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We deal with the two following classes of equilibrium stochastic dynamics of infinite particle systems in contin-
uum: hopping particles (also called Kawasaki dynamics), i.e., a dynamics where each particle randomly hops
over the space, and birth-and-death process in continuum (or Glauber dynamics), i.e., a dynamics where there
is no motion of particles, but rather particles die, or are born at random. We prove that a wide class of Glauber
dynamics can be derived as a scaling limit of Kawasaki dynamics. More precisely, we prove the convergence
of respective generators on a set of cylinder functions, in the L2-norm with respect to the invariant measure
of the processes. The latter measure is supposed to be a Gibbs measure corresponding to a potential of pair
interaction, in the low activity—high temperature regime. Our result generalizes that of [Random. Oper. Stoch.
Equa., 2007, 15, 105], which was proved for a special Glauber (Kawasaki, respectively) dynamics.
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1. Introduction

This paper deals with two classes of equilibrium stochastic dynamics of infinite particle systems
in continuum. Let T' denote the space of all locally finite subsets of R%. Such a space is called
the configuration space (of an infinite particle system in continuum). Elements of T are called
configurations and each point of a configuration represents the position of a particle.

One can naturally define a o-algebra on I', and then a probability measure on I' represents
a random system of particles. A probability measure on I' is often referred to as a point process
(see e.g. [9]). Configuration spaces and point processes are important tools in classical statistical
mechanics of continuous systems. A central class of point processes which is studied therein is the
class of Gibbs measures. Typically one deals with Gibbs measures that correspond to a potential
of pair interaction.

An equilibrium stochastic dynamics in continuum is a Markov process on I' that has a point
process i (typically a Gibbs measure) as its invariant measure. One can distinguish three main
classes of stochastic dynamics:

e diffusion processes, i.e., dynamics where each particle continuously moves in the space, see,
e.g., [2,4,12,16,18,20,24];

e birth-and-death processes in continuum (Glauber dynamics), i.e., dynamics where there is
no motion of particles, but rather particles disappear (die) or appear (are born) at random,
see, e.g., [1,6,8,11,13,14,19,23];

e hopping particles (Kawasaki dynamics), i.e., dynamics where each particle randomly hops
over the space [13].

*The first named author acknowledges the financial support of the Royal Society 2007/R2 Conference Grant.
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In order to profoundly understand these dynamics, it is important to see how they are related
to each other. For example, in the recent paper [10], it was shown that a typical diffusion dynamics
can be derived through a diffusive scaling limit of a corresponding Kawasaki dynamics.

In [3], it was proved that a special Glauber dynamics can be derived through a scaling limit
of Kawasaki dynamics. Furthermore, it was conjectured in [3] that such a result holds, in fact,
for a wide class of birth-and-death dynamics (dynamics of hopping particles, respectively), which
are indexed by a parameter s € [0,1]. (Note that the result of [3] corresponds to the choice of
parameter s = 0.)

The purpose of this work is to show that the conjecture of [3] is indeed true, at least for
parameters s € [0,1/2]. (In the case where s € (1/2, 1], one needs to put additional, quite restrictive
assumptions on the potential of pair interaction, and we will not treat this case in the present
paper.) Thus, we show that the result of [3] is not a property of just one special Kawasaki (Glauber,
respectively) dynamics, but rather represents a property which is common to many dynamics.

More specifically, we fix a class of cylinder functions on I', and prove that on this class of
functions, the corresponding generators converge in the L?(T, u)-space. Here, y is a Gibbs measure
in the low activity—high temperature regime, u being invariant measure for all the processes under
consideration. If one knows that the class of cylinder functions is a core for the limiting generator,
then our result implies weak convergence of finite-dimensional distributions of the corresponding
processes. Unfortunately, apart from a very special case [11], no result concerning a core for these
generators is yet available.

The paper is organized as follows. In section 2, we briefly discuss Gibbs measures in the low
activity—high temperature regime, and the corresponding correlation and Ursell functions. In sec-
tion 3, we describe the classes of birth-and-death processes and of dynamics of hopping particles.
In section 4, we formulate and prove the result concerning the convergence of the generators.

The authors acknowledge numerous useful discussions with Dmirti Finkelshtein and Yuri Kon-
dratiev.

2. Gibbs measures in the low activity-high temperature regime
The configuration space over R%, d € N, is defined by
I':={yCR?: |[yNA| < oo for each compact A C R?},

where | - | denotes the cardinality of a set. One can identify any v € I" with the positive Radon
measure erv £x € M(R?), where ¢, is the Dirac measure with mass at =, Y wez Ex 1=ZETO
measure, and M(R?) stands for the set of all positive Radon measures on the Borel o-algebra
B(R?). The space I' can be endowed with the relative topology as a subset of the space M(R?)

with the vague topology, i.e., the weakest topology on I' with respect to which all the maps

Doy ()= [ f@)ad0) =3 fla) f e CoRd),

S

are continuous. Here, C(R?) is the space of all continuous real-valued functions on R? with compact
support. We will denote by B(T") the Borel og-algebra on T'.

Let p be a probability measure on (I, B(T')). Assume that, for each n € N, there exists a non-
negative, measurable symmetric function k,(L") on (R?)™ such that, for any measurable symmetric
function f(™ : (R4)"™ — [0, 400,

T (Rd)n

{z1,...,.zn }Cv

The functions kff) are called correlation functions of the measure p. If there exists a constant
& > 0 such that
V(o1 @) € RN kM (21, 20) < &7, (1)
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then we say that the correlation functions k&n) satisfy the Ruelle bound.

The following lemma gives a characterization of the correlation functions in terms of the Laplace
transform of a given point process, see, e.g., [10]
Lemma 1. Let i be a probability measure on (I'yB(I")) which satisfies the Ruelle bound (1). Let

f:R? = R be a measurable function which is bounded outside a compact set A C R? and such that
ef —1 € LY(RY,dz). Then for p-a.a. v €T, {|f],7) < oo and

= 1
M pu(dy) =1+ Z — (@) — 1) (@) DM (g xy)day - day,.
T ne1 n! (Rd)n "

Remark 1. Note that if f : R — R is bounded outside a compact set A C R? and if, furthermore,
f is bounded from above on the whole R?, then the condition e/ — 1 € L'(R?, dx) is equivalent to
f e LY(Ac, dx).

Via a recursion formula, one can transform the correlation functions kﬁn) into the Ursell func-

tions uftn) and vice versa, see, e.g., [22]. Their relation is given by

ku(m) =Y uu(m) - uu(ng),  neTo, n# 2, (2)

where
Top:={yeTl:|y <oo},
for any n = {x1,...,2,} €T

ku(n) = kL”)(xl, cey D)y uu(n) == uIS”)(ml, cey X)),

and the summation in (2) is over all partitions of the set 7 into nonempty mutually disjoint subsets

0o
n=1

M,...,n; Cnsuchthat n U---Un; =n, j € N. Note that if the correlation functions (k‘ﬁn))
are translation invariant, i.e., for each a € R?

K (1, mn) =k (@1 +a, .. 20 +a), (21,...,2,) € (RT)",

"
then so are the Ursell functions (uff ))2021.

A pair potential is a Borel-measurable function ¢ : R? — RU{+oc} such that ¢(—z) = ¢(z) € R
for all x € R?\ {0}. For v € T and = € R\ ~, we define a relative energy of interaction between a
particle at x and the configuration ~ as follows:

> dlw—y), it > |e(x —y)| < +oo,

E(z,v) =1 vev yey
+ o0, otherwise.
A probability measure p on (T, B(T')) is called a (grand canonical) Gibbs measure corresponding

to the pair potential ¢ and activity z > 0 if it satisfies the Georgii-Nguyen—Zessin identity ([17,
Theorem 2)):

[t [ a@ore) = [ ) [ sdzespl-Be)lFo U Q

for any measurable function F': T' x R — [0, +-0c]. Here and below, for simplicity of notations, we
just write x instead of {z}. We denote the set of all such measures p by G(z, ®).

As a straightforward corollary of the Georgii-Nguyen—Zessin identity (3), we get the following
equality:

[t [ @) [ e Fo.a.e)
= /Fu(d’y) /Rd zdzy /Rd zdzgexp [—E(z1,7) — E(x2,7) — ¢(x1 — 22)]

X F(yU{zi, 22}, 21, 22) +/

() / sdzexp [~ E(z,7)] F(yUz,z,7)  (4)
I Rd
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for any measurable function F : T' x R? x R? — [0, 4+-o0].
Let us formulate the conditions on the pair potential ¢.
(S) (Stability) There exists B > 0 such that, for any v € T'g,

> ¢z —y) > -B
{zy}Cy

In particular, condition (S) implies that ¢(z) > —2B, x € R%.
(LA-HT) (Low activity-high temperature regime) We have:

le™?®) —1|zdx < (2e1728) 7L,
Rd

where B is as in (S).
The following classical theorem is due to Ruelle [21,22].

Theorem 1. Assume that (S) and (LAHT) are satisfied. Then there exists p € G(z, ) which has
the following properties:

a) p has correlation functions (kfln)),cle, which are translation invariant and satisfy the Ruelle
bound (1);
b) For eachn > 2, we have u&n)((), ey s) € LYRY=D dgy - - da,_ 1), where u,(f) (0, ..y)

18 considered as a function of n — 1 variables.

In what follows, we will assume that (S) and (LAHT) are satisfied, and we will keep the measure
1 from Theorem 1 fixed.

3. Equilibrium birth-and-death (Glauber) dynamics and hopping particles’
(Kawasaki) dynamics

In what follows, we will also assume that ¢ is bounded outside some ball in R?. Note that then
(see e.g. [13])

E(z,y) =) ¢z —y),

yey
for dz y(dy)-a.a. * € R? and v € I' and

E@y\z) = 3 é@—y),
yeY\T

for p-a.a. v € I' and all x € ~.
We fix a parameter s € [0,1/2]. We introduce the set FCj(Co(R%),T") of all functions of the
form

I Sy F(’Y) :g(<f17’y>a"'7<fN»’7>)v

where N € N, f1,...,fn € Co(RY), and g € Cy(RY), where Cy(R”Y) denotes the set of all con-
tinuous bounded functions on RY. For each function F : I' — R, v € T, and z,y € RY, we
denote

(Dy F)(7) i= F(y\ z) = F(7),
(Dy,f F)(7) = F(y\zUy) - F(v).
We fix a bounded function a : RY — [0,+0c) such that a(—2z) = a(z), * € R and a €

LY(R9, dz). We define bilinear forms
/ () / () exp[sE(z, 7\ 2)](D5 F)(7)(D5G)(2),
N R4

ex(r.G) = 3 [ [ aa) [ ayat—y)
x expls By \#) = (1= ) (w7 \ 2))( Dy @)D G) ),

SG(Fv G)
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where F,G € FCu(Co(R?),T). As we will see below, £z corresponds to a Glauber dynamics and
Ek corresponds to a Kawasaki dynamics.
The next theorem follows from [13].

Theorem 2. i) The bilinear forms (Eq, FCy(Co(RY),T)) and (Ex, FCy(Co(RY),T')) are closable
on L*(T,u) and their closures are denoted by (Eg, D(Eg)) and (Ex, D(Ex)), respectively.

ii) Denote by (Hg, D(Hg)) and (Hi, D(Hf)) the generators of (g, D(Eq)) and (Ex, D(Ek)),
respectively. Then FCy(Co(R?),T) C D(Hg) N D(H), and for any F € FCy(Co(R?),T),

~(dx) explsE(x, 7\ x)](D;F)(V)—/Rd zdwexpl(s — 1) E(z,))(DF F)(7), (5)

(HaP)) =~ [

Rd

(HrF)(v) = — /Rd v(dx) /Rd dya(z —y) exp[sE(z,v\ x) + (s = 1)E(y,y \ 2)|(D, F)(v).  (6)

ili) Let § := G, K. There exists a conservative Hunt process

MF = (qu Fuv (Fg)tQO’ (eg)tZO’ (Xﬁ(t)t>07 (PQ)WEF)

onT' (see, e.g., [15, p. 92]) which is properly associated with (&, D(&)), i.e., for all (u-versions
of) F € L*(T, ) and all t > 0 the function

U3y GiF)0) = [ PORH0)IP

is an Ey-quasi-continuous version of exp|—tHy|F. MF is up to u-equivalence unique (cf. [15,
Chap. IV, Sect. 6]). In particular, M* has p as invariant measure.

Remark 2. In Theorem 2, M* can be taken canonical, i.e., QF is the set D([0,+o0),T) of all
cadldg functions w : [0,400) — I' (i.e., w is right continuous on [0, +0c0) and has left limits on
(0,4+00)); XF(t)(w) = w(t), t = 0, w € QF; (Fg)@o, together with F* is the corresponding minimum
completed admissible family (cf. [5, Section 4.1]); @5, t > 0, are the corresponding natural time
shifts.

It follows from (5) that H is (at least heuristically) the generator of a birth-and-death process,
in which the factor exp[sE(x,~ \ z)] describes the rate at which particle = of the configuration ~y
dies, whereas the factor exp[(s — 1) E(x, )] describes the rate at which, given a configuration ~, a
new particle is born at x. We see that particles tend to die in high energy regions, i.e., if E(x, v\ x)
is high, and they tend to be born al low energy regions, i.e., if E(xz,) is low.

Next, by (6), Hk is (again at least heuristically) the generator of a hopping particle dynamics,
in which the factor

explsE(z,y\ @) + (s = DE(y, 7\ )]

describes the rate at which a particle x of configuration v hops to y. We see that this rate is high if
the relative energy of interaction between x and the rest of the configuration, v\ x, is high, whereas
the relative energy of interaction between y and v \ z is low, i.e., particles tend to hop from high
energy regions to low energy regions.

4. Scaling limit

In this section, we will show that the birth-and-death dynamics considered in section 3 can be
treated as a limiting dynamics of hopping particles. In other words, we will perform a scaling of
Kawasaki dynamics which will lead to the Glauber dynamics. We will only discuss this convergence
at the level of convergence of the generators on an appropriate set of cylinder functions. In fact,
such a convergence implies a weak convergence of finite-dimensional distributions of corresponding
equilibrium processes if the set of test functions additionally forms a core for the limiting generator.
However, in the general case, no core of this generator is yet known and this is an open, important
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problem, which we hope to return to in our future research. Our results will hold for all s € [0, 1/2]
(see section 3). They will generalize Theorem 4.1 in [3], which was proved in the special case s = 0,
and confirm the conjecture formulated in section 6 of that paper.

So, let us consider the following scaling of the Kawasaki dynamics (for a fixed s € [0,1/2]).
Recall that, for each bounded function a : R¢ — R such that a(r) > 0, a € L'(R% dx), and
a(—z) = a(x) for all z € R?, we have constructed the corresponding generator of the Kawasaki
dynamics. We now fix an arbitrary € > 0 and define a function a. : R* — R by

ac(z) = ela(ex), x€RY

/Rd ac(z)dx = /]Rd a(z)dz.

By the properties of the function a, we evidently have that the function a. is also bounded, satisfies
as(r) = 0, for all z € R, a. € LY(R?, dx), and a.(—x) = ac(z) for all # € R% Hence, we can
construct the Kawasaki generator which corresponds to the function a.. It is convenient for us to
denote this generator by (H., D(H.)). We will also denote the generator of the Glauber dynamics
by (Ho, D(Hp)). We first need the following lemma, whose proof is completely analogous to the
proof of Lemma 4.1 in [3].

Note that

Lemma 2. For any e > 0 and any ¢ € Co(R?), the function F() := ¥ belongs to D(H.) and
the action of He on F is given by the right hand side of formula (6) for e > 0 (with a replaced by
ag), respectively by the right hand side of (5) for e = 0.

Remark 3. For each ¢ > 0, denote by (&, D(E.)) the Dirichlet form with the generator (H., D(H.)).
It can be easily proved that the set { exp[(¢,-)] : ¢ € Co(R?)} is dense in the Hilbert space D(€:)
equipped with inner product (F,G)p,) := E(F,G) + (F,G)r2(r,)-

‘We have

(Dg F)(7) = F(y\zUy) = F(y) = =F(7) + F(y\z) = F(y\ =) + F(y\z Uy)
= (D; F)() + (D F) (v \ ).

So, we may rewrite the action of H. for € > 0 as follows:

H.:=H'+H",

(HF)) == [ @)Dz F)) [ dy acla =) explsBle. \a) + (s = DB\ )

and
2 F)0) == [ 2(d0) [ | dy aclo =) explsBar\ @) + (s = DB \ @)D} F)3 \ ).
We can also rewrite
Hy = HF + Hy,
where
(Hy F)) == | 2tdo) explsBle. \a))(D; F)(2)
and

(HF ) == | sdwexpl=(1 = ) B ))(DI ).
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Theorem 3. Let s € [0,1/2] be fived. Assume that the pair potential ¢ and activity z > 0 satisfy
conditions (S) and (LA-HT). Assume that ¢ is bounded outside some compact set in R?. Assume
also that

d(x) — 0 as |z| — oo. (7)

Let p be the Gibbs measure from G(z, @) as in Theorem 1. Assume that the function a is chosen

so that
[ atrte = [ exo |51 3 otw|ua)) .

uey
Then, for any ¢ € Cy(R?),
HEel$) — HEel?) in L2(T, p) as e — 0,

so that
H.e') — Hoe" in L*(T', ) as e — 0.

Remark 4. In fact, condition (7) can be omitted, and instead one can use the fact that ¢ is an
integrable function outside a compact set in R¢ (compare with [3]). However, in any reasonable
application, the potential ¢ does satisfy condition (7).

Remark 5. Note that the integral on the right hand side of (8) is well defined and finite due to
Lemma 1, see also Remark 1

Proof. We first need the following lemma, which generalizes Lemma 4.2 in [3].

Lemma 3. Let a function ¢ : R — R be such that e¥ — 1 is bounded and integrable. Suppose that
A>0,B>0,z,20,y1,y2 € R and x1 # y1. Then

/FeXp [— AE<I; +xz,v) - BE(yg1 + yzﬁ) + <¢,7>]u(d7)

~ [ [ aX o] ue) [ o]~ B S otw]nte) [ it iuan

uey uey
as € — 0.

Proof. By Lemma 1,

[ew [— AB((21/2) + 22,7) — BE((1/€) +y2,7) + <¢w>]u(dv)

=1
- ; n! /(uwn (exp[—Ap(- — z(e)) — Bo(- — y(e)) + ()] — D)®(ur, ..., un)

X k&")(ul,...,un)dul - dug, (9)

where () := (21/¢) + 22, y(€) := (y1/2) + 12

Using the Ruelle bound, semi-boundedness of ¢ from below and the integrability of ¢ outside a
compact set, we conclude from the dominated convergence theorem that, in order to find the limit
of the right hand side of (9) as € — 0, it suffices to find the limit of each term

o = / (expl—Ad(- — 2(2)) — Bo(- — y(&)) + ()] — 1" (ur, .., uy)
(Rd)n

X kﬁn)(ul, ooy Up)duyg - duy,,

— n ®mn1 Rna ®ng
Z <n1n2n3> /(Rd)n(fl,s ®f2,s ®f3,5 )(u17~--7un)

ni+nz+nzy=n

X k&")(ul,...,un)dul - dug, (10)
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where

) exp[—=Ag(u — z(e)) — Bo(u —y(e))],
(€))] = 1) exp[=Bo(u — y(e))],
]-1, ueR.

Using the definition of Ursell functions, we see that
/ (fy "1®f®"2®f®”3)( .,un)k‘ﬁ”)(ul,...,un)dul~--dun
(R)™

= Z/ . (2 @ 502 @ f509) (ua, - - stn ) up () -+ () dug - - - dug,
Rd

where the summation is over all partitions {n,...,n;} of n = {u1,...,u,}. We now have to
distinguish the three following cases.
Case 1: Each element 7; of the partition is either a subset of {u,...,un,}, or a subset of
{Uny+1, - s Uny+ns |, OF & subset of {wn, 1nyt1,--.,Un}. Set
w,=u; —x(e), i=n3+1,...,n,
w,=u; —y(e), i=mna+1,...,n

Then using the translation invariance of the Ursell functions, we get that the corresponding term
is equal to

o U2 8 6522 9 62 ) ) -, (1)

where

92,e(u) 1= (exp[—A¢(u)] — 1) exp[—Bo(u+ ((z1 — y1)/e) + 22 — y2)],
g3.c(u) :=exp[—-Bop(u)] — 1, ueR.

Note that 1 — y1 # 0 and so for any fixed u (and z2,y2), we have
lu+ ((x1 —y1)/e) + 2 — y2| = 400 ase — 0.

By (7) and the dominated convergence theorem, we therefore have that (11) converges to

[ 01— 105 & (el -460)] ~ )%

® (exp[—B¢(-)] — 1)®™ (uq, ..., up)uy(m) -+ uu(ng) dug - - - duy,.

Case 2: There is an element of the partition which has non-empty intersections with both sets

{u1, ... un, } and {Up, 41, Un}.
Using Theorem 1, we have that, for each n € N,

U;(L”H) e LY((RH™, dzy - - - dzy,),

where
UIS"+1)(x1, ceeyTy) = ul(f”l)(xl, oy 0), (21,...,2,) € (RO

Consider the integral

/( | (expl=v)] - Du® (ug, ..., ug) duy - - dug
Rd)E

= / , k(exp[—w(ul)] - 1)u£k)(0,u2 — UL, U3 — UL, - Uk — Up) dug - dug,
(R4)
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where we used translation invariance of Ursell function. By changing variables u}] = wuq, ufy =
Uy — ULy + e ey u; = ug — u1, we continue as follows:

= /(Rd)k (exp[—1(uy)] — l)ugk)(o, Uy Uy, oy uy) duf -+ duy,

= / (e_¢(“1) — 1)du; x / U;E.k) (ug,us, ..., ug)dusg - - - dug.
Rd (R )k—1

Note also that
|z(g)| = 400 and |y(e)| — +o0 as € — 0,

and hence, for each fixed u € R?
exp[—Ag(u—z(€))] =1 =0, exp[-Bo(u—y(e))]—-1—-0

as € — 0. Hence, using the dominated convergence theorem, we conclude that

o 2 © 552 @ L)) ) -, = 0

ase — 0.
Case 3: Case 2 is not satisfied, but there is an element 7; of the partition which has non-empty
intersections with both sets {t,, 11, .+, Un,1ny by AN {Ungtngt1y-- s Un )

Shift all the variables entering 1; by (). Now, since exp[—A¢] — 1 € L'(R?, dx), analogously
to case 2, the term converges to zero as ¢ — 0.
Thus, again using the definition of the Ursell functions, we get, for each n € N,

(n) _, n
CE Z (711 No n3>

ni+nat+nzg=n

O] = D st R ) -,
(Re)™1

8 /( d) (exp[—Ap(-)] — 1)®n2 (Uny 115+ -+ un1+n2)k/3n2)(un1+lv cee s Uny o ) QU 1+ AUy gy
Rd)n2
8 /(]Rd) (exp[_B¢(')] - 1)®n3 (un1+n2+1’ ce ’u”)k;(tn3)(u"1+n2+17 ce un)du’m-l-nz-‘rl < dug,.
’”3

Therefore, the right hand side of (9) converges to

(1 + Z i n(exp[—A¢(.)] —1)®"(uy, . .. 7un)kf¢n) (u1, .. up)duy - dun>

x (1 + i % . (exp[—Bo()] — 1)®" (ur, ..., un )k (us, . .. up) duy -+ - dun>
X <1+7§; (Rd)n(exp[d)(~)] - 1)®n(u1,...,un)k,gm(ul,...,un)dul-.-dun>
:/Fexp {—Auz¢(u)],u(d'y)/rexp [—B;MU)]u(dv)/Fexp[<¢77>]u(dv)-

as € — 0, which proves the lemma. [J
Now we are in position to prove the theorem. We fix any ¢ € Co(R?) and denote F(y) := e{#7).
It suffices to prove that

/ (HEF)(7) () — / (HEF)(7)u(dry) as € — 0, (12)
I T
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/F (HEF)(7) (HE F)(7)p(dy) — / (HE F)2(7)(dry) as € — 0. (13)

Now,

[ PR
- / ( / v(dx)exp[sE(wﬁ\x)](DxF)(’Y))zu(dv)
= /F Il 7)(—
= /F I 7)(
"

2
) explsE(x 2 (ele—e@) _ o)
@) = [ 2@ explse o\l )
z) exp[sE(z, 7 \ x)]e!#?) (e7¢@)
(@) = [ 2(an) el \ el )
= [taneted [ s [ ) esplsBry\ o)l esplsBas. v\ )]
> (eﬂo(zl) _ 1)(6749(12) —1)

/ (d’y)/ 2dx e @) o (2000Uz) exp[2sE(z, ,y)](eﬂp(z) _ 1)2
r

/ (dy) / 2day / 2 depexpl—E(1,7) — E(@z,7) — dlar — z2)]el?e10w10%)
Rd R4

x exp[sE(x1,vUxs)] exp[sE(xa,vUx)](e” elz1) _ 1)(6790(9:2) -1

- / 2da(1— 6?2 / () expl(25 — 1)E(z,7) + (20,7)]
Rd

T

+/ zd:cl/ zdxe e“’(‘“)(l —e“’(wl))e“"(“)(l —eW(“))
Rd Rd

x exp[(2s — 1)¢p(w1 — x2)] /F p(dy) expl(s — 1) E(x1,7) + (s = 1) E(22,7) + (2¢0,7)]  (14)

and

[ PR = [ zdoy [ s (e 1 1) [ ) exolis = 1) B

I
+ (s = DE(z2,7) + (2¢,7)]. (15)

Completely analogously to (14) we have

[P = [ zdo [ an [ (@ < 1Rats = pacte =) [ pl@r)
x exp[(2s — 1) E(z,7) + (s = ) E(y1,7) + (s = 1) E(y2,7) + (20,7)]

zdzy [ zda 1 5 e9(1) (e#(#1) _ 1)g#(w2) (g#(72) _
/Rdd /Rdd /Rddy/wdy 1)er () ( 1)
X as(l’l - yl)as(l’z - y2) exp[(2s - 1)¢>($1 - $2) (5 - 1)¢(y1 - $2)
(s~ Dl — )] / u(dy) expl(s — 1) E(1,7) + (5 — DE(22,7)

+ (s =1 E(y1,7) + (s = 1) E(y2,7) + (2¢,7)]- (16)

Let us make the change of variables

v =cly—x), yy=¢cly2—1x)
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in the first integral, and

Yy =e(yr — 1), Yo = e(y2 — x2)

in the second integral. Then, omitting the primes in the notations of variables, we continue (16)

as follows:

Next,

/Rd zdx /Rd dyl/ dya( e“’(w) —1)%a(y1)a (ZU2)/ p(dy)exp[(2s — 1) E(z,7)

(s =1E((y1/e) + z,7) + (s = 1)E((y2/2) + 2,7) + (2¢,7)]
/ Zd$1/ de/ dy1/ dys esa(:vl) ef wl)_l)ew(wz)(ecp(wz) —1)
R R R Rd

x a(yr)alys) exp(2s — )p(z1 — 22) + (s = Do((y1/€) + 21 — x2)
+ (s = Do(y2/e) + 22 — 21) /F p(dy) exp[(s = DE(z1,7) + (s = D E(22,7)

+ (s = DE((n1/e) +x1,7) + (s = DE((y2/¢) + 22,7) + (2, 7)].

/F (H FY2(7) )

/Fu(dfy)</w7(dx)/wdy ac(z —y)

2
« explsE(w, 7\ @) — (1 — ) By, \ @) (F(y \ @ Uy) — F(7\ x»)

—/Fp(dfy)</wfy(d:v)/w dy a-(z —y)

2
x exp[sE(x,y\ x) — (1 — s)E(y,~ \ z)](el?7\)+¢w) _ e(saw\a:)))

= [utan( [ tann [ azpeteneetene [ ap [ a
r R4 R4 R4 R4

X ae (21 — y1)ac (w2 — y2) exp[sE(zy, v\ x1) — (1 = 8)E(y1,v \ =1)]

x exp[sE(2,7 \ w2) = (1= 5)E(y2,7 \ 22)](e?@) — 1)(e#¥2) — 1)

- / () / +(dz)ee\e) / dyy / dys
N R4 R4 R4

X as(z — y1)ac(z — y2) exp[sE(z, v\ x) — (1 — s)E(y1,7 \ @)]
x exp[sE(z,y\ z) — (1 — 8)E(y2,v \ )] (e?¥) — 1)(e?*®2) —1)

4 / p(dy) [ (da) / (7 \ 1) (darp e\ gl \az) / dy [ dys
N R4 R4

Rd RA

X ac(z1 — y1)ac(re — y2) exp[sE(z1, 7\ 1) — (1 = s)E(y1,7 \ 1)]

x exp[sE(xg,v\ x2) — (1 — ) E(ya,7 \ 22)](e#W1) — 1)(e¥¥2) — 1)

:/,u(dw)/ zdz exp[—E(z,7)] 2”37)/ dy1/ dyo
r R4 R4 R4

x e*la(e(z — y1))ale(z — y2)) exp[sE(z,7) — (1 = 8)E(y1,7)]

x exp[sE(x,7) — (1 — 8)E(ya2,7)](e?¥) — 1)(e?*®2) — 1)

(17)

233



E.Lytvynov, P.T.Polara

+/u(d'y)/ zdxl/ zde/ dyl/ dyo
r Rd Rd Rd Rd

x exp[—E(z1,7) — E(x2,7) — ¢(x1 — x9)]e{?7922) ele7Uz0)
X ag(r1 — y1)ac (w2 — y2) exp[sE(z1, 7 Uz) — (1 — 8)E(y1,7 U x2)]
X exp[sE(z2,yUzy) — (1 — 8)E(y2, vy U z1)](ePW1) — 1)(e?®¥2) — 1)
= 1411 (18)
In the first integral in (18) let us make the change of variables
yi=cly —2), yp=c(y2— ).

Then, omitting the primes in the notations of variables, we continue I as follows:

I= /Rd dy1 /Rd dys alyr)a(ys) (e#(W1/F0) _ 1)(ep(wa/a)+a) _ 1)
X /F,u(d’)’) /Rd zdw exp[(2s — 1) E(z,y) + (s = 1) E((y1 /) + 2,7)

+ (s = DE((y2/e) +z,7) + 2, 7)]-

Let us take ' = z + (y1/¢), then omitting the primes in the notations of variables, we get:
1= [ dun [ dyatmatye) [ =da(e® D@ @) - Dagya(ye)
R Rd R

x / () expl(2s — DE(z — (31/2),7)
+ (5= DE(,) + (5 — DE@ + (92 — 11)/€),7) + (20, 7)] (19)

In the second integral in (18), let us make the change of variables ] = e(z1—y1), 25 = e(x2—ya2).
Then omitting the primes, we have:

H:/Rdzdx1 /Rdzdx2 /Rd dyy /Rd dyp e#((@1/2)H0) g2 (2/£)+12) (@) _ 1) (e2(2) _ 1)
% afar)a(z) exp((2s — (01— 02)/2) + 91— y2) + (5 — Do((@1/2) + 1 — 12)
(= 1ol — 0 = (2/2)] [ () explls = DB ) + (5= DE (. )
T (s = DB((21/2) + y1.79) + (s = DE((w2/2) + y2,7) + (20,7)]. (20)
Using (19) and (20), we get

J PR = [ zdo [ an [ dn @@ = 1)@ 000 Dagnae)

X /F,u(dv) exp[(2s — 1)E(xz — (y1/€),7)
+ (s =DE(x,7) + (s = DE(@ + ((y2 = v1)/2),7) + (20,7)]

zday zdzs L o e?((@1/e)Fun) gp((@2/e)+v2) (o2 (y1) _ 1) (p#(v2)
+/Rdd /Rdd /Rddy/wdy ( 1)( 1)
x a(z1)a(wz) exp[(2s — 1)o(((x1 — x2)/e) +y1 — y2) + (s — Do((w1/€) + y1 — y2)
(5= 1)6(n =32 = (a2/2)) [ ) expl(s = D B1,7) + (5= 1) By, )

+ (s = DE((1/e) +y1,7) + (s = DE((22/¢) + y2,7) + (2, 7). (21)
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Completely analogously, we get
/F (Hy F)(7)(HZ F) () (k)
- / 2o [y (@)~ 1Paly) / u(dy) expl(2s — D E(,7) + (s — DE((y/2) +2,7) + (26,7)]

zdzy 2 dxo p(x1) _ p(z2) _ e(@1) ge(@2) 4

/Rdd /Rdd /dye 1)(e 1)@ g (2) g y)

x exp[(2s — 1)p(x1 — z2) + (s — 1)p((y/e) + x1 — x2)]

X /Fu(dv) exp[(s — DE(x1,7) + (s = ) E(22,7) + (s = DE((y/e) + x1,7) + (20, )], (22)

and

/(HJF)(W’)(HJFF p(dy) = / Zd$1/ zdsvg/ dy a(z2)( e“"(ll) -1)
r R4 Rd Rd

x (e?®) — 1) /F pu(dy)e®#7 exp((s — 1) E((x2/¢) +y,7) + (s — 1) E(y, )
+ (s = D) E(z1,7) + (s = D)o((z2/¢) +y — x1)]. (23)

Using the Ruelle bound and Lemma 1, we conclude that the integral over I' in the right hand
side of equalities (17), (21)—(23), is bounded by a constant, which is independent of e. Therefore,
by the dominated convergence theorem, to find the limit of (17), (21)—(23) as € — 0 it suffices to
find the point-wise limit of the functions appearing before the integral over I', as well as the limit
of the integrals over I' for fixed = (x; and zy respectively), y1 and ys.

To find the latter limits, we use Lemms 3. Then, using (8), we see that (17) and (22) converge

o (14), whereas (21) and (23) converge to (15). Therefore, (12) and (13) hold. O
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[0 30iXKHOCTI reHepaTOpiB PiBHOBAaXXHOT AVUHAMIKU
nepecTpudylo4YMx 4aCTUHOK A0 reHepaTopa npouecy
HapPOAKEHHA-3HULLLEHHS B KOHTUHYYMI

€.JlntBuHos, MN.T.MNongapa

®dakynbTeT matematuku, YHisepcutet CyoHci, CyoHci, BenukobpuTaHis
OTtpumaHo 31 ciyHg 2008 p.

Mwu po3rnsgaemo Taki ABa TUMU PIBHOBAXHUX CTOXACTUYHUX OUMHAMIK HECKIHYEHHO-4aCTUHKOBUX CUCTEM
B KOHTMHYYMI: nepecTpubytodi YacTuHkM (anHamika Kasacaki), TO6To AMHamika, Konn KOXHa YacTUHKa BU-
nagKoBMM YMHOM Nepeckakye B MPOCTOPI; ANHaMIKa TUMNY HAPOOKEHHSA-3HULLEHHS (OMHamika Maybepa),
npw SIKiN YaCTUHKM HEe pPyXaloTbCs, @ HAPOLAXYIOTbCS | 3HULLYIOTbCS BUNAOAKOBUM YMHOM. Mu nosoavmo,
O 4S9 WMPOKOro Kracy AvHamik Mmaybepa koxHa Taka AvHamika Moxe OyTu ofepxaHa sk CKenniHro-
Ba rpaHuus anHamikn Kasacaki. TouHilwe, M1 oBOANMMO 36iKHICTb BigNOBIOHUX reHepaTopiB Ha MHOXMHI
UMAiHAPUYHUX BYHKLIY B HOPMI L2 BiAHOCHO BiANOBIAHOI iHBapiaHTHOI Mipu npouecy. OCTaHHS € MIpolo
[i66ca, Wo BigNoOBiAae NoTeHuiany napHoi B3aemogji B pexuMi Mana akTUBHICTb / BUCOKI TemnepaTtypu.
Haw peaynbrat y3aransHioe pesynstaT poboTtu [Finkelshtein D.L. et al., Random Oper. Stochastic Equati-
ons], ogepXxaHuii oAns cneujanbHUX TUNIB auHamik May6epa i KaBacaxi.

Knio4oBi cnoBa: rnpouec HapoaXeHHs | 3HWLLEHHS], CKiIHYeHHI cucTemu, mipa bbca, nepecTpubyiodi
4aCTUHKW, CKEUMTIHIOBa rpaHunLs

PACS: 02.50.Ey, 02.50.Ga
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