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Logical gates can be formalized by Boolean algebra whose elementary op-
erations can be realized by devices that employ the interactions of macro-
scopic numbers of elementary excitations such as electrons, holes, pho-
tons etc. With increasing miniaturization to the nano scale and below, quan-
tum fluctuations become important and can no longer be ignored. Based
on Heisenberg equations of motion for the creation and annihilation opera-
tors of elementary excitations, | determine the noise sources of composite
guantum systems.
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1. Introduction

Since my contribution is dedicated to the memory of my friend Yuri Klimon-
tovich, I wish to start with a few personal remarks. I met Yuri for the first time
in 1963 when I was invited to attend and to give a paper at the All Union Con-
ference on Solid State Physics in Moscow. This was my first visit to the Soviet
Union and I was overwhelmed by the warm reception I received there after such a
terrible war. I gave a lecture on laser theory that met special interest by Yuri. He
read my preprint and we had a very stimulating discussion on it. I was impressed
by the great warmth of Yuri and we became friends immediately. Later I had again
and again opportunities to meet Yuri at various conferences in the Soviet Union.
I especially remember a conference in Pushchino on the field of synergetics. I was
delighted to see the reception of our research and I realized how much contributions
had been done previously in Russia to this field. I was also very pleased that Yuri
and his colleagues initiated a permanent and very lively seminar on synergetics at
the Lomonossov University in Moscow. I tried of course to invite Yuri to my own
institute in Stuttgart because I had some funds there. For the well known reasons,
however, he was not able to come until the new situation occurred. Since then I
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was very happy to have him several times in Stuttgart and we enjoyed both our
scientific discussions and life very much. I was deeply impressed by the profound
ideas of Yuri, especially in the field of non-equilibrium physics [1] that was a field
of our common interest and I profited again and again by his deep insights, e.g. on
his by now famous S-theorem. The last time I met Yuri was in Berlin at Werner
Ebeling’s institute just a few months before his untimely death. Yuri was such a
warm hearted and noble personality and I surely will not forget him.

My paper is motivated by the progress made in information technology and
here again especially in nanotechnology. So far information processing is based on
logical elements that use large numbers of elementary excitations such as electrons
so that quantum fluctuations can be ignored, at least in many cases. With increasing
miniaturization, however, the quantum domain becomes important. Therefore my
contribution tries to show how quantum fluctuations can be calculated in a unique
way for all kinds of elementary excitations and their interactions that may be used
in logical devices.

In my contribution I consider logical devices or, in other words, logical gates.
As is well known logical operations can be formalized by a Boolean algebra which
contains in particular the operations “and”, “or”, and the “exclusive or”. Their
corresponding truth tables can be realized by specific dynamical systems of which
we write down the typical equations

dn,
“and” : d:bf = gnins, n >0, (1)

dn,
“or' d:bf = g(ny + ng), n =0, (2)
“exclusiveor” : dr _ —3yz — (* +y* + )z (3)

d
= —8rz— (2?47 + 2y, (4)
and

dz

5= —3zy — (2% + y* + %)z (5)

These equations must be solved by means of an initial value problem where the
transients provide the solutions to the corresponding truth tables. In the cases (1)
and (2) the reader may easily verify the validity of the corresponding truth tables
while with respect to the equations (3)—(5) I refer the reader to my book “Synergetic
computers and cognition” [2]. When we want to realize these abstract equations by
means of devices where e.g. the quantities n refer to currents or charge densities, we
must take care of their coupling to the surrounding which may be represented by
heatbaths. The elimination of the heatbath variables then leads to equations that
represent losses as well. Thus for instance equation (1) must be replaced by equation

dn,
Frie gning — kn, . (6)

With increasing miniaturization going to the nano scale and especially to still
smaller dimensions the processes must be treated from a quantum mechanical point
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of view. Thus the obvious question arises how to translate the above equations into
quantum mechanics. Here we must be very careful because there are different ways
depending on the experimental setup. In other words, we must take care of the
quantum mechanical preknowledge we have or, in other words, we must take care
of the way the initial states are prepared. Our considerations will apply basically
to all sorts of elementary excitations in solid state physics such as electrons, holes,
excitons, plasmons, polaritons, spin waves as well as to photons. In the first approach
I am proposing the replacement

ny, N1, Ny — quantum amplitudes b, a, c, (7)

where b, a, ¢ will become quantum mechanical operators. In a more detailed descrip-
tion, these operators must be equipped with indices, e.g. wave-vectors. To bring out
the essentials, we drop such indices here. The interaction term in the case that will
give rise to equation (1) can be described by a Hamiltonian of the form

H = hg(btac+ cTa'td), (8)

where A is Planck’s constant divided by 27 and g is a coupling constant. The daggers
indicate creation operators. Operators without daggers are annihilation operators.
In order to facilitate my approach I will consider in the present case a subspace
spanned by the vectors

a® "o and bF ¢y, 9)

where ¢q is the vacuum state. In order to come as close as possible to the description
in the terminology of a dynamical system I consider Heisenberg equations of motion.
As is well known, for any operator €2 the Heisenberg equations can be derived by
means of the Hamiltonian in the form

dQ i

where the square bracket indicates the commutator
[H,Q] = HQ — QH. (11)
Thus the Heisenberg equation for the annihilation operator b reads

db

T i[g(bTac+ cta*h),b] (12)

or because of commutation relations

db .
g = gac [bF,0] . (13)

Using the explicit commutation relation

(b7, 0] = -1 (14)
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we eventually arrive at

db
Fri —igac. (15)
Similarly the Heisenberg equations for the operator product ac read
d
(;tc) =ig [(b"ac+ cTa*b, ac] (16)
or 4
(di@ =igb [cta™, ac] = igh(cTaTac — accTa™) (17)
which because of
aat —ata=1 (18)
can be cast into the form
d
% =igb(ctaTac— (1 +ata)(1+cte)) (19)
or in short q
S;C) = —igh(1+a*a+ cc). (20)

Having in mind that the operators act in the subspace (9) the equation (20) reduces
to

d(ac )
(dt ) = —igb. (21)
By a similar approach we obtain the relations
d(b
(d;zc) = g [btac+ ctatb, bac =] =

= igac [b¥,b] +igb[ctaT, ac] =
= —igac —igb in subspace! (22)

So far we have not taken into account the interaction of our quantum system with
heatbaths. Having eliminated them (which can be done in a model like fashion
explicitly) we may take care of their effect using the damping constants so that the
above equations are translated into

db

Fri —igac — kb, (23)
d((;ztc) —igb — yac (24)

and (b
(de) = —igac —igb — ' (bac), (25)

respectively. However, this phenomenological approach has a great drawback be-
cause, as one may easily show, it violates quantum mechanical consistency. As has
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been shown especially in the context of laser physics this violation of quantum me-
chanical consistency can be remedied by the introduction of quantum noise operators
" so that for instance equation (23) is transformed into

db
— = —igac — kb + T'y(t). (26)
dt
For reasons that will become obvious herein below I reformulate the correspond-
ing quantum mechanical equations using projection operators P;; according to the

scheme:

b— Py ; ac = Py, ; bac — oy Py, - (27)
This transforms the equations (23) and (24) into
dp} ,
d;)l = _19P02011 - “Pol1 + Fél (28)
and 4p?
% = —igPy; — vFion + Toour » (29)
respectively, and using the notation
P011P02011 = P(g)oo,111 (30)
we can cast (25) into the form
dPjoo, 111 : :
T = —ig Py, — igPy — VIPOOOO,m + 11800,111 : (31)

The obvious question arises in which way we may determine the fluctuating forces
T8, Toi1s [oo0.111- Before we turn our attention to the solution of this task, we
discuss a second interpretation. Namely the initial state may also be prepared using
the occupation numbers and we may consider an experimental setup in which only
occupation numbers of elementary excitations are concerned. Thus our goal is to
translate the equation

5 = g (32)

correspondingly which we first consider without damping. In our model we also
assume that

d(nlng)

= gn, 33
= (33)
holds. From (33) and (32) we easily derive
d(n,
) gz + . (31)

Introducing losses we may supplement the equations correspondingly so that for
instance we obtain

dn,

ke gning — KNy (35)
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and
d(nlng)

dt

When we choose k = v = ¢, (35) and (36) lead to a conservation law. In order to
translate these equations into quantum mechanics we introduce projection operators
according to

= gn, — YNiny . (36)

1 2
ne — Ppy, mng — Ppy (37)

so that we now have to consider the equations

dP}
dtll 9P121,11 - “P111 + Fh ) (38)
dP121 11
T = 9P111 - ”YP121,11 + F%l,ll ) (39)
and
d (P} P?
M = 9P121,11P121,11 + 9P111P111 — (K + ’Y)P111P121,11 + F(1)11,111 . (40)

dt

Making use of the property of projection operators (see also below for details)

P111P111 = P111 (41)
and of
P111P1212,11 = P1011,111 (42)
we may cast (40)into the form
dP1011,111 2 1 0 0
—a 9P11,11 +9P — (k+ 7)P111,111 + F111,111 . (43)

Again it remains our task to determine the fluctuating forces I' explicitly.

2. Haken-Weidlich theorem [3,4]

In the following we use the fundamental quantum mechanical property of pro-
jection operators

PijP = 0P . (44)

We denote quantum statistical averages by square brackets. We assume that for in-

stance phenomenologically or partly phenomenologically and partly from first prin-
ciples the following averaged equations are given

% = ; (Mij 1 Pra), (45)

where the elements M do not depend on P, but may depend on variables of other
quantum systems. As one may show the solutions to (45) do not obey the quantum
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mechanical consistency relations (44). To restore quantum mechanical consistency
we introduce the equations

dP;;
d ; ki Py + Ti5(2) (46)

We assume that the averages vanish
([y(1)) = 0 (47)
and that the fluctuating forces are d-correlated in time
(T (OT (")) = Gijud(t —1). (48)

This is the only assumption to be made in the present context. In many cases it
is fulfilled if for instance the reservoirs are broadband or the relaxation time of the
fluctuating forces is short compared to that of all other processes in the system.
The Haken-Weidlich theorem states that the strength of the fluctuating forces is
uniquely determined by

Gij,kl = Z <(5jkMil,mn - 5nlMij,mk - 5miMkl,jn) Pmn> (49)

mn

As a comparison with the previous section shows, M may be decomposed into
1 2
Mij = Mz(]Ll + Mz(j;gz ; (50)

where :
MW stems from 7—11 [H, Pyl . (51)

As can be shown, the terms M cancel each other so that it is sufficient to determine
the strengths of the fluctuating forces by using M instead of M in (49).
3. Composite guantum systems

In the following I want to generalize the Haken-Weidlich theorem to composite
quantum systems. This requires the introduction of the appropriate multiplication
rules of projection operators. First we adopt the already known rule

Pzipkll = ]kpz% ) (52)
where the upper index [refers to the specific subsystem. Similarly we have

PjPg = d1Py (53)
However, what is new is the relation for the composite system given by

Pi;PkZl = P‘(l)c,jl’ (54)
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From (52)—(54) we may deduce the following multiplication rules:

PPy v = PPy Piy = 0 Py (55)
PQP/k/ G == Pz%‘lej/Pk/l’ = 5J'I€,‘Pl/zj/l/ (56)
PZ_] klPl i’ k' == PZ%CPQP k/P ;= 5ki/5ljpijk/l/ . (57)

For the following we need a concise notation so that we introduce the following
abbreviation:

PK. for

i K =1, 1':17 Z:j,
K=2 4=1 j=},
K =0, =112, J=/jiJ2- (58)

Having used it we can cast the relations (52)—(54) in the concise form

K KLV
P P _— hi:iv%a_rj\fzgj// P//j// 9 (59)
where for instance
) 111
(K, L) . 1, ]_7 hl]l] Z//J// — 5 /5 s 5 / i1 (60)

holds. The basic idea is now similar to that of section 4. We assume that the averaged

equations
d
E<P51>:<ZM5551P§L>> (61)

that may be either based on Hamiltonians and on phenomenologically added incoher-
ent terms or containing only incoherent terms. We want to convert these equations
into quantum mechanically consistent equations by adding fluctuating forces

L= D M P+ T (62)

kb L -

We lump the projection operators together to a state vector

PO
A= P® (63)
P

that has to obey equations that we write in the form

dA

= MA+T. 64
¥ + (64)
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The formal solution of (64) reads

t
A= / Gt 7T (r)dr + Ay, (65)
where G is the Green’s function with the property
G(t,t)=F (66)

and Ay, a solution to the homogeneous equation (64). We consider

<A’BA> - <( / t T(r)G(t, 7)dr + Eh> B ( / t G(t, 7)D(r)dr' + Ah> > . (67)

where the tilde refers to the transposed matrix or transposed vector
A, B, etc. (68)

We have introduced a matrix B in the form

Bll BIQ BlO
B = BQl B22 BQO ’ (69)
BOl BOQ BOO

where each submatrix is further labelled by means of indices,

[=ij, (70)
where eventually we will choose only one non-vanishing element. Because of (59) we
obtain for the 1. h. side of (64)

(PFBPr) = By (PIPy) = Biy hi Y (P . (71)

Taking the derivative with respect of time, we then obtain for the 1. h. side of (46)

the relation 4
Lhs — Bﬁth%,,Z<M[V,,Y]VP}V>. (72)

After differentiation the r. h. side (67) contains the terms

(t ( tT)r(T)dT+Ah)>, (73)

N
r1

G(t,7)dr + Ah> (T)> : (74)

@ (T
<
(i
(i
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A simple analysis and using a single element of B transforms (73) into
1
Bry 5G1s (77)

and the same expression results from (74). The expression (76) can easily be trans-
formed into

i (P M) < B M a9
NU NU
Similarly the expression
(M) BPE), (79)
that stems from (75) can be transformed into
525 (Y P 0
v

Collecting all expressions and choosing only one matrix element B with its specific
indices, we obtain our final result

GIff = Wi > QMR PYY) = SOMEY (MIPY) = 3 Wik (MESY P
JW A%
(81)
This is the desired extension of the theorem of section 4 to a composite quantum
system.

4. Conclusion and outlook

Some general remarks about the applicability of our above formalism may be in
order. The projection operators correspond, at least in general, to physical observ-
ables, such as occupation numbers, (complex) amplitudes etc. Using them, we may
calculate correlation functions of the form

(P, (P (1)) (82)

<<PIVJ — (Pt >> (PI’J’( ) — <P]/J/( )>)> (83)

In particular, the latter form (83) enables us to determine the contribution of the
fluctuations. We may thus determine the error made by a quantum device, e.g.
by a logical gate. The formalism is rather general in that it does not only apply
to elementary excitations, but also to general collective states provided that they
can be characterized by quantum numbers and that their generalized Heisenberg
equations are known.

A final remark should be made. As our above formalism reveals, Hamiltonian
quantum systems are noise free. Only when they are coupled to reservoirs that cause
incoherent processes, fluctuations become manifest.

or
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dnykTyauii B KBAHTOBUX NPUCTPOSAX

I XakeH

IHCTUTYT TEeOPETUYHOI Di3nKu,
LleHTp cuHepreTukn yHisepcutety LLUTyTrapra,
MobaddeHsanbapinr, 57/4, D-70550, LUTyTrapTt, HimeydmHa

OTpumaHo 16 6epesHs 2004 p.

JNoriyni dinbTpn MoxHa popmaniayBati 3a 4onomoroto 6ynesoi anreb-
pu, enemMeHTapHi onepadii SK0T MOXHa peanidysaTv B KBAHTOBUX MNpu-
CTPOSX, e BUKOPUCTOBYETLCA B3AEMOiA MaKpOCKOMIYHOT Ki/IlbKOCTI ene-
MEHTapHUX 30yaXeHb (ENEKTPOHW, Oipku, GOTOHU i T.0.). 3 POCTOM Mi-
HiaTiopM3auii cMCTeEMM A0 HAHOPO3MIPIB, CTAlOTb BAXIMBUMMN KBAHTOBI
bnykTyauii, i HAMKN BXe HE MOXHa HexTyBaTu. Ha oCHOBI piBHSAHHS [en-
3eHbepra oJ1s onepaTopiB HAPOIXKEHHS | BHULLLEHHS eNeMeHTapHUX 30y-
[DKEHb BU3HAYEHO XapakKTepPUCTUKN OXepen LWyMy B CKIa4HUX KBAHTO-
BUX NPUCTPOSIX.

Knio4oBi cnoBa: kBaHTOBI ¢siykTyaLii, eneMeHTapHi 36yaKeHHS,
PIBHSIHHS pyxy leizeHbepra, 10ri4Hi npucTpOi, LWyMU B CKNaaHMX
KBaHTOBUX cUCTEMax

PACS: 05.40.-a, 05.30.-d
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