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We have obtained an equation describing space-time behaviour of the cur-
rent density component by using kinetic equation for one-particle distri-
bution function for the structural units of the solution with the generalized
Vlasov potential.

The analytic expression for the complex tensor of electroconductivity o (w)
is given derived from the Fourier-transform and from the comparison with
the differential form of the Ohm’s law. This permitted us to obtain the di-
electric susceptibility tensor e(w) for conducting media.

By identifying the longitudal ¢, and transversal ;. parts one can determine
the anisotropy of the dielectric susceptibility for electrolyte solutions.
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1. Introduction

Rather high accuracy and easiness of measurement of electroconductivity has
long attracted the efforts of numerous researchers who have gathered enormous
experimental material. However theoretical research of electroconductivity of elec-
trolyte solutions is one of the most complicated and difficult questions of physics of
liquid state. Research of irreversible processes in electrolyte solutions, in particular
of electroconductivity, belongs to Onsager. Generalization on the cases of conduc-
tivity of an alternating current was carried out by Debye and Falkenhagen. Further
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development of the theory of electroconductivity, based on the use of nonequilibri-
um multiparticle distribution functions, is presented in works [1-3]. Undoubtedly,
the possibility to determine dynamic coefficients of electroconductivity and dielec-
tric susceptibility is of great interest. Thus, the purpose of the present work is to
determine these parameters as well as the appropriate modules of elasticity in view
of anisotropy depending on constituents, structure of solution and thermodynamic
parameters based on the molecular-kinetic theory.

First of all we accept the kinetic equation for one-particle distribution function
fa(Xa, t) of a type structural units of electrolyte solutions with generalized Vlasov
potential [4]:
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fo(pa) = na(2rmkTy) =32 exp(—p?/2makTy) — is equilibrium Maxwell distribution
function; m, , ¢, , P — are mass, coordinate and momentum of particles of a type,
respectively, p& = pY —mg,v*(q1,t) — is relative momentum, e, = zq.€ , €, = 2p€ , € —is
an elementary charge; z, , zp , B4 , B, — are valency and friction coefficients of particles
of a and b types, respectively, £*(qy,t) — are the components of electric field, ®,(|7)
— is the potential energy of interaction between the structural units of solution, and
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g% (r) — is radial distribution function, describing equilibrium structure of solution,
which according to [5], we consider as known, U,(q,t) — is displacement vector of
particles of a type, Q = Qu = 7,,' = (kT/d2,) - (1/8. + 1/3,) is phenomenological
frequency of structural relaxatlon, kis Boltzman’s constant, do, = 1/2(d, +dp) , dg ,
d, — are diameters of structural units of solutions of a and b types. Right-hand side of
the equation (1), i.e. I.(f,) is the collision Fokker-Plank term, which is derived in the
approximation of pair interactions. It provides irreversibility of the initial equation
in time, i.e. the possibility to describe the dissipation processes in solutions. For
convenience, let us put the coordinates of particles ¢, = ¢\ , & = ¢ , ¢ = ¢
and so on. It should be mentioned that particles of the solution interact by the
potential @, (|7, 2s), which consists of the sum of the energy of inter-ionic (kations
and anions) ®;; , ion-molecular ®;; and ®,, , and intermolecular @, interactions.
Here Qs = (vs, ) — are polar angles describing the orientation of the dipole around
the axis, connecting mass centers of interacting particles.

Let us use the definitions of pulse moments of the function f,(%,,t) according to
[6] and introduce the vector of density of current j(q,t) :
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as well as conditions of electroneutrality

g eana:eg ZaNg = 0,

a a

where p, , v¢ , K& — are volumetric density of charge, components of average
speed and kinetic part of the tensor of flow of momentum of particles of a type,
respectively.

Using the method of pulse moments of one-particle distribution function f,(,,t)
, multiplying equation (1) by (e,p%)/m, and integrating by dpj , taking into account
equations (2)—(4), we derive for the components of the vector of density of current
J%(q1,t) , the following equation:
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where

I/a:Ta_l = Ba/my .

737



S.Odinaey, |.Ojimamadov

Performing Fourier-transformation by time in (5) and solving it in regard to
Jj%(w, q) , for the components of the vector of density of current j*(w) = > j%(w, q1),
a

we receive 5
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Comparing (6) with the Fourier-image of the differential form of Ohm law, for
complex tensor of electroconductivity 6% (w) we have:

af

CNTQ/@(w) _ Z naea/ﬂa [5aﬁ + Z Te - Gel (O> ] (8)

1 —wTt, eq(1 —iwTe)

As to each process of transition in hydrodynamic mode, the certain elastic prop-
erties in a high-frequency mode will correspond. Further, according to [6] we shall
introduce the complex tensor of electroelasticity module:

€Y () = —iws™? (w) =€’ (W) — iwo®® (W), 9)

where the real part €*® (w) — is the dynamic tensor of electroelasticity module, and
imaginary part c®’ (w) — is the dynamic tensor of electroconductivity.

Substituting (8) into (9), and dividing real and imaginary parts for €% (w) and
o (w) , we receive:
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€%=nl?/m, , T and 7. is time of translational and structural relaxation, respecti-
vely.

The expressions in system (10) describe the frequency dispersion of electroelas-
tic modules and coefficients of electroconductivity in a wide interval of variations
of thermodynamic parameters and frequencies of external action. In these expressi-
ons the frequency dependence is caused by contributions of both translational and
structural relaxation. Potential parts of these coefficients contain the integral terms
which are defined by means of energy of interaction of structural units of the solution
® (1) and equilibrium radial distribution function g% (r) . At a certain choice of the
model of solution, according to [5], the latter could be considered as known. Debye
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and Falkengagen [7], being restricted by the real part of electroconductivity, investi-
gated frequency dispersion electroconductivity of electrolyte solutions. The second
equation of the system (10) is the generalization of the effect of Debye-Falkenhagen
for electrolyte solutions, the frequency behaviour of which coincides with the results
of general relaxation theories. Formulas of the system (10) make it possible to in-
vestigate the asymptotic behaviour of these expressions both in hydrodynamic and
in high-frequency mode and correspond to the general conclusions of the statistical
theory of electroelastic properties of solutions.

At low frequencies (hydrodynamic mode w — 0) expressions (10) describe elec-
troconductivity properties of solutions, and at fast processes (high-frequency mode
w — o0) — only the elastic properties could be described.

Expressions (10) also permit to investigate dispersion of dielectric susceptibility
of solutions. Following paper [8], it is also possible to determine a frequency dis-
persion of tensor of dielectric susceptibility €%’ (w) for conducting media, which is
connected to conductivity tensor 67 (w) by the ratio

i
£ (w) = 07 + —5*° (w). (11)
Eow
The latter enables one to determine longitudinal o, and transversal o,e|
components of these coefficients, as well as based on the Maxwell equations, to

determine the longitudinal EH (w, E) and transversal E| (w, E) parts of the vector

of electric field E (w, E) with regard to its wave vector k in electrolyte solutions,
which is the purpose of the further research.
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Jlo cTaTUCTUYHOI Teopii Aucnepcii TeH30piB
€JIeKTPOonpoOBIAHOCTI i AieNneKTpUu4yHor
CNPUMAHATIINBOCTI PO34YMHIB eNeKTponiTie

C.Opinaer?, 1.OpximamanoB 2

Di3nko-TexHIYHWI IHCTUTYT, AKagemis Hayk,
Oywan6e, Pecnybnika TagxmnkmcraH

TagXnubknin TexHiYHUI yHiBepcuTteT iM. M.C.Ocimi,
Oywan6e, Pecnybnika TagxunkmcraH

OTpumaHo 28 kBiTHS 2004 p.

OTpuMaHOo piBHSAHHS, SIke OMNUCYE MPOCTOPOBO-4ACOBY MOBEHKY KOM-
NMOHEHTU TYCTUHU CTPYMY, BUKOPUCTOBYKOYM KiIHETUYHE PIBHAHHSA 05
OJHOYaCTMHKOBOI MYHKLii pO3MN0Ainy CTPYKTYPHUX KOMMOHEHT PO34YNHY
3 y3araJibHeHM rnoTeHuianom Bnacosa.

MpencraBneHo aHaniTU4HUI BMpa3 O/ KOMMJIEKCHOro TeH30pa enek-
TPONpOBIgHOCTI o(w) , AkMA BUBeAeHun 3 Pyp’e-nepeTBOPEHHS i 3
andepeHuianeHoi popmm 3akoHy Oma. Le pmano 3mory otpumatm
TEH30p [AieneKkTpU4HOi CNpUAHATAMBOCTI e(w) AN NPOBIAHOro cepe-
A0BuLIA. Buaindoum NosaoBXHIO g) i NONepeYHy €1 4acTUHM MOXHa
BU3HAYNTX aHi30TPONIil0 AieNeKTPUYHOI CNPUMHATAMBOCTI ONA enek-
TPUYHUX PO3YUNHIB.

KniouoBi cnoBa: kiHeTu4He pPiBHSHHS, QYHKLUII pO3rnoainy, 4acToTHa
Aavcnepcisi, TeH30P AieIEKTPUYHOI CIPUVHSTANBOCTI, TEH300
€1eKTPOnPOBIAHOCTI

PACS: 61.20.Qg, 51.10.+y
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