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A constraint theory is applied to two-particle systems to construct Poin-
caré invariant wave equations with interaction potentials. The latter can
be determined in the quantum field theory from Feynman diagrams. Their
properties are analyzed in the case of QED. The constraint theory provides
a consistent means for solving the Bethe—Salpeter equation with covariant
propagators.
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The idea of describing relativistic systems of a finite number of interacting
particles with a finite number of degrees of freedom, as long as radiation and in-
elasticity effects are ignored, is a natural generalization of the approaches used in
nonrelativistic mechanics [1]. It is understood that the Galilei invariance of the
nonrelativistic theory should now be replaced by the Poincaré invariance. Pio-
neering works in this domain were realized by Wheeler and Feynman [2], using a
Fokker type action, and by Dirac [3], using a Hamiltonian formalism.

Fokker type actions, while ensuring by construction a manifest covariance, had
the main defect of leading to integro-differential equations in individual particle
proper times that were very difficult to reconcile with initial value problems. Fur-
thermore, relative times, like the space-like coordinates, play there a dynamical
role. This approach was later amended by Bel and replaced by a manifestly co-
variant Newtonian formalism in which particle position four-vectors satisfy second-
order differential equations with respect to proper times. The reparametrization
invariance of world lines was guaranteed by the appropriate conditions, called pre-
dictivity conditions, which are imposed on the relativistic forces for the nonlinear
equations to be satisfied [4].

The requirement that relative times should play only the role of evolution

*Dedicated to the 70th anniversary of Professor Roman Gaida.

© H.Sazdjian 513



H.Sazdjian

parameters also makes possible the description of the system with a single time
parameter, common to all particles, and chosen on any space-like surface. In this
case the starting point can be represented by a Lagrangian with three-dimensional
variables. Here, however, it is the implementation of the Poincaré invariance that
becomes a difficult task. The corresponding Lagrangian actually becomes, in the
interacting case, dependent on derivatives of an infinite order. This line of approach
was developed by Gaida and his collaborators [5].

The Lagrangian approach can also be developed in a manifestly covariant for-
malism. As in the one-particle case, the Lagrangian belongs to the category of
singular Lagrangians as a consequence of the reparametrization invariance of the
theory with respect to definitions of individual times [6,7]. A connection can also
be established between these two Lagrangian approaches [8].

In the present article I shall focus on some developments of the line of approach
based on the Hamiltonian formalism. Using a single time formalism, Bakamjian
and Thomas [9] and Foldy [10] developed perturbative realizations of the Poincaré
algebra which manifests itself through nonlinear equations. However, it was soon
realized at the classical level that it was impossible to identify canonical coordi-
nates with position variables [11,12]. The latter had to be constructed as (com-
plicated) dynamical variables by means of their covariance properties [13]. This
means that the Hamiltonian approach is not well suited for the construction of
world lines. However, it becomes a powerful tool at the quantum level, where
world lines do not play a fundamental role. Here, the priority goes towards the
realization of the Poincaré invariance and the construction of the Hilbert space of
states.

The major progress in this approach came from the constraint theory devel-
oped earlier in its general lines by Dirac [14,15]. The constraint theory allows
the elimination of the redundant variables without necessarily breaking the man-
ifest symmetries of the initial theory. Thus, it was possible through appropriate
constraints to eliminate, for interacting particle systems, the relative energies, or
the relative times, without destroying the manifest covariance. The Poincaré in-
variance of the theory is realized in the presence of the constraints by means of
the Dirac brackets. The constraint theory approach was first applied to interact-
ing particle systems by Droz-Vincent [16], then by Todorov [17] and Komar [18].
The separability (cluster decomposition) condition was also shown to have for-
mal or perturbative realizations [19-23]. The problem of constructing the Dirac
observables in the presence of classical fields (Abelian or non-Abelian) was later
investigated by Lusanna and collaborators [24]

The classical theory is quantized rather easily in the two-particle case [25-29].
For definiteness, a two-fermion system can be described by the following two wave
equations which are generalizations of the Dirac equation [28]:

(Y101 — M)V = (y2.p2 + M)V,
(Yo-p2 — m2)V¥ = (y1.p1 + M)V, (1)

where ¥ is a spinor wave function of rank two and V' is a Poincaré invariant inter-
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acting potential which in the general case is represented by an integral operator,
but in simple approximations can be represented by a multiplicative function. The
compatibility condition of the two equations leads to the following constraints:

(0} = p3) = (m} = m3)|¥ = o, (2)

Pt =3, V] = 0. (3)

The first equation is the constraint that allows the elimination of the (covariant)
relative energy of the two particles. Introducing the total and relative variables
P=pi+ps, p=(p1—p2)/2, x = 1 — x5 and defining transverse and longitudinal
components with respect to the total momentum,

P — — /
. g P[u qu = qP/ P27 PL = P2a r = _:ET27 (4)

G =9~ Pz
it can be rewritten as
C(P,p) = 2P.p1, — (m] —m3) =~ 0. (5)

It also determines the evolution law of the system in the (covariant) relative time
I,
The second equation means that potential V does not depend on the relative
time 2y
VZV(ITapTaPLaf)/l”Y?)' (6)

The elimination of the relative energy and relative time from the wave equa-
tions allows one to bring the final eigenvalue equation of the system to a three-
dimensional Pauli-Schrédinger type equation [30], thus leading to the same quan-
tum numbers as those of nonrelativistic quantum mechanics. This reduction is
done without a loss of the Poincaré invariance of the theory.

The structure of potential V in the wave equations (1) is not fixed by the
constraint theory. It can be chosen empirically or phenomenologically according
to the nature of the system under study. Wave equations (1), in a different rep-
resentation, were extensively used by Crater and Van Alstine and collaborators
in spectroscopic calculations for quarkonium, positronium and muonium systems
[31].

Generalizations of the above approach to the case of systems including more
than two particles were also considered [32-34].

Wave equations (1) can thus be used for practical calculations related to two-
particle systems. They define a relativistic framework for the potential theory.
However, more can be said about potential V: it can be calculated in the pertur-
bation theory from Feynman diagrams. The reason for this is related to the fact
that the constraint theory can also be applied to equations that result from the
quantum field theory. Since one expects from relative times not to play a dynamical
role, one can impose constraint (5) on the Bethe—Salpeter equation [35] or on the
integral equation of the two-particle Green function of the quantum field theory, in
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QED, for instance. Expanding the above equations around the constraint hypersur-
face (5) and rearranging terms one ends up for the two-particle system with wave
equations that have the same structure as equations (1), with V determined in
terms of the off-mass shell scattering amplitude through the Lippmann-Schwinger
type equation [36]:

V=T(1-gD)", T(Ppp) =55

= T(P !
2PL ( ’p7p)

(7)

C(Pp).C(Pp')’

where T is the off-mass shell scattering amplitude and T is defined from it by the
imposition of constraint C' [equation (5)] on its external particle momenta. The
operator gy is related to the free two-particle Green function in the presence of
constraint C"

1 1 2 2

Jgo = . . —m
Jo (71-p1 — my +i€) (Y2.pa — Mg + i€) (p2 1)‘C(P,p)
1 1 9 9
= - . 8
(’71.]91 — my + 18) (’)/2.]92 — Mo + 18) (p2 mQ)‘C(Pv ) ( )

Equation (7) belongs to the general class of relations found in the quasipotential
approach [37,38]. These differ from each other by the choice of the hypersurface
on which the three-dimensional projection operation is done and by the choice of
operator go. The constraint theory can thus be considered as equivalent to the
quasipotential approach. By varying the choices of constraint C' and operator g
one can generate all the possible varieties of the quasipotential approach. The
choices that were made above seem, however, to possess the optimal properties.
We shall now analyze these features.

Equation (7) introduces definite energy and mass dependences in potential
V. When one of the particles becomes infinitely massive, equations (1) reduce to
the one-particle Dirac equation in the presence of the static potential created by
the heavy particle (radiative corrections being neglected). When the two particles
become heavy, equations (1) reduce at the leading order to the nonrelativistic
Schrédinger equation. The next-to-leading terms yield the O(1/¢?) corrections. To
this order, the resulting Hamiltonian is equivalent to the Breit Hamiltonian [39],
which is known to yield the correct O(a*) corrections in QED spectroscopy, a
being the fine structure constant [40].

Equation (7) can also be analyzed in the general case. We observe that the
second term in the right-hand side of the first equation yields an iteration se-
ries in which the integrations, because of the presence of constraint C, are three-
dimensional. The corresponding terms yield additional diagrams to the ordinary
Feynman diagrams; we call them “constraint diagrams”. These play a crucial role
in building up potential V. The constraint diagrams cancel the singularities of the
reducible diagrams of the scattering amplitude T, at least in the elastic unitarity
region. Potential v is, therefore, an irreducible kernel, free of singularities in the
s-channel, leading to correct hermiticity and unitarity properties. A more detailed
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analysis shows that at the second order of the perturbation theory the sum of two-
photon exchange diagrams calculated in covariant gauges is free, at the leading
order, of spurious infra-red singularities and yields the correct O(a*) terms of the
QED bound state spectroscopy [36]. This is in contrast with the Bethe-Salpeter
equation which displays several defects when the perturbation theory with formal
powers of the coupling constant is used together with a covariant propagator for the
photon. In the nonrelativistic limit, the one-photon exchange diagram yields rela-
tivistic corrections of order 1/c instead of 1/c¢? [41]. In spectroscopic calculations,
two-photon exchange diagrams yield spurious infra-red singularities [42]. These
effects are cancelled only with the inclusion of higher-order diagrams, a feature
that enormously complicates the use of the equation in the perturbation theory.
Therefore, the constraint theory can also be viewed as a means of a consistent
resolution of the Bethe—Salpeter equation within the framework of the covariant
perturbation theory.

The analysis of equation (7) can be continued to higher-order terms. Using a
variant of the eikonal approximation adapted to the present problem, the lead-
ing term (in the sense of QED infra-red counting rules) of the sum of n-photon
exchange diagrams can be evaluated and is found to be free of spurious singu-
larities; it yields in three-dimensional z-space a local expression proportional to
(a/(2Pyr))"™. The series of leading terms can be summed and the result is also a
local function in r, together with a dependence on the c.m. total energy Pr. In
this approximation the expression for the QED potential is, in the Feynman gauge
(36]:

V = tanh(vy;.7%V), V= iln (1 + %) . (9)
This potential is equivalent to the one proposed by Todorov in the quasipotential
approach on the basis of a minimal substitution rule upon the identification of
the motion in the c.m. frame into that of a fictitious particle with reduced mass
and energy [38]. The above calculations can also be applied to the case of scalar
photons leading to scalar potentials. The Todorov potentials were used by Crater
and Van Alstine and collaborators in their spectroscopic calculations [31].

Since expression (9) contains in a compact form leading contributions of mul-
tiphoton exchange diagrams, it could also be continued to the nonperturbative
domain by formally increasing the value of the fine structure constant a. One
might in this case get an insight into a strong coupling regime of QED. This study
was done through the analysis of the behaviour of the positronium spectrum [43].
There appears a critical value of «, . = 1/2, for which a fall to the center phe-
nomenon occurs. The latter can be analyzed with different regularization methods.
One of these is the Case self-adjoint extension method [44] which guarantees the or-
thogonality of states with different energy eigenvalues. The new spectrum displays
a zero mass pseudoscalar bound state pointing out the occurrence of a spontaneous
breakdown of chiral symmetry [43]. This result is in accordance with the similar
results obtained with the Bethe—Salpeter equation with a one-photon exchange
[45] and with (noncompact) lattice QED [46,47].
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Other aspects of three-dimensional reductions of the Bethe-Salpeter equation
were analyzed by Bijtebier and Broekaert [48].

In conclusion, the constraint theory, applied to two-particle systems, allows a
consistent construction of the Poincaré invariant potential theory. Furthermore, it
establishes a bridge between the latter and the quantum field theory providing at

the

same time a practical means for the resolution of the Bethe—Salpeter equation.
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3B’930K NOTEeHLUifASIbHOI TeOPIl 3 KBAHTOBOIO TEOPIEIO0
nons

InCaspxaH

YHiBepcuteT “Mapux XI”, IHCTUTYT 9aepHOT pisnku,
rpyna TeopeTuyHoi disnkun, dpaHuis

OTpumaHo 12 6epesHsa 1998 p.

Teopis B’A3€li 3aCTOCOBYETLCS A0 OBOYACTUHKOBOI CMCTEMU nst Noby-
noBu [NyaHkape-iHBapisHTHUX XBUJIbOBUX PIBHAHb 3 MNOTEHLisnaMmy B3ae-
mMogji. OcTaHHi MOXyTb 6yT BU3HAYEHI Y KBAHTOBI Teopii nons i3 PeiH-
MaHOBMX Aisrpam. IxHi BNacTUBOCTI NpoaHanisoBaHo y BMNaaKy KBaHTO-
BOi efnlekTpoguHamikn. Teopis B’a3el 3abeanedye NOCNifAoBHMIA CNOCiO
pOo3B’A3yBaHHs piBHAHHS BeTe—ConniTepa 3 KOBapigFHTHUMK NponaraTo-
pamu.

KntouoBi cnoBa: pesisTuBICTUYHI XBU/IbOBI PIBHSIHHS, PIBHSIHHS
bere—Connitepa, 3B’93aHi cTaH, TEOPIst B’s13€ri
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