Condensed Matter Physics 2008, Vol. 11, No 1(53), pp. 139-154 CONDENSED
MATTER
PRYSIES

Structural relaxation in pure liquids: Analysis of
wavenumber dependence within the approach of
generalized collective modes

T.Bryk!?, |.Mryglod*?

1 Institute for Condensed Matter Physics, National Academy of Sciences of Ukraine,
1 Svientsitskii St., 79011 Lviv, Ukraine

2 |nstitute of Applied Mathematics and Fundamental Sciences
Lviv Polytechnic National University, 12 Bandery Str., 79013 Lviv, Ukraine

Received January 4, 2008, in final form February 28, 2008

Wavenumber dependence of structural relaxation in liquids is studied by the method of generalized collective
modes (GCM). A new perturbation approach within the GCM method is proposed and applied in the long-
wavelenth limit in order to obtain analytical expressions for the wavenumber-dependent structural relaxation
and sound dispersion within a simplified three-variable dynamical model. Analytical results are compared with
numerical study of generalized modes within a more general five-variable dynamical model, which accounts
for thermal processes in liquids. Numerical results are presented for four thermodynamic points of Lennard-
Jones fluid at the reduced temperature 7* = 1.71. We discuss the features of non-hydrodynamic process of
structural relaxation in different regions of wavenumbers.
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1. Introduction

Collective dynamics in liquids is so far well understood mainly on macroscopic length and time
scales, where the hydrodynamic theory (i.e. local conservation laws) is applicable [1,2]. On the spa-
tial scales comparable with mean interatomic distance the microscopic dynamics in liquids is essen-
tially more rich than in hydrodynamic region: there exist non-hydrodynamic collective processes
with finite lifetime, which contribute to all measurable quantities. Examples of non-hydrodynamic
propagating processes are shear waves and heat waves (zero-sound), charge waves in ionic liquids,
while most obvious non-hydrodynamic relaxation process is the structural relaxation. In contrast
to hydrodynamic processes the non-hydrodynamic ones do not survive on macroscopic distances
and times due to finite lifetime or inability of liquids to support the specific propagating process
on macroscopic length scales as this is in case of shear waves. The non-hydrodynamic processes,
sometimes yet called as kinetic ones [3], should have wavenumber dependence of their specific li-
fetimes 7;(k), as well as frequencies w;(k) for propagating kinetic modes, essentially different from
hydrodynamic ones.

The standard inverse lifetimes for collective processes obtained within the hydrodynamic de-
scription are proportional to k2. For pure liquids there exist two hydrodynamic collective relax-
ation processes: thermal and viscous relaxations with inverse lifetimes 7,;'(k) = Ak?/ncy and
77 1(k) = nk?/p, respectively, with )\, 1, ¢y being macroscopic thermal conductivity, shear vis-
cosity and specific heat at constant volume. Herein p and n denote mass and numerical densities
of the system, respectively. The single hydrodynamic propagating process, which corresponds to

longitudinal acoustic excitations, has the inverse lifetime I'k2?, which essentially is dependent on a
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coupling between viscous and thermal processes. Here the sound attenuation coefficient
1
F:§[DL+(7_1)DT] )

where the ratio of specific heats ¥ = cp/cy is a measure of such coupling, Dy, = (31 + ()/p
is kinematic viscosity, ¢ — bulk viscosity, and Dy = A\/ncp is thermal diffusivity. For the case
of v-component liquids there appear in addition other ¥ — 1 hydrodynamic relaxation processes
connected with mutual diffusivity of species. The inverse lifetimes of hydrodynamic relaxation
processes are connected with relevant transport coefficients. Another important point is that within
the hydrodynamic description the relaxation processes enter to the density-density, density-energy
and energy-energy time correlation functions as exponentially decaying with time terms, that
simply implies definition of their specific lifetimes 7; (k) [4].

Non-hydrodynamic processes contribute to all physical quantities, which can be measured on
relevant spatial and temporal scales. Among them are the wavenumber- and frequency-dependent
spectral functions I(k,w) obtained in INS or IXS experiments, or time correlation functions
F;j(k,t) calculated in molecular dynamics simulations. Outside the hydrodynamic region the non-
hydrodynamic processes should essentially affect the shape of time correlation functions, and there
appears a problem how to extract in a correct way the contributions of non-hydrodynamic pro-
cesses from the calculated Fj;(k,t) or measured intensities I(k,w). There were many attempts to
take into account the existence of non-hydrodynamic processes in fluids for analysis of scattering
experiments [5-7]. But still the issue of non-hydrodynamic processes and their effect on the dis-
persion of the acoustic excitations is among the unsolved problems of the collective dynamics in
liquids [8]. Perhaps the most obvious relaxation process, not reflected in hydrodynamic approach,
is the structural relaxation, which is related to cooperative rearrangements of the local structure
due to density fluctuations. Although the structural relaxation is one of the most studied relax-
ation processes for supercooled liquids and at the glass transition, its role and contribution to
the time correlation functions in the liquid state is not well understood. Moreover, little is known
about the wavenumber dependence of structural relaxation in liquids. One of the first studies of
the wavenumber dependence of structural relaxation in liquids [9] resulted in conclusion, that in
the long-wavelength limit the lifetime of structural relaxation must tend to a finite value.

The mostly used approach in the studies of effects of structural relaxation in liquids was based
on a memory function formalism [2,10] and appeared to be quite successful in explaining the tem-
perature dependence of structural relaxation in liquids [11]. The approach itself was based on
assumption, that the second-order memory function can be separated into different decay chan-
nels, each of which corresponded to a specific collective process: thermal relaxation, structural
relaxation, instantaneous relaxation (for time decay of the memory function on time scales much
faster than the experimentally accessed frequency window), etc. Relaxation processes entered the
second-order memory function as exponentially decaying in time terms, while instantaneous decay
channel was represented via time delta-function [12,13]. Relaxation times of the decay channels
(corresponding factors in exponentials of the second-order memory function) were treated as fitting
parameters. The generalized in this way expression for the dynamical structure factor S(k,w) after
convolution with a measured instrumental resolution function was used in fitting to experimental
scattering intensities in wide region of wavenumbers and resulted in k-dependent relaxation time
of structural relaxation. Such an approach resulted in very reasonable Arrhenius-type behaviour of
temperature dependence of extrapolated to long-wavelength limit of structural relaxation 7y, (7')
[14,15]. However, it is not clear yet, whether the relaxation times associated with the decay channels
of the second-order memory function can be directly related in the whole range of wavenumbers to
relaxation times of physical processes. It was demonstrated in [16], that the hydrodynamic form
of dynamical structure factor can be reproduced by a suitable choice of two decay channels of
the second-order memory function. However, there does not exist a proof of correct wavenumber
dependence of relaxation time of structural relaxation, obtained within the fitting procedure with
additional decay channels in a wide region of wavenumbers.

There exists another theoretical method, known as the approach of Generalized Collective
Modes (GCM), which is closely related to the memory function formalism. However, the essential
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difference of the GCM approach is treatment of non-hydrodynamic processes via extended set of
hydrodynamic variables and orthogonal to them short-time dynamical variables, which is applied
for solving of the generalized Langevin equation in terms of dynamical eigenmodes. The GCM
approach treats hydrodynamic and non-hydrodynamic processes on the same footing and takes
into account local coupling effects between them. All the relaxation processes — hydrodynamic
and kinetic ones - contribute directly to the shape of all time correlation functions of interest via
exponentially decaying in time terms. Hence, the GCM approach can shed light on the problem
of wavenumber dependence of structural relaxation in liquids, because it is straightforward by
analogy with hydrodynamic relaxation processes to associate particular exponential term (with
real eigenvalue) in the relevant time correlation function with the non-hydrodynamic process of
structural relaxation, and it is obvious that the corresponding real eigenvalue will define the inverse
wavenumber-dependent specific time of structural relaxation dy, (k) = 75} (k).

The remaining paper is organized as follows. In the next Section we describe the approach of
Generalized Collective Modes for analysis of collective dynamics in liquids. In Section 3 analyt-
ical solutions for a simplified three-variable model are presented in order to estimate the long-
wavelength asymptote of relaxation mode connected with structural relaxation. Section 4 contains
results of MD simulations and numerical GCM analysis of relaxation processes in a wide range of
wavenumbers, and the last Section contains conclusions of this study.

2. The approach of generalized collective modes

The GCM approach consists in solving the generalized Langevin equation, which is represented
in matrix form generated on a chosen set of dynamical variables, in terms of eigenmodes and
their contributions to the matrix of time correlation functions. The most simple formulation of
the GCM approach is based on Markovian approximation for the highest-order memory functions,
although this is not the limitation and a more sophisticated version of the GCM approach is
available [17]. Usually the basis set of N, dynamical variables is constructed by extension of
the set of hydrodynamic variables, which describe fluctuations of conserved quantities, by their
time derivatives, which being orthogonal to hydrodynamic slow fluctuations are aimed to describe
correctly more short-time fluctuations, which are not considered within hydrodynamic theory. For
pure liquids the hydrodynamic set of variables for description of longitudinal dynamics consists of
three dynamical variables:

A(Shyd)(k‘,t) _ {n(k’,t),JL(k’t)?e(k’t)}’ (1)
where

N
1 ikr;
n(k,t) = WE :ek i) (2)
i=1

is the k-th spatial-Fourier component of particle density of the system composed of N particles
with instantaneous positions r;(t) and velocities v;(¢),

N
JE (1) = %%Z ol (3)

is the Fourier-component of longitudinal part of mass-current density, and the energy density is

N
1 .
e(k,t) = WE :Eielkri(t)’ (4)
i=1

where ¢; is the single-particle energy of i-th particle. The dynamical variables (2)—(4) correspond
to fluctuations of conserved quantities. One can restrict the treatment of dynamical processes
just by a set of equations with only dynamical variables of fluctuating conserved quantities and
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in Markovian approximation this results to expressions valid on macroscopic distances and time
scales only.

In order to account for non-hydrodynamic processes within the GCM approach one applies for
construction of all matrices an extended set of dynamical variables

AN (k1) = ABCYD (k1) @ {jL(k, t), é(k,t), J= (k,t),é(k,t), .. } , (5)

where overdots mean the corresponding order of time derivatives. The chosen set of N, dynamical
variables is used for construction of the matrix of static correlation functions F(k,t = 0) with
elements

Fij(k’tzo) = <A:(k7t:O)Aj(k7t:0)> ) (6)

where the asterisk means complex conjugation, and matrix of corresponding Laplace-transformed
time correlation functions F(k, z). In the simplest Markovian approximation the matrix form of
generalized Langevin equation for Laplace-components of time correlation functions reads

F(k,z) = [2I+T(k)] " F(k,t =0) (7)
with T'(k) called as generalized hydrodynamic matrix and expressed via
T(k) = —iQ(k) + M(k,z = 0) = F(k,t = 0)F " }(k,2 =0) . (8)

Here Q(k) and M(k, z) are the standard frequency matrix and matrix of memory functions, re-
spectively. The number of successive time derivatives of some hydrodynamic variable in the basis
set defines the order of the highest memory function, which is taken in Markovian approximation.
We stress, that using a large number of successive time derivatives of hydrodynamic variables
(large number of dynamical variables Ny) one applies the Markovian approximation to the very
high-order memory function, that is quite justified, because the high-order memory functions are
rapidly decaying functions of time.

The generalized hydrodynamic matrix can be diagonalized using the solutions of eigenvalue
problem

> Ti(k) X5 (k) = za (k) X7 (K) | 9)

where z, (k) and X&(k) are the a-th eigenvalue and corresponding eigenvector, respectively. In
terms of the eigenvalues and eigenvectors the solution of generalized Langevin equation is repre-
sented as follows:

N NeoGe(k
Rtk =3 0 (10

which transforming back to time dependence yields

Ny
Fij(k,t) = G&(k)e =k (11)
a=1

The weight coefficients G¢; (k) are simply estimated from the relevant eigenvectors [18]. It is impor-
tant, that the time correlation functions are represented as a sum of N, separated contributions
from different dynamical eigenmodes. The N, eigenvalues z,(k) of the matrix T(k) correspond
either to propagating modes (complex-conjugated pairs of eigenvalues) or to relaxation processes
(real eigenvalues), which contribute with the strength G¢;(k) to the shape of relevant time correla-
tion function Fj;(k,t) as oscillating or exponential functions of time, respectively. For convenience
we will further note the purely real eigenvalues as d, (k).

The number of successive time derivatives of hydrodynamic variables in the basis set defines
the order of frequency sum rules fulfilled for the solutions Fm(k,z) In general the presence of
s successive time derivatives of hydrodynamic variable A;(k,¢) in the basis set results in 2s + 1
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frequency sum rules fulfilled for the theoretical representation (GCM replica) of relevant Fn(k, z).
Several additional advantages of the GCM approach over the traditional memory function method
are the following: (i) an additional sum rule which requires the equivalence of relevant correlation
time with some reference correlation time allows to avoid @ priori modeling of memory functions.
The reference correlation time either in analytical form in hydrodynamic regime, or it can be
obtained numerically for a given system as a function of wavenumbers from MD simulations;
(ii) the time correlation functions (and relevant dynamical structure factors) are expressed as a
separable sum over N, mode contributions from extended hydrodynamic and non-hydrodynamic
modes in the whole range of wavenumbers in analogy as this is in hydrodynamic theory. Each
collective excitation is characterized by a complex eigenvalue z, (k) and corresponding amplitude
of mode contribution G} (k) to the shape of dynamical structure factor S;;(k,w).

3. Analytical treatment in long-wavelength region via pert urbation approach

One of the simplest dynamical models, which permits us to find analytical expressions and to
describe a relaxation kinetic process of non-thermal origin is a three-variable dynamical model
with the following dynamical variables:

A® (k1) = {n(k,t), JE(k, 1), JL(k7t)}, (12)

where the first time derivative of longitudinal component of mass-current is

N
J* (k. t) %%Z ) 4 i(kv;)?]elkri® (13)

Here F;(t) denotes the force acting on the i-th particle. The only non-hydrodynamic variable among
these three ones is J(k,t) and it is connected to Fourier-components of stress tensor oag(k,t) via
relation [5]:

%J(k t) =iké(k,t) ,

i.e. in the generalized hydrodynamic description appear quantities from theory of elasticity.

It is quite straightforward to construct the 3 x 3 generalized hydrodynamic matrix on the basis
set of non-orthogonal dynamical variables (12) and find its eigenvalues. However, to make the
results and origin of eigenmodes more transparent we will apply a perturbation approach recently
elaborated within the GCM method. The idea is to separate in the generalized hydrodynamic
matrix T(k) a part, To(k), which permits simple analytical solution in terms of “bare” modes
[19], while the remaining part 6T (k) contains local coupling effects between “bare” modes and is
treated as perturbation. If the perturbation §T (k) is essentially smaller than the distance between
“bare” modes, one can expect the rapid convergence of perturbation series.

First of all in order to simplify perturbation series one has to construct the generalized hydro-
dynamic matrix T(k) on orthonormal basis set of dynamical variables. Therefore we can transform
initial basis set (12) as follows:

Tl ng
~L =T,
gy, Ji
where the matrix of linear transformation
L 0 0
/5(k) X
L(k) = 0 NaTYA 0 . (15)
—ik— e 0 —L
wi(k)—k2c (k) wi(k)—k2c% (k)

143



T.Bryk, I.Mryglod

Here T
2 B

k) =
is the square of isothermal velocity, and

iL jL

2 <']—ka> k—0 9 ;9
wilk) = ———+ "= Kk, (16)
(LR Ti)

where ¢ is the high-frequency speed of sound. Now the tilded variables in (14) satisfy the condition
(@ kbr) = ap -

The generalized hydrodynamic matrix T(k), constructed on the set of non-orthogonal variables can
be simply related via linear transformation with the matrix 'i‘(k)7 defined on the orthogonalized
variables

T(k) = LTL™! . (17)

Obviously the eigenvalues of both matrices T(k) and T(k) are the same. Hereby, one has to find
eigensolutions of the generalized hydrodynamic matrix

0 —ik‘CT 0
T(k) = | —iker 0 — 2w?(k) — k2t |, (18)
wi (k
0 wf(k) - kQCgf ( klzigr) - 1)7(1k)

where the quantity 7(k) is the correlation time associated with the density-density correlations
without coupling to thermal processes. In general one does not know the wavenumber dependence
of 7(k) in the whole range of wavenumbers, therefore within the GCM approach one is required
to use molecular dynamics simulations in order to have numerical dependence of 7(k) as input
quantity. In case of dynamical models with explicit treatment of density and thermal fluctuations
one calculates the generalized correlation times via their definition

1 oo

where F;;(k,t) are the density-density, density-energy or energy-energy time correlation functions
calculated in MD simulations for given wavenumber k.

The density fluctuations in liquids on macroscopic scale are always constrained to local law
of energy conservation. The three-variable model (12) considered here, however, does not take
implicitly into account coupling between energy and density fluctuations, therefore the correlation
time 7(k) cannot be taken from MD simulations — the density-density time correlation functions for
any k value always have contribution from thermal processes, although for intermediate and large
wavenumbers that contribution is quite small and can be neglected in simplest approximations.
However, in analytical approaches it is possible to remove the contribution from thermal processes
— this is made by setting v = 1. Therefore, we can use analytical expression for density-density time
correlation functions [4] in the long-wavelength limit and obtain the correlation time in viscoelastic
approximation:

k—0 DL
T

We stress, that in contrast to the hydrodynamic correlation times (19) with long-wavelength asymp-
totes k2 the correlation time 7(k) in viscoelastic theory (i.e. idealized model without coupling to
thermal fluctuations) tends to a constant in & — 0 limit. This is because all three hydrodynamic
time correlation functions of longitudinal dynamics in pure liquids [4] have similar exponential
contributions of the same origin, which come from thermal relaxation.
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_ We proceed further with separating the generalized hydrodynamic matrix ’i‘(/c) into two parts:
To(k) + 6T (k). The first matrix

0  —iker 0
To(k)=| —thkex 0 y 0 1 (21)
0 0 (g -Ds

can be immediately analytically solved in terms of eigenvalues and eigenvectors in the whole region
of wavenumbers. Among the eigenvalues in the long-wavelength limit there are a single real number

2 21

dOK) = dy = Coo —C7 1 29
() = dy = =50 (22)

and a pair of conjugated imaginary numbers
zf)(k) = ticrk . (23)

Note, that in this case purely imaginary eigenvalues correspond to propagating waves without any
damping, while purely real eigenvalues d;(k) are associated with relaxation process with specific
relaxation time 7;(k) = d; ' (k). The eigenvalues (22) and (23) can be treated as “bare” modes,
which due to coupling between propagating and relaxation processes, considered further as a per-
turbation, will obtain k-dependent corrections. The eigenvectors associated with relevant “bare”
modes are:

0 F1
©O—1 o o_ L[ 7], 24
d 1 ) w:l: \/i 0 ( )

The first order corrections to both kinds of “bare” modes
624 (k) = w0yl =0

and _
8dV (k) = 6Ty ” = 0

are equal to zero. Here the matrix of perturbation is

0 0 0
dT(k)y=1 0 0 wi —k2ct |, (25)
0 wi— k2% 0

and in long-wavelength limit it is linear in k. The absence of first-order corrections to the eigenvalues
means, that there are no linear in k corrections to the “bare” modes. The first nonzero correction
to the “bare” modes appears in the second order with respect to perturbation. Thus by keeping
the leading in k term one has

@ 6T (P s Tel)

8d? (k) = = —cAtk?, 26
( ) Xi: d(O) B Z:(S) T ( )
and this correction is proportional to k2. Using (20) one obtains
2 _ 2
d(k) = =" _prg?. (27)
Dy,

The negative sign of the second order correction means, that with increasing wavenumbers the
lifetime of kinetic relaxation process increases. The factor (c2, — c%) is associated in the literature

o
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with the “strength” of structural relaxation [15], that implies the relevance of the real dynamical
eigenmode d(k) in (27) with the structural relaxation.
For propagating modes one obtains

WL 5Ty) (g 0TYL) _ (ch — AL +d)

523 (k) = = 1o , 28
+ ( ) Z:(é)) —d(o) C%kQ—‘rd% ( )
that results in
D D
2o (k) = TLkZ +icpk(1 + d—OLk:Q) . (29)

It follows, that due to coupling with the relaxation process d(k) the “bare” propagating modes
obtain damping proportional to k2 and a correction to dispersion law, which can be treated as a
positive deviation from linear dispersion. This positive dispersion is proportional to the kinematic
viscosity and to the long-wavelength limit of structural relaxation time.

For eigenvectors the first-order corrections can be written as follows

722 [ —iker do + ik > 722 (0
v = T | gyt = Mo Bher )R (g ) y)

dg + k*ci, o ) V2(d5 + k2c3.) 1

Using the properly normalized eigenvectors within the first order in perturbation 4 and ¥ one
can estimate the contributions from relaxation and propagating processes to all time correlation
functions and corresponding spectral functions of interest. For the density-density time correlation
function the model (12) results in three contributions with purely real weight coefficients from
propagating modes B;;(k) and D;;(k):

= Apn(k)e Mt 1 (B, cosw(k)t + Dpy, sinw(k)t)e R (31)

where frequency w(k) and damping o(k) of propagating modes are obtained from zy (k, t) as imag-
inary and real parts, respectively. We are mainly interested to look at the long-wavelength asymp-
tote of contribution from kinetic relaxation process to the density-density time correlation function
Apn(k — 0). This weight coefficient can be obtained from the corresponding eigenvectors simply
as follows:

Ann(k) = wd,lwila (32)

that results in the following asymptotic value

C%DL

0

E* (33)

Completely in agreement with the concept of kinetic collective processes the contribution from the
structural relaxation to the density-density time correlation function vanishes by approaching the
hydrodynamic region. The special feature of structural relaxation is that the relaxation time for
this mode is finite in the hydrodynamic limit and its contribution decays even faster than k? when
k is small.

The presented perturbation approach applied within the GCM scheme can be very effective for
finding analytical solutions of more sophisticated dynamical models. It is problematic to solve ana-
lytically the eigenvalue problem for many-variable dynamical models even in the long-wavelength li-
mit. Therefore the presented GCM perturbation approach is very promising for analytical studies of
collective dynamics of binary liquids, disparate mass two-component systems and three-component
liquid mixtures, for which only simplest analytical solutions exist to the date [19-21].
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4. Numerical GCM analysis of collective dynamics: Lennard- Jones fluids

For the study of collective modes of dense liquids in a wide region of wavenumbers one has to
apply within the GCM approach more sophisticated basis sets of dynamical variables that take
into account the main non-hydrodynamic processes within the same level of accuracy. The simplest
set of dynamical variables within the precision of the fourth sum rule for the density-density time
correlation function is the five-variable set

AP (k1) = {nlk, ), = (h,1), (), I (k, 1), e )} (34)

This five-variable dynamical model permits also an analytical GCM solution for collective modes in
long-wavelength limit [22], that makes possible to compare the expressions obtained in the previous
Section within the simplified three-variable dynamical model and perturbation approach. The
dynamical model (34) is able to account for two types of non-hydrodynamic relaxation processes:
structural relaxation mode (d2(k) in notations of [22] in order to distinguish with the lowest
hydrodynamic thermal process dr(k) = di(k)) and kinetic heat relaxation mode (ds(k)). The
analytical expression for dy(k), obtained in the long-wavelength limit in [22] reads

day(k) = d§ — DLk? + (v — 1)Ak* (35)

and can be easily transformed to the obtained above equation (27) by setting v = 1, i.e. neglecting
coupling with heat fluctuations. In equation (35) the following notations were applied

d3d% D
A=—23__""_(Dr— Dp)? 36
dg_ngch( T L) ’ ( )
where ) )
cio— ¢ cv v—1
dy = == dg = — (G" - , 37
g-Srt - (-1 (37)

G" and st are the heat rigidity and isothermal compressibility of the liquid, respectively.

Reduced temperature, T

0 02 04 06 038 1 1.2
Reduced density, n’

Figure 1. Thermodynamic points on the phase diagram of Lennard-Jones fluids along the isother-
mal line 7" = 1.71 used in numerical GCM study.

Now we apply the five-variable dynamical model for numerical study of collective modes in
Lennard-Jones fluids. We consider four thermodynamic points with different density, shown by
symbols along the isothermal line 7% = 1.71 on the phase diagram of Lennard-Jones fluids in
figure 1. For these thermodynamic points we performed MD simulations with 2000 (for small
wavenumbers) and 1000 particles in order to calculate density-density, energy-density and energy-
energy time correlation functions in the wavenumber region up to 3 A=!. The majority production
runs were performed over 300000 steps, while for small wavenumbers we simulated the systems
over one million timesteps to obtain good convergence of relevant static averages needed in the
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GCM analysis. In figure 2 the MD-derived density-density, density-energy and energy-energy time
correlation functions along with their theoretical GCM replicas are shown for the thermodynamic
point with the highest density considered in this study. The GCM replicas were obtained within the
five-variable dynamical model (34) and in general all three functions are equally well represented
by the chosen dynamical model taking into account that no fitting parameters were used in con-
struction of the GCM-replicas. Usually the time correlation functions of the dense liquid states are
described by the generalized hydrodynamic theory worse than the dynamics of fluids with gas-like
densities. Therefore we can accept the five-variable dynamical model as an appropriate one for
analysis of the collective dynamics in a wide region of densities.

In this study we are mainly interested in

0.025 T T T ! modes connected with structural relaxation and
0.02 relevant physical quantities. In figure 3 we
0.015 show the values of adiabatic and high-frequency
;j; 001 speed of sound estimated from the long-
o wavelength asymptotes of MD-derived static av-

0.005 erages (v(k)/S(k))'/? and w; (k) [see equation 16],

respectively. The lines in figure 3 correspond to
a fit with a polynomial function (a + bn?) — in
the wide region of density the obtained adia-
batic and high-frequency speeds of sound were
satisfactory fitted by such a dependence. The de-
pendence of adiabatic and high-frequency speed
of sound on density shown in figure 3 implies
that the factor (¢, — ¢2), which in the litera-
ture is sometimes called as the “structural re-
laxation strength” [15], increases with the den-
sity. Other factors, that define the behavior of
the generalized relaxation process da(k) on the
macroscopic length scales (35) are the kinematic
viscosity and ratio of specific heats. In figure 4
the generalized ratio of specific heats (k) is pre-
sented for the thermodynamic points considered.
This quantity was estimated using its definition
[3] via the static heat density autocorrelations.

Fre(k,t) / reduced units

Fee(kit) / reduced units

Time / reduced units This important generalized quantity reflects the
Figure 2. Density-density, density-energy static coupling between thermal and viscous pro-
and energy-energy time correlation functions cesses on different length scales. On macroscopic
for the density n* = 1.011 and temperature distances, i.e. in the limit & — 0, the functi-

T* = 1.71: by solid and dashed lines are ons (k) tend to relevant constants, which decay
shown MD-derived functions and their GCM with the density. This means, that the closer is
replicas, respectively. Time and energy scales the thermodynamic point to the solid phase the
are 3.29ps and kgT', respectively. weaker will be static coupling between thermal
and viscous processes. The generalized ratio of
specific heats (k) makes evidence, that for Lennard-Jones fluids one cannot neglect the coupling
of density and thermal fluctuations. One can also see in figure 4 that the generalized ratio (k)
depends strongly on k, so that v cannot be taken in the generalized hydrodynamic approaches as
a simple independent on wavenumber constant with its macroscopic value.

In figure 5 we show another important quantity, that defines the macroscopic lifetime of the
kinetic relaxation process do(k), the kinematic viscosity Dy, as a function of density. The closed
boxes in figure 5 represent the values obtained from the direct calculations of the Green-Kubo
integrals [16], while the values shown by open boxes were extracted from the asymptotes of hydro-
dynamic modes taken at the smallest wavenumbers reached in MD simulations for each density.
In general, the dependence of kinematic viscosity implies the divergence of Dy, by approaching the
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freezing point, as it should be. Looking at the expression (35) for the kinetic relaxation process
one can realize, that at the freezing point the relaxation time of this mode

Dy,

2 _ 2
Cx Cs

Tg(k — 0) =

becomes infinite, that is a feature of the structural relaxation, and namely the alpha-relaxation
with macroscopically large relaxation time. Hence, two facts, discussed above, support the rele-

2500 T T T T T T T 26 1 T T * T T
s + X a n=1.011 ——
co X o 24re n,=0.845 -~
2000 7] é 22 | n,=0.601 ---*---
- R . o Tlx n'=0.357 ~-&
0 . g 2F . .
£ 1500 = % &
) X . S18f " i
S .| e X 5
3 1000 I ] 5 16
° * £ 14
500 .- . &
+ 1.2
O 1 1 1 1 1 1 1 1
03 04 05 06 07 08 09 1 11
o
Figure 3. Infinite and adiabatic speed of sound Figure 4. Generalized ratio of specific heats
along the isothermal line 7" = 1.71 for ~(k) as functions of wavenumber for differ-
four different densities of Lennard-Jones flu- ent density of Lennard-Jones fluid at T* =
ids. The lines are a fit with a + bn? function. 1.71.

vance of the kinetic relaxation mode da(k) to the structural relaxation, namely, the presence of
the factor called “strength of structural relaxation” and divergence of the relaxation time at the
freezing point. Another interesting consequence follows from the dependence of the relaxation mode
da(k) on kinematic viscosity (35). In fact this mode restricts the region of wavenumbers, where
hydrodynamic collective modes behave strictly according to the hydrodynamic expressions. The
larger is kinematic viscosity the smaller will be the window of hydrodynamic regime (see [22] for
analytical expressions).
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Figure 5. Kinematic viscosity as function of density at 7" = 1.71. Calculations of Green-Kubo
integrals (GK) and values estimated from long-wavelength asymptotes of generalized modes
(GCM) are shown by plus and cross symbols with errorbars, respectively.

The propagating z; (k) and relaxing d; (k) dynamical eigenmodes in the wide region of wavenum-
bers for the thermodynamic point with the highest density considered in this study are shown in
figure 6. For the chosen five-variable dynamical modes we obtained five eigenvalues for each k-point
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sampled in MD simulations. In the long-wavelength region we have obtained as the eigenvalues one
complex-conjugated pair and three real numbers. Looking at their wavenumber-dependence and
using the asymptotes of hydrodynamic modes with the values ¢, v, Dy, D, estimated beyond
the GCM framework as in figures 3 and 4 and from Green-Kubo integrals, one can see in figure 6
a nice agreement with the quadratic dependence on k of the sound damping Rezs(k) and thermal
diffusivity mode dr(k), while the dispersion Imzs(k) of acoustic excitations has a positive deviation
called “positive dispersion”. We show by dashed lines the expected hydrodynamic linear dispersion
law csk and the dispersion law given by equation (29) obtained within a simplified three-variable
model, which actually describes local coupling effects between acoustic excitations and structural
relaxation. One can see that the analytical expression equation (29) correctly reproduces the pos-
itive deviation in the small-wavenumber region.

In the region k& > 0.6 A~! there ap-
pears another branch of propagating exci-
tations, which corresponds to kinetic prop-

18 T T T T T

g agating heat excitations (heat waves). We
3 stress that the majority of the generalized
E hydrodynamic studies of collective dynam-

ics in liquids usually restrict treatment of

the thermal fluctuations just by the most

slow ones, while correct treatment requires
ool y to account for the same level of short-time
9 processes in viscous and thermal description
= of dynamics. The heat waves appear in com-
&“'f plete analogy with shear waves, which are

not supported by liquid systems on macro-
scopic distances. For more detailed informa-
tion on heat waves and convergence of rele-
vant eigenmodes with increasing number of
dynamical variables we refer to [23]. Hence,
the GCM approach predicts, that the ther-
mal relaxation processes on the nanoscale in
Lennard-Jones liquid are unstable with re-
spect to emergence of propagating heat exci-
tations, which can contribute to heat trans-
port at the nanoscale. For the generalized
mode treatment this means, that instead
of two real eigenmodes shown in bottom
frame of figure 6 by open circles and asteri-
sks one obtains for k > 0.6 A~! another pair
of complex-conjugated eigenvalues with the
frequency smaller than of the generalized
acoustic excitations (high-frequency branch
in the top frame of figure 6).

4K /ps™

0 05 1 15 2 25 3
kI AL

Figure 6. Imaginary and real parts of generalized
collective modes for the density n* = 1.011 and
temperature 7 = 1.71. For convenience the
purely real eigenvalues are noted as d;(k) and
shown in the bottom frame. Propagating modes
are shown by symbols connected by solid line
and relaxation modes are represented by symbols
connected by dash-dotted line. By dashed lines
in the upper frame the linear dispersion law with
adiabatic speed of sound and positive dispersion
of sound branch that follows from equation (29)
are shown. Dashed line in middle frame shows
quadratic long-wavelength asymptotes of sound
damping, and in the bottom frame — thermal

The most interesting is the behavior of
relaxation process do(k) as the function of
the wavenumber (open boxes connected by
dash-dotted line in the bottom frame of fi-
gure 6). The predicted by the analytical

relaxation mode. The dotted line in the bottom
frame corresponds to the analytical result for the
structural relaxation without coupling to thermal
processes represented by equation (27).

model wavenumber dependence (27) shown
in figure 6 by dotted line implies, that the
lifetime of this relaxation process becomes
larger with increasing k and beyond the hy-
drodynamic region the mode ds (k) becomes
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smaller than dr(k), which though having small negative deviation tends to larger values. The
coupling with thermal processes according to (35) increases the dz(k), that is in agreement with
numerical results. But the most interesting fact is that the mode dz(k), connected with structural
relaxation, becomes the main relaxation process in the region of intermediate and large wavenum-
bers. One can make additional checks with different subsets of dynamical variables as performed
in [23,24] in order to discard any relation between the mode da(k) and thermal processes in that
range of wavenumbers.

The wavenumber dependence of hydrodynamic relaxation and propagating modes in the wide
k-region is tightly connected with generalized transport coefficients. For example, the negative
deviation of the thermal relaxation mode dr(k) can be associated with decreasing of generalized
wavenumber-dependent thermal diffusivity D (k). The most correct and transparent way of intro-
duction of the generalized transport coefficients is via the matrix of lowest order (or hydrodynamic)
memory functions [25,26]. For the case of pure liquids the 3 x 3 hydrodynamic matrix of lowest
memory functions is directly connected to the generalized transport coefficients .%;;(k, w):

M(k,w) = k2VkgT L (k,w)F(k,t = 0) , (38)

where & (k,w) is the 3 x 3 matrix of generalized wavenumber- and frequency-dependent transport
coefficients, and V' is the volume of the system. As an example we show in figure 7 the generalized
static kinematic viscosity Dy, (k,w = 0) and thermal diffusivity Dr(k,w = 0). The general tendency
is the monotonic decay of these quantities with increasing wavenumber.

14 D —=— 4
Dy ---o---

Dy (k), Dr(k) / 108 m%™"

Figure 7. Generalized wavenumber-dependent kinematic viscosity Dy, (k) and thermal diffusivity
D+ (k) for n* = 0.357. At k = 0 the values of relevant Green-Kubo integrals are shown.

The most important issue in the study of non-hydrodynamic processes in liquids is the con-
tribution from the kinetic processes to the observable dynamical structure factor S(k,w), or its
time-Fourier counterpart the density-density time correlation function. In figure 8 we show the
mode contributions to the F,,, (k,t)/S(k) represented in the form suggested in [24]. Hydrodynamic
theory predicts, that for pure fluids there exist only two contributions to the density-density time
correlation functions: from the thermal diffusivity and sound excitations with the weights (y—1)/~
and 1/, respectively. In figure 8 at k = 0 the corresponding contributions are shown by open and
closed circles. The GCM approach predicts, that when k increases there appear additional con-
tributions from the kinetic processes and all the weight coefficients must depend strongly on k.
One can see in figure 8, that the contribution from generalized acoustic excitations and thermal
relaxation mode are decaying with the increasing wavenumber, while the corresponding contribu-
tion from the kinetic relaxation process ds (k) increases and becomes dominant for representing the
relaxational behavior of F,,(k,t)/S(k). The kinetic heat waves almost do not contribute to the
shape of F,,,,(k,t)/S(k). The increase of the lifetime of the process dz (k) and its contribution to the
density-density time correlation function in the region k ~ 2.0—2.2 A~1, where the main maximum
of the static structure factor is located, means that the structural relaxation mode da (k) is respon-
sible for the increasing of the long-lasting tails of the density-density time correlation functions
and corresponding narrowing of the central peak of S(k,w) known as the de Gennes narrowing [2].
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Figure 8. Wavenumber-dependent mode con-
tributions to the density-density time correla-
tion functions from different propagating and
relaxation collective modes for the density
n* = 1.011 and temperature 7% = 1.71. The
closed and open circles at k = 0 show pre-
dicted by hydrodynamics values for contribu-
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Figure 9. Zero-time contributions from gener-
alized collective modes to the shape of static
structure factor S(k). Leading contribution
to the shape of S(k) from the slow mode
shown by spline interpolated short-dashed
line proves its relation to the wavenumber-
dependent structural relaxation.

tions from sound excitations and thermal re-
laxation mode, respectively.

Formally one can use the mode contributions to the density-density time correlation function
Fon(k,t) and represent them at ¢t = 0 as the contributions to the static structure factor S(k) from
different collective processes. Intuitively this means, that each instantaneous configuration one can
represent as some deviations from a reference configuration due to sound propagation, structural
relaxation, etc. In figure 9 we show, that the contributions from generalized modes to F,,(k,t) at
t = 0 have the only leading term, which comes from the relaxation mode ds(k), that once more
proves its origin as the mode of structural relaxation, because it is directly related to the main
structural quantity of the system — its structure factor.

5. Conclusions

In this study we applied the approach of Generalized Collective Modes to estimation of wavenum-
ber dependence of structural relaxation in pure liquids. The GCM approach has several advantages
over the standard memory function treatment of generalized hydrodynamics. In particular, it repre-
sents the contributions to the time correlation functions from hydrodynamic and non-hydrodynamic
processes via exponential functions of time thus making very transparent estimation of relaxation
time for non-hydrodynamic relaxation processes. In contrast to the standard memory function
treatment of structural relaxation on introducing additional decay channels in the second order
memory function, the GCM approach systematically takes into account non-hydrodynamic pro-
cesses via additional non-hydrodynamic variables allowing to estimate the relevant combinations
for each non-hydrodynamic collective mode in different regions of wavenumbers.

In this study we have shown, how using the GCM approach one can separate a contribution
from the structural relaxation to the density-density time correlation functions in a wide range of
wavenumbers and estimate the wavenumber dependence of the corresponding relaxation time. The
GCM approach predicts several features in the wavenumber dependence of structural relaxation
in pure liquids, namely, it is found that:

(i) in the long-wavelength limit the structural relaxation tends to a finite relaxation time defined
by the kinematic viscosity and a factor called in the literature as “strength of structural relax-
ation” [15];

(ii) at small wavenumbers this relaxation time increases, being in opposite tendency with hydro-
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dynamic thermal relaxation process with decreasing relaxation time;

(iii) by decreasing temperature or increasing density the width of hydrodynamic region, i.e. the
wavenumber range where collective modes behave strictly according to the hydrodynamic expres-
sions, becomes more narrow and the non-hydrodynamic excitations play essential role in wider
range of k;

(iv) for intermediate and large wavenumbers the structural relaxation almost completely defines
the shape of the central peak of dynamical structure factor, while thermal processes do not have
much effect on the central peak. The relevance of the slow relaxation process at intermediate
and large wavenumbers to the structural relaxation is demonstrated via its contribution for the
instantaneous configurations to the structure factor S(k).

This study was aimed to estimate the role of non-hydrodynamic process of structural relax-
ation in collective dynamics of pure liquids and to look at the effect of liquid density on different
parameters, that define the structural relaxation in liquids. The study of temperature dependence
of structural relaxation within the GCM approach will be reported elsewhere.
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CTpyKTypHa penakcauifa y NpoCTUX PiAuUHaX. aHai3 3aNeXHOCTI
Bi4, XBUIbOBOIO YUCJIa B paMKax nigxoay y3arajibHeHUX
KONEeKTUBHUX MOA

T.Bpuk!2, .Mpurnoal?

1 IHCTUTYT ®i3nKM koHAeHcoBaHMxX cuctem HAH Ykpainn, 79011 JbBiB, YkpaiHa

2 IHCTUTYT NpuKNagHoOi MaTeMaTuky Ta pyHOAAMEHTaNbHUX Hayk, HauioHanbHWUA yHiBepcuTeT “JIbBiBCbKa
nonitexHika”, 79013 JibBiB, YkpaiHa

OTpumaHo 4 civHs 2008 p., B ocTaTouHOMY BUrnsagi — 28 niotoro 2008 p.

3anexHicTb Bif, XBUIbOBOro YMcna ajisi CTPYKTYPHOI penakcauii B pignHax JOCNiAXKYETbCA METOA0OM y3a-
ranbHeHnx konektTusHux mopg (YKM). 3anponoHoBaHO HOBUIA NepTypOaTuBHMIA Nigxin B pamkax mMetoay
YKM, w0 3aCTOCOBaHO As1s 3HAXOO)KEHHS 3aN1eXHOI B, XBUIbOBOI0O YMC/ia CTPYKTYPHOI pernakcalii Ta gmc-
nepcii 3ByKky y AOBrOXBUJILOBIM rPaHuLI B paMKax CNpPOLLEHOT TPM3MIHHOT AMHAMIYHOT Moaeni. AHaniTUYHI
pesynbTaTh MOoPIBHIOITLCS i3 YNCTOBUMU AOCHIAXKEHHAMM y3aranbHeHNX MOJ, B paMKkax BinbLu 3aranbHoi
N'ATM3MIHHOI AMHAMIYHOI MoAeni, L0 BPaxoBye TEPMIYHI Mpouecu B piavHax. lNpencraBneHo Ymucnosi pe-
3ynbTaTv AN YHOTUPLOX TEPMOANHAMIYHMX TOHOK JieHapA-AXXOHCIBCLKOrO NvHY 3 NPUBEAEHOIO Temnepa-
Typoto T* = 1.71. O6roBopoTLCA 0COBANBOCTI HETiAPOANHAMIYHOIO NPOLECY CTPYKTYPHOI penakcadii y
Pi3HNX 0BNACTAX XBUIBOBUX YNCEN.

Kniou4oBi cnoBa: y3arasbHeHa riapoanHamika, CTPyKTypHa pesakcadlisi, AMHamMiyHi Moaesi, 3ByKOBi
30YKEeHHS, MO3UTUBHA AMNCepCisi

PACS: 05.20.Jj, 61.20.Lc, 62.60.+v
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