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Harmonic analysis on configuration spaces is used in order to extend explicit expressions for the images
of creation, annihilation, and second quantization operators in L2-spaces with respect to Poisson point pro-
cesses to a set of functions larger than the space obtained by directly using chaos expansion. This permits,
in particular, to derive an explicit expression for the generator of the second quantization of a sub-Markovian
contraction semigroup on a set of functions which forms a core of the generator.
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1. Introduction

This work is based on the previous papers [4,6] and complements the results presented therein
concerning the relation between Poissonian white noise analysis and the combinatorial harmonic
analysis on configuration spaces. As it has been shown in [4], both analyses are related. In this work,
we widen these relations towards annihilation and creation operators, and the second quantization
operators as well.

In order to introduce the framework and the notation used throughout this work, in section 2
we recall the structure and concepts of Poissonian white noise analysis presented in [5] as well as
the main notions and results of combinatorial harmonic analysis on configuration spaces presented
in [4,10]. Within combinatorial harmonic analysis framework, in sections 3 and 4 we described
the annihilation, creation, and second quantization operators defined on the Lebesgue-Poisson and
Poisson spaces. The annihilation and creation operators are well-known in both spaces, see e.g.,
[8,11] for the Poissonian case and [3] for the Lebesgue-Poissonian one. Through the localization of
the support of the Poisson measures, explicit expressions for these operators on the Poisson space
can be given. The relation between the Poissonian annihilation and creation operators and the
Lebesgue-Poissonian ones is given in section 3. In section 4 we give an explicit formula for the second
quantization operator on the Poisson space stated in [1]. The interplay between combinatorial
harmonic analysis and Poissonian white noise analysis allows us to derive this expression on a core
of the second quantization operator. This is not obtainable in the framework of second quantization
alone.
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2. Framework

Throughout this work X indicates a geodesically complete connected oriented (non-compact)
C*°-Riemannian manifold, describing the position space of the particles. In particular, X can be
any d-dimensional Euclidean space R?, for d € N. There exists a sequence of open relative compact
sets A, such that A, C Apy1, n €N, and U, oy An = X.

2.1. Configuration spaces and Poisson measures

The configuration space I' := I'x over X is defined as the set of all locally finite subsets of X,
I'={yC X :|yN K| < oo for every compact K C X},

where |-| denotes the cardinality of a set. As usual we identify each v € T' with the non-negative
Radon measure . 0, € M(X), where §, is the Dirac measure with mass at , >,y d. is, by
definition, the zero measure, and M(X) denotes the space of all non-negative Radon measures on
the Borel o-algebra B(X) on X. This procedure permits to endow I with the topology induced by
the vague topology on M(X). We denote the corresponding Borel o-algebra on I' by B(T).

Let o be a non-atomic and non-degenerated Radon measure, i.e., o({z}) =0 for all x € X and
a(0) > 0 for all non-empty open sets O C X. Technically, the more challenging case is o(X) = cc.
We define the Poisson measure 7, with intensity o as the unique probability measure on (T, B(T"))
with respect to which the following equality holds

/F dry () exp (Z m)) ~ exp ( /X do(a) (e#0) - 1))

ey

for all ¢ € D. Here D := D(X) denotes the Schwartz space of all real-valued C*°-functions on X
with compact support.

Remark 1 One may also introduce the Poisson measure through its Laplace transform. This ap-
proach yields, through the Minlos theorem, a probability measure 7, defined on (D',Cy(D")), where
D’ is the dual space of D with respect to the space of real-valued functions L%, (X,0) C L*(X,0)!
and C,(D') is the o-algebra generated by the cylinder sets

{wEDI:(<w7§01>a"'a<w7§0n>) GB}, Pi ED,BGB(X),TLEN.

An additional analysis shows that this measure is actually supported on generalized functions of
the form Zwey 0., v € I'. Hence 7, can be considered as a measure on I'. For more details see
e.g. [5] as well as the references therein.

Let us now consider the space of finite configurations

Ty := |j INON
n=0

where (") .= I‘g?) ={yeT:|y|=n}for n € Nand T® := {}}. For n € N, there is a natural
bijection between the space T'™ and the symmetrization X" /S, of the set X" := {(z1,...,2,) €
X" :x; # x; if i # j} under the permutation group S, over {1,...,n} acting on Xn by permuting
the coordinate index. This bijection induces a metrizable topology on I'™ and we endow Ty
with the topology of disjoint union of topological spaces. By B(I'™) and B(Ty) we denote the
corresponding Borel o-algebras on T'™ and Ty, respectively. In order to construct a measure on
(To, B(T)) let us consider the above introduced measure o on X and the product measures c®" on
X" for n € N. For each n € N, let us also consider the image measure o™ on T'(") of the measure

I Throughout this work all LP-spaces, p > 1, consist of complex-valued functions. A subscript “Re” will be added
to indicate the corresponding real space.
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o®" under the mapping X" 3 (z1,...,2n) — {21,...,2,} € T™ . For n = 0 we set o ({f}) := 1.
Then, we define the so-called Lebesgue-Poisson measure A, on I'g (with intensity o) by the sum

of measures
A, = E —n!a .

n=0
The space L?(I'g, \,) can be regarded as a realization of the symmetric Fock space over L?(X, o)
(denoted by ExpL?(X,0)) by a space of functions. To an element (f()%, € ExpL?(X,0) :=
B>, L* (X", 6®"), where L*(X™ 0®") denotes the subspace of L*(X™,c®") of all symmetric
functions, one associates the function G € L?(Tg, \,) given by

G({z1,...,zn}) =nlfM(zy,... x,), neN
Such a correspondence defines a unitary isomorphism between the spaces ExpL?(X, o) and L?(Tg, Ao ).

£\

n!

In particular, the image of a Fock coherent state e(f) := ( under this isomorphism is the

(Lebesgue-Poisson) coherent state ey (f) : Ty — C defined for angf:B(X )-measurable function f by

ex(f,n) = Hf(:c), n € Iy.

xTEN

The unitary isomorphism between the symmetric Fock space and L?(T, \,) provides natural
operators on the space L?(T'g, \,) by carrying over standard Fock space operators. In particular,
the annihilation and the creation operators, which images in L?(T'g, A, ), are well-known, see e.g. [3],

(a5 (£)G) (n) = /X do(z) Gy U {z})p(x), €Ty, (1)

and

(af (9)G) () ==Y G\{z})e(x), As —a.a.ne Ty, (2)

xen

For more details and proofs see e.g. [5] and the references therein.

2.2. Some aspects of Poissonian white noise analysis

The description of elements of the space L?(T',7,) by a corresponding chaos decomposition
provides a unitary isomorphism between the spaces L(T", 7, ) and L?(Tg, A, ). This fact is recalled
here (see the presentation in [5] and the references therein for more details and proofs).

As we mentioned in subsection 2.1, the Poisson measure m, can be either considered on
(T, B(T')), on M(X), or on D', where, in contrast to I, the spaces M(X) and D’ are linear.
One has T' € M(X) C D', but m,(I') = 1. In what follows we shall always keep in mind the
embeddings I' € M(X) C D'.

Given a —1 < ¢ € D let us consider the coherent state e (¢) defined by

extips) = exp (fwnlog(1 +9)) = [ o()pta)) 3)

for w € D'. The holomorphy of e,(-,w), w € D’, on a neighborhood of zero permits to consider its
Taylor expansion which, by the Cauchy formula, the polarization identity, and the kernel theorem
(see e.g. [2,7,9]), provides the decomposition

1
ex(pw) =Y g<03(w)7<p®">, weTD,
n=0

where C7 : D' — D’ ®", n € N, are the so-called generalized Charlier kernels, which are pointwisely

defined. For an explicit formula see (11) below. For o™ ¢ Dg’”, n € N (D¢ := the complexi-
fication of the space D), we define the corresponding smooth Charlier monomial of order n by
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(C2(w), ™), w € D'. These monomials are orthogonal in L?(T, 7, ), which permits the use of
an approximation procedure to extend the class of smooth Charlier monomials to m,-a.s. defined
measurable monomials (C7, (™) with kernels (™) € L?(X" ¢%") in such a way that the orthog-
onality property still holds for this extension. Note that a priori it is not clear in which sense, if at
all, expression (11) extends as well.

Let us now consider the space P(D’) of smooth continuous polynomials on D', P(D') :=
{fb :O(w) = ZnN:() (C(w), p™), (™ € DE™ w e D',N € NO}. Since this space is densely embed-
ded into L*(T', 7,) [13, section 10, Theorem 1], it follows that for any F' € L*(T, 7,) there exists a
sequence (f("))zozo, f e ﬁQ(X”, o®m), >y nl |f(")|2Lg(Xn gamy < 00 such that

F=y- (oo ) 4
n=0

. 2 .
and, moreover, by the orthogonality property, ||F||2LQ(F’7TG) =y 2 ,nl |f(")|L2(Xn o) And vice

versa, any series of the form (4) with f(® e L%(X",06%") and oo on! ‘f("){iz(xn ony < 00

defines a function from L?(T,7,). As a result, through the so-called chaos decomposition (4) we
have defined a unitary isomorphism between L?(T', 7, ) and the symmetric Fock space ExpL?(X, o),

e o0
I o pm)y | . ( (n)) ,
(S = ()7,
n=0
Using the identification of ExpL?(X, o) and L?*(T, \,), the chaos decomposition (4) provides
a natural unitary isomorphism Iy, between the spaces L?(T'g, \,) and L?(T', 7,):

na@) = Yo (on ),

n=0
f(”)(xl,...,xn) = %G({xl,...,zn}),neN,f(O) = G(0).

In addition, the chaos decomposition permits to extend the definition (3) of a coherent state
ex(p) to other classes of functions . For this purpose, we first observe that given a —1 < ¢ € D,
for each v € I we can write (3) as

extipn) =exp (= [ aota)ota)) [T+ ol (5)

TEY

Using the chaos decomposition one can extend the definition of coherent state to functions f €
L*(X,0) by ex(f,7) == > nr s 5(CI(7), f™), but we may lose the explicit formula (5). Indeed, if
f ¢ LY(X,0), then (5) is obviously not well-defined. However, one can show that for any function
f € LY(X,0), expression (5) is m,-a.e. well-defined, and that the corresponding expression for
f € LY(X,0) N L*(X,0) coincides with the extension in the L2-sense, cf. [4]. It is clear that
the image of a coherent state e, (f) with f € L?(X,0) under the isomorphism I;Trl is the above

introduced (Lebesgue-Poisson) coherent state ex(f).

2.3. Some aspects of combinatorial harmonic analysis

Besides the unitary isomorphism Iy, , the K-transform also maps functions on I'g into functions
on I'. To define the K-transform, let us consider the space Bys(I'g) of all complex-valued bounded
B(Tp)-measurable functions G with bounded support, i.e., Gl \(I_IN F(")) =0 for someset A C X

0 n=0" A

with compact closure, NV € Ny. Here FE\") =T N{neT:ncA}. The K-transform of a function
G € Bys(Ty) is the mapping KG : T' — C defined at each v € T by

(KG) ()= ) Gl (6)

ncy
[n]|<oo
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Note that for every G € Bys(I'g) the sum in (6) has only a finite number of summands different
from zero and thus KG is a well-defined function on I'. In particular, for any ¢ € D, one finds

(Kex(@)) () = [T (1 + ().

rey

It has been shown in [4] that the K-transform is a linear isomorphism which inverse mapping is
defined, for instance, on P(D’) by

(K7'F) () =Y _(-)IMEF(), nel,.

£Cn

Furthermore, it has also been shown in [4] that on By, (I'o) the inequality || KG/|| 1 (r,x,) < |Gzt (ro,a0)
holds, allowing an extension of the K-transform to a bounded operator K : L'(I'g, \,) — L (T, 7, ).
For the extended operator the explicit form (6) still holds, now m,-a.e. Since ex(f) € LP(Tg, As)
whenever f € LP(X, o) for some p € N, this means, in particular, that

(Kex()) () = [[+ f(@), 7 —aayeT, (7)

xEY

for all f € LY(X,0), cf. e.g. [4].

There is a relation between Poissonian white noise analysis and combinatorial harmonic analysis
through an equality of operators involving the unitary isomorphism Iy, and the K-transform [4,10].
This equality is given by

Iy =KD (8)

on LY(To, A2y ) N L?(To, Ao) [4, Theorem 5.1], where for all G € L*(T'g, A2y )
(D7'G) (n) = /F A () (DG UE), Ao —aaneTy. (9)

In detail, let us observe that for G € Bys(I'g), D7'G is a pointwisely well-defined function on
[y such that D71G € Bys(Tg). The operator D1 is then the inverse of the linear isomorphism
D: Bbs(ro) — Bbs(ro) defined by

(DG) (1) = / W\ (6)GUE), neTy. (10)

Moreover, the inequalities of norms ||[DG||p1(ry 2, ), 1D Gll1r(rgn,) < [GllL2(rg 100y hold, which
permit to extend D and D! to bounded linear operators defined on L!(T'g, A2, ). The extended
operators are defined by (10), now only for A\,-a.a. n € T'g, and (9), respectively.

Implications of equality (8) on the study of Poissonian white noise analysis and combinatorial
harmonic analysis as well may be found in [4,6,10,12]. In particular, equality (8) yields an explicit
expression for the Charlier monomials introduced in subsection 2.2. For all f™ ¢ L}(X™,o®")
symmetric and for m,-a.a. v € T,

" nl(=1)"—k
<Cg(’7>7f(n)> = ( ) f(n)(xla"’7mkuy17"‘7ynfk)d0®n_k(y17"'7yk)~
(TL - k)' k
k=0 {z1,...,x }Cvy TS
(11)

For more details and proofs see [4].

3. Annihilation and creation operators

For ¢ € D, the operators a (¢) and a) () defined by (1) and (2), respectively, map the space
Bys(Tp) into itself. Transported via the K-transform, the annihilation and creation operators give
rise to reasonable expressions.
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Proposition 2 For each ¢ € D and every F € K(Bys(L'y)), the following relations hold:

((Kay (9)K™1) F) (v) :/de(w) (F(yU{z}) - F(v))elx), veT,

and

(Kaf (@)K F) (v) =Y _ F(\{z}e(x), 7o —a.a.yeT.
TeEY

Remark 3 It has been shown in [4] that K(Byps(To)) = FPpe(T"), where
N
FPp(I') := {Z(C’g,f“”} M e By (X™) symmetric,n =1,...,N € N} :
n=0

Proof. Given a ¢ and a F' under the above conditions, the definitions of the operators a) (¢), K,
and K~ yield

((Kay (@)K™') F) (v)

/X do(z) Y (K7'F) (U {z})p(x)

nCy
[n]<oo

= [ do) ¥ T )MIRE U bt

nCy
[n]<oo ccn

+/ ) S S ()M ()

nC~y
ke ST

- / do () K(KVF(-U {2})) (1) () — / do(z) K (K" F)(7)p(x)
X X

/ do(z) F(v U {2})e(z) — F(7) / do(z) ().

X X

for all v € I'. The second equality is obtained from the definitions of the operators K and ai(go):

(Kaf (@K ) F)(v) = Y (af(p) (K~ = > Y (ETF) (0\{=}) (@)
Il <o |nnwc<1c z€n
=> @) > (KT'F)(m)=> o) (K( ) (\{z}) =D p(z)F(y\{z}),
TEY nevy\{z} TEY TEY
for my-a.a. y € T'. ]

Remark 4 The previous proposition shows that

Kay ()K" = a; ()
and

Kaf(p)K™ = at(p) + /X do (z) ().

where a (@) and at (o) are the so-called (Poissonian) annihilation and creation operators. These
operators are defined as the image of the corresponding operators on the Lebesgue-Poisson space
under the unitary isomorphism Ix., that is,

(a2 (@)F) () = / do(z) (F(yU {z}) — F(1) p(z), v €T,
(@H@F) () = S @ F\{}) - F(v) /X do(z) p(a), 7 - aa.y €T,

reY

for F € FPp.(T'), see e.g. [5].
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4. Second quantization operators

Given a contraction operator B on L?(X, o) one may define a contraction operator ExpB on
the Fock space ExpL?(X, o) acting on coherent states e(f), f € L?(c), by ExpB (e(f)) = e(Bf).
In particular, given a positive self-adjoint operator A on L?(X, o) and the contraction semigroup
e "t > 0, one can define a contraction semigroup Exp (e7*4) on ExpL?*(X,o) in this way.
The generator is the well-known second quantization operator corresponding to A. We denote it
by dExpA. Through the unitary isomorphism between the Fock space and the space L?(Tg, \,)
one may then define the corresponding operator in L?(Tg, A, ). We denote the (Lebesgue-Poisson)
second quantization operator corresponding to A by Hf;P . The action of Hkp on coherent states
is given by

(HEea(f) () = Y (Af) (@)ea(f.n\{z}),  f € D(A).

xTEn

Remark 5 According to (2), whenever D C D(A) one may rewrite the action of H5Y on coherent
states ex(p), ¢ € D, by H5 ey () = al (Ap)er(p). Moreover, H5F ey () = e“i(‘F)(Ago), cf. e.g. [5,
subsection 6.4], namely, Theorem 6.19 therein.

Proposition 6 Let (A, D(A)) be an operator in L*(X,0). Define
Dy(A):={fe DA NLYX,0): Af € L}(X,0)}.
Then for all f € Dy(A) we have

(DHE' D™ ") ex(f) = (H,IKP +/ do(z) (Af) (@) ex(f) (12)
X
and
(KHF"E ") ex(£)) (7) = Y (Af) (@)ex(f,7\{2}), y€T. (13)

Proof. In order to prove equality (12), the so-called Ruelle convolution or *-convolution on B(T'y)-
measurable functions shows to be very useful. We recall that given two B(I')-measurable functions
G1 and G, the x-convolution Gy * G2 is a B(I'g)-measurable function defined by

(G1#Ga)(n) ==Y _G1(&)G2(n\&), €Ty,

£Cn

One easily sees that if G; = Gh A-a.s. and Gy = Gy As-a.s., then also Gy x Gy = G x Go \y-a.s.
This means, in particular, that (H5"ex(f)) (n) = (ex(f) * (Af)) () for any A,-a.s. finite version
of f € Di(A). Taking into account that the space L'(I'g,\,) endowed with this product has a
structure of a commutative algebra and D(G1 *G3) = (DG1)*(DGs) for any G1,Ga € L' (T, A2y ),
then one derives from the definition of the operator D on L!(T, A2s), (10), the following equalities:

o (= [ dote) f@)) (DHE) er(5)

— e (_ /X do () f(ac)) D (ex(f) * (Af))

— e (— [ aota) f(x)> (Dex(f)) * (D(AF)) = (ex(f) * (D(AS))) (n).

(DHE"D™ ) ex(f)

Using the definition of the x-convolution, it is easy to check that for A,-a.a. n € I’y the latter
expression is equal to

S (AF) (@es (fon\(z)) + ( [ aoto) (a) (m)) ex(fym)-

xren
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In this way equality (12) is proved. Concerning equality (13), note that by the definition of the
operator K, by the definition of a coherent state e, (f) with f € L*(X, o) N L'(X,0), and (7) one

finds
K (Hi ex(f)) (v) DY AN @ex(fin\fzh) =D (Af) (=) D ealfim)  (14)
nCy x€EN TEY nCy\{z}

In|<oo [n|<oo

= D (AN @) (Kex(N) O\Mah) = (AN (@) [ A+ f@) (15)

TEY zEY zeY\{z}

. ( [ aow) f(:z:)> S7(AS) @en(f 7\ ),

xTEY

with
) = e ( [ doto) f(0)) K en()

Denote by N the set of all y for which the first equality in (14) does not hold. Hence 7, (N) = 0.
However, for the first equality appearing in (15) we need that 7, ({y : 3z € v s.t. v\ «}) = 0. This
follows from the Mackey identity, which yields

Toe ({y:3x €vyst. y\z}) < limsup/A o(dz)ms(N) =0,

nToo

where A, n € N, is the sequence of open relative compact sets defined at the beginning of section 2.
[ |

Let us now consider the second quantization operator HE =1 MHII;PI7r » on the Poisson space
(see e.g. [1,5]). The symmetric bilinear form corresponding to the operator Hf; has the represen-
tation (cf. [2])

(PG oy = [ dm0) (07 F) 0D, A (076) () o
(az F) (v,x) == F(yU{z})-F(y), ~velzeX

for all Charlier polynomials I and G. Here (-,-)12(x,,) denotes the inner product on L?(X,0). By
using Proposition 6 one may reobtain the explicit formula for HY derived e.g. in [1].

Corollary 7 For each operator A under the conditions of Proposition 6 and every f € D1(A) we have

(Hiex(D) () = D (Af) @)ex(f,\{2}) — (/ do(z) (Af)( ))ew(fw) (16)

rey
for my-a.a. v € T.

Proof. From equality (12) one obtains

(D HY? D) ex(f) = (H,%P - [ o) (ar) <x>) ex(f).

This fact combined with equality (8) yields

Hier(f) = (KD 'HE)er(f) ( /da ) (D™'HEF Dex(f))
K

= on(- da<x>f<w>)( (o) - ([ aoto) (40 @) Ker()
ex(f) - (

([ aot) (4 @) exth

(KHEPK™!
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and the proof follows by equality (13). ]

Formula (16) has only a reasonable sense if it holds on a domain of essential self-adjointness of
HY. Otherwise, the latter operator is not characterized by this formula. Due to the general theory
of second quantization, clearly {ZT]:[:()(C,Z,f(")) : f € D(A)®"} is a domain of essential self-
adjointness. If D(A) is not contained in the space of Schwartz test functions D, the above monomials
have to be understood, at least at the beginning, as L?-extension, for which one does not have
an explicit expression in general. To obtain an explicit expression, one has carefully to study in
which sense and to which functions the explicit expression may be extended. For simplicity, in this
section we have worked with coherent states. However, all results might be extended to monomials
as well.

Corollary 8 If (A, D(A)) is an essentially self-adjoint operator and its closure generates a sub-
Markovian contraction semigroup, then D1(A) is a core of the generator of the L'- and of the
L2-semigroup. Then, also {ex(f) : f € D1(A)} is a domain of essential self-adjointness of HY.
Hence formula (16) holds on a domain of essential self-adjointness.
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Po3wupeHHsa aBHUX popmyn aHanidy lNyaccoHa Ginoro wymy 3a
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1 dakynbTeT MaTemMaTukn, YHiBepcuteT Binedensbaa, HimeuwunHa

2 JocnigHnupbknii ueHTp BiBoS, YHiBepcuteT binedenbaa, HimewunHa

3 HawjioHanbHUit yHiBepcuteT “KneBo-MorunsaHcebka akagemis”, Knis, Ykpaina

4 Yuisepcutet AGepra, JlicaGoH, MopTyranis

5 LleHTp npuknagHnx MateMaTU4HUX JochnigxkeHb, YHiBepcuteT JlicaboHy, MopTtyranis

OTtpumaHo 31 ciyHg 2008 p.

3a J0MNOMOro rapMoHIHHOMO aHanidy Ha KOHIrypauinH1UX NpocTopax OAepP)XaHo PO3LUNPEHHS ABHUX BU-
pasis ans 06pasiB onepaTopis HAPOMKEHHS, 3HULLLEHHS | BTOPUHHOIO KBaHTyBaHHSA B L2-npocTopax Bif-
HOCHO TOYKOBMX npoLieciB [yaccoHa Ha knac GyHKLIN, LUMPLUMIA HiX NPOCTIP oaepXaHuii 6esnocepesHbo
3 po3knaay xaocy. Lle no3sonsie, 3okpema, ogepxaTu SBHUIM BUPA3 Afsi reHepaTopa BTOPUHHOIO KBaHTY-
BaHHS MiA-MapKiBCbKOi CTUCKAIO4YO0i NIBrPynu Ha MHOXWHI QYHKLIN, SIKi yTBOPIOIOTb MOro 14po0.

KniouoBi cnoBa: mipy llyaccoHa, AekomnosuLisi xaocy, KoOH@irypauiviHi mpocTopu, onepaTtopu aHiruisuii,
orneparopyi CTBOPEHHSI, 0repaTopy BTOPUHHOIO KBaHTYBaHHSI

PACS: 02.40.Vh, 02.40.Yy
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