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The gravitational spin-orbit interaction in the region of the ultrarelativistic
orbital velocity of a spinning test particle in the Schwarzschild field is in-
vestigated on the basis of the Mathisson-Papapetrou equations. Different
indications of an essential increase of this interaction, when the tangential
velocity becomes ultrarelativistic, are analysed. The main factor of growth
is the square of the relativistic Lorentz ~ -factor. Numerical estimations for
a high-energy electron in its path near the Earth’s surface and near a neu-
tron star are given. It is stressed that the widely recognised assumption
that the deviation of a spinning test particle from the geodesic trajectory is
caused by tidal forces is not correct. The real reason for this deviation is
the gravitational spin-orbit interaction.
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1. Introduction

The motion of a spinning test particle in a gravitational field differs from the
geodesic motion. The corresponding equations were obtained by M.Mathisson and
A.Papapetrou [1,2] (see, e.g., [3] concerning the history of the Mathisson-Papa-
petrou eq. (MPE) investigation). In [4] the physical reason for the deviation of a
spinning test particle from the geodesic trajectory was touched. Namely, for mo-
tions in a Schwarzschild field “...a sort of interaction energy describing a spin-orbit
coupling” [4], p. 262 was pointed out. A more detailed analysis of the gravitational
spin-orbit (and spin-spin) interaction was made in [5]. At the same time another
version on the nature of forces that deflect the motion of a spinning test particle
from the corresponding motion of a test particle without a spin is present in some
publications. For example, in [6] one can read that the gradient of a gravitational
field causes a nongeodesic motion of a spinning test particle (see the footnote on
page 18 of [6]). We find the analogous conclusion in the known work [7], exercise
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40.8 where tidal forces are discussed in the context of the MPE. After [6,7] this
version was repeated in [8,9]. In particular, in [8], p. 417 “...in a curved space-
time spinning test particles do not follow geodesics because in relativity a spinning
particle has to have a finite extension so that it feels tidal forces”.

The correct identification of forces deviating a spinning test particle from the
geodesic trajectory is very important for the prediction of physical consequences
of the MPE. If one supposes that these forces have the tidal nature, then the spin
of a test particle is able only slightly to deform the world line and there are only
two situations where the tidal forces might become important: for rapidly spinning
neutron stars and for electron outside a body at the late stage of a gravitational
collapse [7], p. 1121.

However, in [10,11] we showed that the widely recognized assumption as to the
tidal forces as the reason for the deviation of a spinning test particle from the
geodesic trajectory is not correct. This fact is a direct consequence of the MPE
in the frame of reference co-moving with a spinning test particle. We can also
indicate two other arguments in support of the conclusion that the MPE do not
contain tidal forces. For example, let us assume that tidal forces are present in the
MPE. Then, these forces cannot disappear if we make the spin equal to zero (more
exactly, the angular velocity of the inner rotation) in the MPE, because the tidal
forces are connected with the dimension of a test particle and its nonrotating state
does not remove them. However, if one puts a spin equal to 0, the MPE transform
into geodesic equations, but not into equations of geodesic deviation. The geodesic
equations do not contain tidal forces (in contrast to geodesic deviation ones, which
do) and, therefore, the assumption that tidal forces are present in the MPE is not
correct. It should be remembered that the tidal forces will be taken into account
if we consider two close world lines (see [12], chapter 6, section 10, where a clear
procedure for the derivation of geodesic deviation equations is given). However,
the MPE, as well as geodesic equations, describe only one world line. Therefore,
we can point out the place in the procedure of the MPE derivation where the tidal
forces were neglected: when the world tube of a test particle was replaced with
only one world line (see, e.g., [2], p. 250).

The second additional argument, which refutes the assumption that the pres-
ence of tidal forces is the reason for the deviation of a spinning test particle from
the geodesic motion, is connected with the known fact that the MPE are the classi-
cal limit of the general relativistic Dirac equation [8]. Obviously, one cannot speak
about tidal forces in the Dirac equation.

We stress: the authors of [7] do not provide a proof of the statement that
tidal forces are present in the MPE; it is an assumption (hypothesis) only. In all
probability, this assumption was caused by a too wide and universal interpretation
of the weak equivalence principle in general relativity [10].

So, our investigation of the MPE demonstrates that in accordance with these
equations there is a sole reason for the deviation of a spinning test particle from
the geodesic trajectory in the Schwarzschild field, namely, the gravitational spin-
orbit interaction [3,10,11]. Here we shall consider the circumstances under which
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this interaction increases and can essentially influence the particle motion.

2. The mathematical criterion

When written in terms of the 4-vector velocity of the spinning particle v* and
its intrinsic angular momentum tensor S*”, the MPE take the form [1,2]

& <MU -+ u”?) = —§U Sp Rﬂpg, (1)
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where M is a function depending on the particle mass; R} oo 18 a curvature tensor;

D/ds is a symbol of the covariant derivative with respect to the velocity vector
derivation. The set of equations (1), (2) is incomplete. This incompleteness re-
flects the physical assumptions made while obtaining (1), (2): these equations were
derived without specifying any point inside the extended particle whose motion
characterizes the motion of the particle as a whole. A natural desire to describe
the mass center motion of a spinning particle leads to adding one more system
which consists of three independent relations [1,13,14]

S*u,, = 0. 3)

Equations (3) are called Pirani’s additional condition. The number of equations in
systems (1)—(3), with u,u* =1 taken into account, coincides with the number of
unknown functions, M being an integral of motion. Equation (1) with condition
(3) can be rewritten as
Du? D2, 1

MK - S/\u?; == —EUWSpO—R;\TpO_. (4)
That is, the second derivatives from the velocity appear in equations (1) due to (3).
Therefore, prescribing in equations (1)—(3) the initial values of coordinates velocity
and spin only, we cannot be sure that we will obtain more than one solution of a
complete system of the MPE. Indeed, equations (1)—(3) in the Minkowski space
already describe a family of spiral (circular, in particular,) orbits for a spinning
particle in addition to linear motions [15,16]. The physical reason for such solu-
tions to appear was established by Moller [17]: in special relativity, in distinction
from the Newtonian mechanics, the center of mass of a rotating body is located
depending on the reference frame. Condition (3) separates the motion of a set of
centres of mass rather than of a single center of mass. In this case the linear motion
is executed by the proper center of mass (according to the terminology of [18]; it
is the closest analog of the Newtonian center of mass) and the axis of rotation,
while the unproper centers of mass engage in the spiral motion. All the centers of
mass are inside the geometric size of a convex body [18].
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To eliminate the second derivatives from the velocity in the MPE, instead of
equations (1) or (4), the equation

Du? 1

Md—z = —u"S" R}, (5)
was often considered. It means that for the analytic in spin solutions of the MPE
only linear in spin terms of these equations were taken into account. However, it
is necessary to have the estimations of the neglected terms in equation (1) for any
solution of the exact MPE, too. We have investigated the values of these terms
in the case of equatorial motions of a spinning test particle in the Schwarzschild
gravitational field [19]. For this purpose we used the known first integrals of the
MPE, energy and angular momentum, in the standard Schwarzschild coordinates
t=r 22=0, 2*=¢, 2'=1t(at §=m/2) [20]. It is shown that for any
solution of the exact MPE (1)—(3) with fixed initial values of coordinates, velocity,
and a spin of a particle (i.e. both for the solution describing the motion of the
proper center of mass and the solutions of unproper centers), the neglect of the
indicated terms of equation (1) leads to a relative error, in expressions for the
energy or the initial acceleration of a particle, no less than 1/3 if

) Mr(]( 2m>—1/2 (©)
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and (ujo/ui0)® < 1 [19], p. 30. Here u o, ujo are initial values of the tangential
and radial components of the 4—velocity; Sy is the spin constant; m is the mass
of the gravitational field source; 7 is the initial value of the radial coordinate. By
the test condition for a spinning particle [5]

|Sol

M < 1, (7)
in (6) we have u?, > 1, that is, the tangential component of the 4-velocity is
ultrarelativistic. Such velocity corresponds to a large value of the particle orbital
angular momentum.

So, the criterion of the increase of the gravitational spin-orbit interaction (6)
determines sufficient conditions under which the influence of this interaction be-
comes so large that for its correct estimation it is necessary to go beyond the linear
in spin approximation of the MPE. One can call (6) a mathematical criterion be-
cause it was obtained as the result of the formal comparison of equations (1) and
(5) solutions. However, the criterion (6) has a physical meaning, too, and we will
consider it below.

3. The energy criterion

Let us consider the energy of a spinning test particle for such equatorial motions
in the Schwarzschild field which can be described by the analytic in spin solutions
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of the MPE. (So, we exclude from the consideration the motions of unproper

centers of mass). Then, within the accuracy of the quadratic in spin term we have
[21]

mu; Sy 3m (5’0)217 ®)
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Factor Muy in (8) is the known value of energy for geodesic motions. Both the
linear in spin term and the square in spin term of (8) have the spin-orbital na-
ture, both are not equal to 0, only if u; # 0. The absolute values of the two terms
increase when |u | is increasing. However, coefficient mu | /ru, near the small quan-
tity So/Mr (see (7)) is not more than 1/2 for all the values of u,; (we put r > 2m,
i.e. consider the region on the outside of the horizon surface). Whereas coefficient
3mu? /r near (Sy/Mr)? becomes equal to a large value if u? is sufficiently large.
Therefore, we cannot be sure that the linear in spin term in (8) gives a good ap-
proximation for the energy, regardless of the value of the particle’s ultrarelativistic
orbital velocity. (Unfortunately, as usual, such a restricted analysis was the last
point of the investigation on this problem, see, e.g., [22]). Indeed, we note that the
absolute value of the quadratic in spin term of (8) is larger than that of the linear
in spin term if

Uyg =

Mr
—_—, 9
3]So| ©)

Obviously, the quadratic in spin term of (8), as well as any finite number of terms
with spins in the series for the energy, cannot ensure a correct approximation
for the energy in the whole range of the tangential velocity, including u? > 1.
Nevertheless, one can consider (9) as a criterion of the increase of the gravitational
spin-orbit interaction. It is easy to see that in the case (u/u))? > 1 the criterion
(9) is close to (6).

|’LLL|U4 >

4. The force criterion

The absolute value of the spin-orbit force acting on a spinning test particle in
the Schwarzschild field from the viewpoint of a comoving observer is [3,10,11,21]

= mM 3|S(]UL|
|F| = R V1+u? (10)

(for clarity, we separated in (10) the Newtonian gravitational force mM/r? and
small quantity (7); equation (10) is written for equatorial motions only, the cor-
responding generalization for any motions see in [23]). Exactly, force (10) deflects
the spinning particle motion from the geodesic free fall and is used in [10] for
the analysis of the weak equivalence principle. One may consider (10) as a gener-
alization of equation (44) from [5] for any velocities of a spinning particle. This
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generalization is not trivial and contains significant information on the gravita-
tional spin-orbit interaction. Namely, when |u,;| < 1 according to (10) and (7),
we have |F| < mM/r2, whereas in the ultrarelativistic region of velocities, when
lui| > 1, |F| > mM/r2. In particular, we can formulate such a criterion of the
increase of the gravitational spin-orbit interaction:

Mr
v/ 1 2> . 11
|ul| +ul 3|SU| ( )

In accordance with (10), when non-equality (11) is fulfilled, the spin-orbit force
for a comoving observer is larger than the Newtonian force.

5. Conclusion

Although the three criteria of the increase of the gravitational spin-orbit in-
teraction (6), (9), (11) have different meanings, they are almost the same quan-
titatively if (ui/uj)® > 1. As in this case |u,| is approximately equal to the
relativistic Lorentz v — factor for a spinning test particle, all these criteria can be
approximately written in the form:

Mr
~ > 4. 12
vl > |3 (12)

So, if the v — factor of an ultrarelativistic particle has an order of the small quantity
(7) to the power —1/2, the gravitational spin-orbit interaction cannot be neglected.
For example, without taking into account this interaction it is impossible to con-
struct a strict theory of black holes. (Now theoretical conclusions concerning black
holes are based on the analysis of geodesic world lines only). It is important that
the partial solutions of the MPE in the Schwarzschild and Kerr fields demonstrate
that the values of the v — factor (12) are sufficient for the realization of essentially
nongeodesic circular orbits of a spinning test particle near the source of a gravita-
tional field [19,24]. More exactly, tangential velocity on these orbits has the same
order as the right-hand side of (12).

Obviously, natural macroscopic bodies have too small velocities for their spin-
orbit interaction to be significant; but it is not the case with elementary particles.
In particular, we obtain from (12) that an electron in its path near the Earth’s
surface acquires an additional nongeodesic acceleration (from the viewpoint of
a comoving observer) which leads to the Newtonian acceleration of the free fall
9.8 m/s? if the electron’s ultrarelativistic velocity corresponds to its free motion
energy of the order of 10'® eV, the value typical of cosmic rays. Another example:
criterion (6) is fulfilled for an electron near the surface of a neutron star with the
mass approximately equal to the mass of the Sun if the corresponding energy is
equal to 10™ eV.

So, the role of the gravitational ultrarelativistic spin-orbit interaction in the
behaviour of elementary particles in strong gravitational fields is to be investigated.
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I'pasiTauiina cniH-op6GiTanbHa B3aemogais: KpuTtepii
pocTy

P.Mnauko

[HCTUTYT NpUKNaaHNX NPobaem MexaHiku i MaTemMaTukn
im. 9.C.Miactpurada HAH Ykpainu, 290601 m.J1bBiB, By/n. Haykosa, 3 ©

OtpumaHo 10 6epesHsa 1998 p.

Ha ocHoBi piBHSAHb MaTicoHa-lNananeTpy AOCNIAXEHO rpaBiTauinHy ChiH-
opb6iTanbHy B3aEMOSII0 B YNbTPapEensaTMBICTUYHOMY fiana3oHi opbiTanb-
HOT WBMAKOCTI NPOBHOI YacTMHKK 3i criHom y noni LLesapuwinbaa. Mpo-
aHani3oBaHO pPi3Hi 03HAKM CYTTEBOr0 3POCTaHHS LiET B3aemMogii, Konu
TaHreHuUisibHa LWBMOKICTb CTa€ YNbTPapPensTUBICTUYHOW. OCHOBHUM
daKkTOpOM POCTY € KBagpaT PenaTuBiCTUYHOrO v -daktopa JlopeHua.
HaBeneHO 4MCnoBi OLUIHKM Ol BUCOKOEHEPreTUYHOIro enekTpoHa 6ing
NoBEPXHi 3eMi i HEMTPOHHOI 30pi. [NigkpecneHo, Lo LLMPOKO PO3MNOBCIO-
I>KEHE MPUNYLLLEHHS MPO NPUMIMBHI CUNW SK NPUYNHY BiOXUNIEHHS NPO6-
HOi YaCTUHKM 3i CMiHOM Bif, reoAesiNHOI TPAeKTOpPii € HEKOPEKTHUM.
CnpaBXHbOoI0 MPUYMHOIO TAKOr0 BiAXWMIEHHS € r'paBiTaujiiHa criH—opoi-
TasnibHa B3aemMoaisl.

KniouoBi cnoBa: piBHsIHHS MaTicoHa-lNananeTpy,
YALTPAPENSITUBICTUYHNI PYX

PACS: 04.20.-q, 95.30.5f, 98.80.Dr
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