

f /∈ L1(X,σ), then (5) is obviously not well-defined. However, one can show that for any function
f ∈ L1(X,σ), expression (5) is πσ-a.e. well-defined, and that the corresponding expression for
f ∈ L1(X,σ) ∩ L2(X,σ) coincides with the extension in the L2-sense, cf. [4]. It is clear that
the image of a coherent state eπ(f) with f ∈ L2(X,σ) under the isomorphism I−1

λπ is the above
introduced (Lebesgue-Poisson) coherent state eλ(f).

2.3. Some aspects of combinatorial harmonic analysis

Besides the unitary isomorphism Iλπ, the K-transform also maps functions on Γ0 into functions
on Γ. To define the K-transform, let us consider the space Bbs(Γ0) of all complex-valued bounded
B(Γ0)-measurable functions G with bounded support, i.e., G�

Γ0\
��

N
n=0 Γ

(n)
Λ �≡ 0 for some set Λ ⊂ X

with compact closure, N ∈ N0. Here Γ
(n)
Λ := Γ(n)∩{η ∈ Γ : η ⊂ Λ}. The K-transform of a function

G ∈ Bbs(Γ0) is the mapping KG : Γ → C defined at each γ ∈ Γ by

(KG)(γ) :=
∑

η⊂γ

|η|<∞

G(η). (6)

240



Extension of explicit formulas in Poissonian white noise analysis

Note that for every G ∈ Bbs(Γ0) the sum in (6) has only a finite number of summands different
from zero and thus KG is a well-defined function on Γ. In particular, for any ϕ ∈ D, one finds

(Keλ(ϕ)) (γ) =
∏

x∈γ

(1 + ϕ(x)).

It has been shown in [4] that the K-transform is a linear isomorphism which inverse mapping is
defined, for instance, on P(D′) by

(
K−1F

)
(η) :=

∑

ξ⊂η

(−1)|η\ξ|F (ξ), η ∈ Γ0.

Furthermore, it has also been shown in [4] that on Bbs(Γ0) the inequality ‖KG‖L1(Γ,πσ) 6 ‖G‖L1(Γ0,λσ)

holds, allowing an extension of the K-transform to a bounded operator K : L1(Γ0, λσ) → L1(Γ, πσ).
For the extended operator the explicit form (6) still holds, now πσ-a.e. Since eλ(f) ∈ Lp(Γ0, λσ)
whenever f ∈ Lp(X,σ) for some p ∈ N, this means, in particular, that

(Keλ(f)) (γ) =
∏

x∈γ

(1 + f(x)), πσ − a.a. γ ∈ Γ, (7)

for all f ∈ L1(X,σ), cf. e.g. [4].
There is a relation between Poissonian white noise analysis and combinatorial harmonic analysis

through an equality of operators involving the unitary isomorphism Iλπ and the K-transform [4,10].
This equality is given by

Iλπ = KD−1 (8)

on L1(Γ0, λ2σ) ∩ L2(Γ0, λσ) [4, Theorem 5.1], where for all G ∈ L1(Γ0, λ2σ)

(
D−1G

)
(η) :=

∫

Γ0

dλσ(ξ) (−1)|ξ|G(η ∪ ξ), λσ − a.a. η ∈ Γ0. (9)

In detail, let us observe that for G ∈ Bbs(Γ0), D−1G is a pointwisely well-defined function on
Γ0 such that D−1G ∈ Bbs(Γ0). The operator D−1 is then the inverse of the linear isomorphism
D : Bbs(Γ0) → Bbs(Γ0) defined by

(DG) (η) :=

∫

Γ0

dλσ(ξ)G(η ∪ ξ), η ∈ Γ0. (10)

Moreover, the inequalities of norms ‖DG‖L1(Γ0,λσ), ‖D
−1G‖L1(Γ0,λσ) 6 ‖G‖L1(Γ0,λ2σ) hold, which

permit to extend D and D−1 to bounded linear operators defined on L1(Γ0, λ2σ). The extended
operators are defined by (10), now only for λσ-a.a. η ∈ Γ0, and (9), respectively.

Implications of equality (8) on the study of Poissonian white noise analysis and combinatorial
harmonic analysis as well may be found in [4,6,10,12]. In particular, equality (8) yields an explicit
expression for the Charlier monomials introduced in subsection 2.2. For all f (n) ∈ L1(Xn, σ⊗n)
symmetric and for πσ-a.a. γ ∈ Γ,

〈Cσ
n(γ), f (n)〉 =

n∑

k=0

∑

{x1,...,xk}⊂γ

n!(−1)n−k

(n − k)!

∫

Xn−k

f (n)(x1, . . . , xk, y1, . . . , yn−k)dσ⊗n−k(y1, . . . , yk).

(11)
For more details and proofs see [4].

3. Annihilation and creation operators

For ϕ ∈ D, the operators a−
λ (ϕ) and a+

λ (ϕ) defined by (1) and (2), respectively, map the space
Bbs(Γ0) into itself. Transported via the K-transform, the annihilation and creation operators give
rise to reasonable expressions.
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Proposition 2 For each ϕ ∈ D and every F ∈ K(Bbs(Γ0)), the following relations hold:

((
Ka−

λ (ϕ)K−1
)
F
)
(γ) =

∫

X

dσ(x) (F (γ ∪ {x}) − F (γ)) ϕ(x), γ ∈ Γ,

and ((
Ka+

λ (ϕ)K−1
)
F
)
(γ) =

∑

x∈γ

F (γ\{x})ϕ(x), πσ − a.a. γ ∈ Γ.

Remark 3 It has been shown in [4] that K(Bbs(Γ0)) = FPbc(Γ), where

FPbc(Γ) :=

{
N∑

n=0

〈Cσ
n , f (n)〉 : f (n) ∈ Bbs(X

n) symmetric, n = 1, . . . , N ∈ N

}
.

Proof. Given a ϕ and a F under the above conditions, the definitions of the operators a−
λ (ϕ), K,

and K−1 yield

((
Ka−

λ (ϕ)K−1
)
F
)
(γ) =

∫

X

dσ(x)
∑

η⊂γ

|η|<∞

(
K−1F

)
(η ∪ {x})ϕ(x)

=

∫

X

dσ(x)
∑

η⊂γ

|η|<∞

∑

ξ⊂η

(−1)|η\ξ|F (ξ ∪ {x})ϕ(x)

+

∫

X

dσ(x)
∑

η⊂γ

|η|<∞

∑

ξ⊂η

(−1)|η\ξ|+1F (ξ)ϕ(x)

=

∫

X

dσ(x)K(K−1F (· ∪ {x}))(γ)ϕ(x) −

∫

X

dσ(x)K(K−1F )(γ)ϕ(x)

=

∫

X

dσ(x)F (γ ∪ {x})ϕ(x) − F (γ)

∫

X

dσ(x)ϕ(x),

for all γ ∈ Γ. The second equality is obtained from the definitions of the operators K and a+
λ (ϕ):

((
Ka+

λ (ϕ)K−1
)
F
)
(γ) =

∑

η⊂γ

|η|<∞

(
a+

λ (ϕ)
(
K−1F

))
(η) =

∑

η⊂γ

|η|<∞

∑

x∈η

(
K−1F

)
(η\{x})ϕ(x)

=
∑

x∈γ

ϕ(x)
∑

ηbγ\{x}

(
K−1F

)
(η) =

∑

x∈γ

ϕ(x)
(
K
(
K−1F

))
(γ\{x}) =

∑

x∈γ

ϕ(x)F (γ\{x}),

for πσ-a.a. γ ∈ Γ. �

Remark 4 The previous proposition shows that

Ka−
λ (ϕ)K−1 = a−

π (ϕ)

and

Ka+
λ (ϕ)K−1 = a+

π (ϕ) +

∫

X

dσ(x)ϕ(x),

where a−
π (ϕ) and a+

π (ϕ) are the so-called (Poissonian) annihilation and creation operators. These
operators are defined as the image of the corresponding operators on the Lebesgue-Poisson space
under the unitary isomorphism Iλπ, that is,

(
a−

π (ϕ)F
)
(γ) =

∫

X

dσ(x) (F (γ ∪ {x}) − F (γ)) ϕ(x), γ ∈ Γ,

(
a+

π (ϕ)F
)
(γ) =

∑

x∈γ

ϕ(x)F (γ\{x}) − F (γ)

∫

X

dσ(x)ϕ(x), πσ − a.a. γ ∈ Γ,

for F ∈ FPbc(Γ), see e.g. [5].
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4. Second quantization operators

Given a contraction operator B on L2(X,σ) one may define a contraction operator ExpB on
the Fock space ExpL2(X,σ) acting on coherent states e(f), f ∈ L2(σ), by ExpB (e(f)) = e(Bf).
In particular, given a positive self-adjoint operator A on L2(X,σ) and the contraction semigroup
e−tA, t > 0, one can define a contraction semigroup Exp

(
e−tA

)
on ExpL2(X,σ) in this way.

The generator is the well-known second quantization operator corresponding to A. We denote it
by dExpA. Through the unitary isomorphism between the Fock space and the space L2(Γ0, λσ)
one may then define the corresponding operator in L2(Γ0, λσ). We denote the (Lebesgue-Poisson)
second quantization operator corresponding to A by HLP

A . The action of HLP
A on coherent states

is given by (
HLP

A eλ(f)
)
(η) =

∑

x∈η

(Af) (x)eλ(f, η\{x}), f ∈ D(A).

Remark 5 According to (2), whenever D ⊂ D(A) one may rewrite the action of HLP
A on coherent

states eλ(ϕ), ϕ ∈ D, by HLP
A eλ(ϕ) = a+

λ (Aϕ)eλ(ϕ). Moreover, HLP
A eλ(ϕ) = ea+

λ
(ϕ)(Aϕ), cf. e.g. [5,

subsection 6.4], namely, Theorem 6.19 therein.

Proposition 6 Let (A,D(A)) be an operator in L2(X,σ). Define

D1(A) := {f ∈ D(A) ∩ L1(X,σ) : Af ∈ L1(X,σ)}.

Then for all f ∈ D1(A) we have

(
DHLP

A D−1
)
eλ(f) =

(
HLP

A +

∫

X

dσ(x) (Af) (x)

)
eλ(f) (12)

and ((
KHLP

A K−1
)
eπ(f)

)
(γ) =

∑

x∈γ

(Af) (x)eπ(f, γ\{x}), γ ∈ Γ. (13)

Proof. In order to prove equality (12), the so-called Ruelle convolution or ∗-convolution on B(Γ0)-
measurable functions shows to be very useful. We recall that given two B(Γ0)-measurable functions
G1 and G2, the ∗-convolution G1 ∗ G2 is a B(Γ0)-measurable function defined by

(G1 ∗ G2) (η) :=
∑

ξ⊂η

G1(ξ)G2(η\ξ), η ∈ Γ0.

One easily sees that if G1 = G̃1 λσ-a.s. and G2 = G̃2 λσ-a.s., then also G1 ∗ G2 = G̃1 ∗ G̃2 λσ-a.s.
This means, in particular, that

(
HLP

A eλ(f)
)
(η) = (eλ(f) ∗ (Af)) (η) for any λσ-a.s. finite version

of f ∈ D1(A). Taking into account that the space L1(Γ0, λσ) endowed with this product has a
structure of a commutative algebra and D(G1∗G2) = (DG1)∗(DG2) for any G1, G2 ∈ L1(Γ0, λ2σ),
then one derives from the definition of the operator D on L1(Γ0, λ2σ), (10), the following equalities:

(
DHLP

A D−1
)
eλ(f) = exp

(
−

∫

X

dσ(x) f(x)

)(
DHLP

A

)
eλ(f)

= exp

(
−

∫

X

dσ(x) f(x)

)
D (eλ(f) ∗ (Af))

= exp

(
−

∫

X

dσ(x) f(x)

)
(Deλ(f)) ∗ (D(Af)) = (eλ(f) ∗ (D(Af))) (η).

Using the definition of the ∗-convolution, it is easy to check that for λσ-a.a. η ∈ Γ0 the latter
expression is equal to

∑

x∈η

(Af) (x)eλ (f, η\{x}) +

(∫

X

dσ(x) (Af) (x)

)
eλ (f, η) .
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In this way equality (12) is proved. Concerning equality (13), note that by the definition of the
operator K, by the definition of a coherent state eπ(f) with f ∈ L2(X,σ) ∩ L1(X,σ), and (7) one
finds

K
(
HLP

A eλ(f)
)
(γ) =

∑

η⊂γ

|η|<∞

∑

x∈η

(Af) (x)eλ(f, η\{x}) =
∑

x∈γ

(Af) (x)
∑

η⊂γ\{x}
|η|<∞

eλ(f, η) (14)

=
∑

x∈γ

(Af) (x) (Keλ(f)) (γ\{x}) =
∑

x∈γ

(Af) (x)
∏

x∈γ\{x}

(1 + f(x)) (15)

= exp

(∫

X

dσ(x) f(x)

)∑

x∈γ

(Af) (x)eπ(f, γ\{x}),

with

eλ(f) = exp

(∫

X

dσ(x) f(x)

)
K−1eπ(f).

Denote by N the set of all γ for which the first equality in (14) does not hold. Hence πσ(N) = 0.
However, for the first equality appearing in (15) we need that πσ ({γ : ∃x ∈ γ s.t. γ \ x}) = 0. This
follows from the Mackey identity, which yields

πσ ({γ : ∃x ∈ γ s.t. γ \ x}) 6 lim sup
n↑∞

∫

Λn

σ(dx)πσ(N) = 0,

where Λn, n ∈ N, is the sequence of open relative compact sets defined at the beginning of section 2.
�

Let us now consider the second quantization operator HP
A := IλπHLP

A Iπλ on the Poisson space
(see e.g. [1,5]). The symmetric bilinear form corresponding to the operator HP

A has the represen-
tation (cf. [2])

(
HP

AF,G
)
L2(πσ)

=

∫

Γ

dπσ(γ)
((

a−
π F
)
(γ), A

((
a−

π G
)
(γ)
))

L2(X,σ)

(
a−

π F
)
(γ, x) := F (γ ∪ {x}) − F (γ), γ ∈ Γ, x ∈ X

for all Charlier polynomials F and G. Here (·, ·)L2(X,σ) denotes the inner product on L2(X,σ). By
using Proposition 6 one may reobtain the explicit formula for HP

A derived e.g. in [1].

Corollary 7 For each operator A under the conditions of Proposition 6 and every f ∈ D1(A) we have

(
HP

Aeπ(f)
)
(γ) =

∑

x∈γ

(Af) (x)eπ(f, γ\{x}) −

(∫

X

dσ(x) (Af) (x)

)
eπ (f, γ) (16)

for πσ-a.a. γ ∈ Γ.

Proof. From equality (12) one obtains

(
D−1HLP

A D
)
eλ(f) =

(
HLP

A −

∫

X

dσ(x) (Af) (x)

)
eλ(f).

This fact combined with equality (8) yields

HP
Aeπ(f) =

(
KD−1HLP

A

)
eλ(f) = exp

(
−

∫

X

dσ(x) f(x)

)
K
(
D−1HLP

A Deλ(f)
)

= exp

(
−

∫

X

dσ(x) f(x)

)(
K
(
HLP

A eλ(f)
)
−

(∫

X

dσ(x) (Af) (x)

)
Keλ(f)

)

=
(
KHLP

A K−1
)
eπ(f) −

(∫

X

dσ(x) (Af) (x)

)
eπ(f)
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and the proof follows by equality (13). �

Formula (16) has only a reasonable sense if it holds on a domain of essential self-adjointness of
HP

A. Otherwise, the latter operator is not characterized by this formula. Due to the general theory

of second quantization, clearly {
∑N

n=0〈C
σ
n , f (n)〉 : f (n) ∈ D(A)⊗̂n} is a domain of essential self-

adjointness. If D(A) is not contained in the space of Schwartz test functions D, the above monomials
have to be understood, at least at the beginning, as L2-extension, for which one does not have
an explicit expression in general. To obtain an explicit expression, one has carefully to study in
which sense and to which functions the explicit expression may be extended. For simplicity, in this
section we have worked with coherent states. However, all results might be extended to monomials
as well.

Corollary 8 If (A,D(A)) is an essentially self-adjoint operator and its closure generates a sub-
Markovian contraction semigroup, then D1(A) is a core of the generator of the L1- and of the
L2-semigroup. Then, also {eπ(f) : f ∈ D1(A)} is a domain of essential self-adjointness of HP

A.
Hence formula (16) holds on a domain of essential self-adjointness.
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Розширення явних формул аналiзу Пуассона бiлого шуму за
допомогою гармонiчного аналiзу на конфiгурацiйних
просторах
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Отримано 31 сiчня 2008 р.

За допомогою гармонiчного аналiзу на конфiгурацiйних просторах одержано розширення явних ви-
разiв для образiв операторiв народження, знищення i вторинного квантування в L2-просторах вiд-
носно точкових процесiв Пуассона на клас функцiй, ширший нiж простiр одержаний безпосередньо

з розкладу хаосу. Це дозволяє, зокрема, одержати явний вираз для генератора вторинного кванту-
вання пiд-маркiвської стискаючої пiвгрупи на множинi функцiй, якi утворюють його ядро.

Ключовi слова: мiри Пуассона, декомпозицiя хаосу, конфiгурацiйнi простори, оператори анiгiляцiї,
оператори створення, оператори вторинного квантування

PACS: 02.40.Vh, 02.40.Yy
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