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Relativistic spin particles are approached from the stand point of Hamil-
tonian actions of Poincaré group on itself. The several possible solutions
are classified and realizations are given in terms of Dirac’s constraints
formalism.
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1. Introduction

In [1] the dynamics of classical spin particles was approached on the basis of
simple kinematical postulates that were some extension of rigid body kinematics.
The role associated in other approaches like [3] with the so-called “inner space”
of the classical particle was embodied in three mutually orthogonal spacelike axes
belonging to the comoving space. So the phase space was a submanifold of the
cotangent space of the Poincaré group that was defined by three nonholonomous
constraints, which basically require the momentum of the particle to be propor-
tional to the time column of a Lorentz matrix.

Intuitive as it may be, this formulation is too restrictive. Indeed, as a con-
sequence of the constraints, only positive mass particles can fit into it and both
massless particles and tachyons are rejected from the very beginning.

Furthermore, in [1] there was rather wide class of dynamics permitted by the
requirement that a spin particle is described by a Poincaré invariant Hamiltonian
system. It was only reduced by assuming the condition of spherical symmetry
(which was introduced by hand) in such a way obtaining the expected result,
namely, that the Hamiltonian should only depend on the two Casimir functions
[5] of the Poincaré group.

In the present paper we shall change a little bit our perspective and not use
constraints. The aim is to encompass also massless particles and tachyons. The
underlying ideas, to be shaped in mathematical form, are the following:

(A1) The configuration space is Poincaré group, G. Each point consisting of to
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components (z,A), the first one gives the position of the particle as seen
by some given inertial frame, S, and the second (i.e., the Lorentz matrix
A) gives the components of a spacetime orthonormal tetrad of vectors (the
“body” axes) referred to the basis of S.

Within this framework coordinate transformations from one inertial frame S to
another, &', are represented by the left action of Poincaré group (the symmetry
group of relativity) on itself (the configuration space). On the phase space T*G
the corresponding lift must be considered (see [1] for details). According to the
principle of relativity, physical laws must be the same in all inertial frames,

(A2) the dynamics of a spin particle in the phase space T*G should be invariant
under the above left action.

Let us now consider the right action of the element g = (a, L) € G of Poincaré
group on any point (z, A) € G of configuration space.

(z,A) — (z,A) - (a, L) = (x + Aa, AL)

It results in a shift of the point x in Minkowski spacetime to x + Aa and in a
change of the “body” axes, from A to A - L.

The right space rotation does not change A", the time “body” axis. Were the
phase space defined by some constraints involving A”, as it happened in [1], it
would be invariant by right space rotations. Furthermore, if spherical symmetry is
assumed, there is no preferred triad of body axes (i.e., all of them are dynamically
equivalent). Hence,

(A3) the dynamical system describing a classical spin particle should be invariant
under the right action of space rotations.

The right action of a boost does change the time axis of the “body” frame,
A", and takes the point (x, A) off the phase space (in case the latter is defined by
some constraints involving A" ).

(A3’) The right action of boosts can be used to extend, in a right invariant way,
the dynamical system from the phase manifold to the whole T*G.

It is necessary to stress the different roles assigned here to left and right actions
of G. Indeed, by left action of (a, L) we change the reference frame, whereas by
right action we are changing the “axes attached to the body” when L is a rotation.

In consequently with the above kinematical arguments, the dynamics of a clas-
sical spin particle will be defined by

a Hamiltonian system on T*G, with its canonical symplectic structure
[2], that is invariant under both actions (namely, left and right) of
Poincaré group G on TG
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The present contribution could be taken as an exercise to chapter 4 in [2]. The
notation and most notions used here are largely defined and fully developed there.
Sections 2 and 3 are devoted to the general study of Hamiltonian systems on the
cotangent space of a Lie group which are invariant under both, the left action and
the right action of the group on itself. Then the right action invariance is used to
reduce the phase space. In section 4 the particular case of Poincaré group, which
is relevant to relativistic spin particles, is considered and all possible dynamics are
classified. The final results are given in the form of Dirac constrained Hamiltonian
systems ([4]).

2. Hamiltonian systems on the cotangent space of a connected
Lie group

GG is a connected Lie group, G its Lie algebra and G* its dual vector space.

2.1. Symplectic structure and group actions

T*G is endowed with the canonical symplectic form Q € A*(T*G), that is
obtained as the differential of the Liouville form 6 € A}(T*G):

Q=-df. (1)
The Liouville form is related to the projection map 7« : T*G — G, by
(0o, Xa) = (o, Tm(Xa)) (2)

where a € T*G, X, € T,(T*G) and T'7 is the corresponding tangent map.

We now have two actions of G' on T*G, namely, left translation, Q)I;, and 7right
translation, @5, which are defined as the lifts to T#G of the left translation and
the right translation, respectively, on G:

L,: G G
N } L TG — TG
— gh g gh =
o —— T*Lg (Ozh)
Ryv: G — G oy TG — Ty G
h — hgt ap, — T*Ry(a)

where T"L, and TR, mean the respective cotangent maps.

Since both are lifts of actions of G on the configuration space G, they both
preserve the Liouville form and, in addition, are symplectic. Hence, for all £ €
G, the corresponding infinitesimal generator )?g‘ of the action &' (A=L,R) is
Hamiltonian relatively to €2, with an associated Hamiltonian function J4(£) €
A%(T*G) such that

dJA(€) = i(XHQ = d(0, X7) — £(X)0 (3)

where £ means Lie derivative.
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The correspondence £ — J4(€) is called the momentum mapping for the action
4 (see [2], definition 4.2.1). Since @ is preserved by both actions, ®* and ®F, the
last term in (3) vanishes. Hence, a momentum mapping for the action ®* is:

JNE = (0. X, A=LR. (4)

2.2. Body coordinates

The cotangent space T*G of a Lie group is a trivial fibre bundle. Indeed, it
admits a global chart:

A T*G — G xG* }
Qg — (g, T*L, (ag))

that is known as body coordinates (see [2], section 4.4) evoking an obvious similitude
with rigid body kinematics.

Another global chart could also be used, corresponding to the so called space
coordinates, that is defined by

p: TG — G xG* }
ag  —> (9,77 Ry(ay))

However, owing to reasons that will later on become clear, throughout this paper
we shall only use body coordinates.

Let us now write the actions ®4, A=L,R, in terms of body coordinates. To this
end we define ®* by commutatively closing the following diagram:

PA
™G — TG
| |

A | | A
\J \J
(iA
GxG" — GxG*
Thus,
A= NodAo N, (5)
that, more explicitly, yields:
Oy(h,p) = (gh,p), V(h,p) € Gx G (6)
O (h,p) = (hg™',ad (g7 ), (7)

where ad* is the coadjoint representation of G. (See, for instance, [2], ex. 4.1.25.)
By means of a similar diagram we can translate the Liouville form into A'(G x

G*), so obtaining;:
0P =T\ ofor!. (8)

442



Classical relativistic spin particles

In order to have an explicit expression for (07, X, ), we split X, ;)€ T ) (G X
G*) into its two components X ) = (vn, pu), With v, € T3,G and p, € T,G* ~ G*.
Then, combining (2) and (8), we have:

(O (Vs ) = (1, TLy (vn)) = {pt, wn(vn)) (9)
where w € A'(G, G) is the Maurer-Cartan G-valued form.
In the body coordinates, an explicit expression for QF = —df#® is then obtained

by exterior differentiation of (9):
VX = (vn,p), Y = (un,0) € Ty (G x G*) ~ (T1,G) x G*
QG0 (X, Y) = (o, wn(vn)) — (s wn(un)) + (g, [wn(vn), wa(un)]) (10)
where the Maurer-Cartan structure equation

dw = —=[w, w] (11)

has been used. )
Finally, in body coordinates, the momentum mappings J*, A = L, R are ob-
tained from (4):

veeg,  JUOH=JTNOoNT (12)

and their explicit expressions, respectively, are
T¥(hyp) = ad*(h™")u, (13)
T hp) = p. (14)

3. The reduced phase space

As we have already pointed out in section 1, left invariance and right invariance
for the systems under consideration have neatly different meanings. Whereas left
invariance has a physical interpretation in terms of relativistic invariance, right
invariance has been introduced to enlarge the phase space and so to avoid the
need of constraints.

We shall now consider a ®f invariant Hamiltonian system on G x G* and
eliminate this ‘unphysical’ symmetry by reducing the phase space. The techniques
are those developed in [2] (section 4.3) and the method basically consists in the use
of the integrals of motion associated to the latter symmetry (that are in involution
with respect to Poisson brackets) to eliminate some degrees of freedom.

Now, theorem 4.3.1 in [2] can be applied. Indeed, we have

a symplectic manifold (G x G*,QP), on which the Lie group G acts
symplectically — namely, ®® — and an ad*-equivariant momentum
mapping J®. Furthermore, as it can be easily checked:

1) any p € G* is a regular value of J® (i.e., Ty, J" is surjective),
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2) the momentum mapping J% defined by (14) is ad*-equivariant
under ®F, that is, Vg € G,

J%o (i)? =ad* (g ") o J®

(see definition 4.2.6 in [2]).

3) JEY () = {(h,pu); h € G} is diffeomorphic with G, and the
isotropy group of p, namely G, = {g € G; ad*(g9)p = p}, acts
properly and freely on J&=1 ().

Hence, P, = G/G), has a unique symplectic form, QW such that:
T°IL,(Q0) = T*,(2") (15)
where II,, and i, are, respectively, the canonical projection and the inclusion:

Im,: G — P, iy: G — GxG*
h — hG, h — (h,p)
Therefore, given any p € G* we have a reduced phase space, i.e. a symplectic
manifold (P,, Q®).

3.1. Arealization of P,

This reduced phase space P, can actually be realized as a submanifold of G*
(this is a consequence of the Kirillov-Kostant-Souriau theorem, see [2], example
4.3.4(v)). Indeed, let us consider the coadjoint representation of G, and define:

U: GxG* — G } (16)

(g,1) — ad (g7 )= Vu(g) = Yy(p)

For any given p € G*, we shall have an orbit: ¢, : G — G* and, for any given
p € Yu(G) C G, ¥, (p) is a coset in P, = G/G,,. Therefore, P, is diffeomorphic
with I'), = ¢,(G), the orbit of u € G* by the coadjoint representation of G. The
diffeomorphism is

Y,: P, — T,
hG, — ad*(h™')u (17)

Thus I', C G* is a realization of P,.
The symplectic form on T, is obtained from QW by inverse pullback:

A ~

Q) = T*¢;1(Q(u)) (18)

As a consequence of (15) and the fact that ¢, = ¢, o II,, we have that Q®) is
the only symplectic form on I', such that:

T4, (Q)) = T70,(2f,,) (19)

where p = ad*(h™ 1) p.
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3.2. The left actionof G on T,

Since the following diagram

Gxg & ¢ I 1,
| | |
o | Ly | vy | (20)
Lo |
Gxg* & @ T,

with 1), and v, defined in (16), is commutative, we have that the left action PL
of G on G x G* is “projected” onto the coadjoint action ¥ of G on I';;:

Gyt ad* (b~ )i — ad* (g~ )ad* (h")p = ad*((gh) )

By its very construction, ¥ acts transitively on I',. Hence, at any p € I, the
set of its infinitesimal generators spans the whole tangent space 7,(I',,), that is:

T,(Tw) = {V,(£), £ € G} (21)

Since TRy, (§) € TG is an infinitesimal generator for the left action L, and the
diagram (20) is commutative, we have that:

Vo(§) = Tty o TRA(&) (22)

for any h € G and p € G* such that p = ad*(h™")p.
In particular, taking h = e and u = p, we obtain:

Vp(&) = T’ébp(g) = —Ad*(f)p € Tp(ru) (23)

where Ad* is the coadjoint representation of G on G*.
From (19) and (23), after a little manipulation, we arrive at:

QU (Vo(6), V() = {p. [€,m]) - (24)

Now, in order to prove that ¥ is a symplectic action, we can either use the
commutativity of diagram (20), together with the definition (19) and the unique-
ness of Q| or work directly (22) and (24). This second way goes as follows. Let
P =1g-1p=ad(g)p €T,, and let us evaluate, V¢, 7 € G,

T4y (27) (Vi (€). Vir (1) = QY (T (Vi (). Ty (Ve () . (25)
It is easy to show that
Topy(Viy(€)) = —ad’*(g7") (Ad"(€)p) = —Ad" (ad(9)§) p = V,(ad(9)€) ~ (26)
substituted in the right hand side of (25), and taking (24) into account, yields:
Ty (20) (Vy (), V() = {p,[ad(9)&, ad(g)n]) = (o', €, m])
= O (Vy(9), V()
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That means

A~

T* 4, (Q(u)) —OW (27)

Hence 1, is symplectic Vg € G. An associated momentum mapping can be derived
by means of (23), (24) and definition 4.2.1 in [2]:

J(p) =p, pel,. (28)

3.3. The implicit equations for T',,

I', is characterized by some functions f on G* defining constraints that look
like
f(p) = constant on T',, . (29)

Now, since the infinitesimal generators (23) span the whole tangent space

T,(T',), the constraints (29) must satisfy:

(df,Vp(£)) =0, pel, . £€g (30)
which implies that

(Ad*(E)p, (df ),) = (p.[&, (df),]) = 0. (31)

(Note that (df), € T,(G*) ~ G** ~ G).
Writing the latter condition in terms of one basis of G, (i.e., in a given para-

metrization of G) it reads:
jk dp; (32)

where C;k are the structure constants of G in that parametrization. The solutions
of equation (32) are related to the Casimir invariants of the group [6], [5].

4. The Poincaré group

To apply the above results to Poincaré group, it will be helpful to begin with
a previous recall of some general results and notations.

h = (z",A*)), g = (y*, L*,) denote any couple of elements in G, the Poincaré
group. The group law is

hg = (z" + A" y", A" L") (33)
A general element in the Lie algebra G is denoted by
E=W0NVE), Vi + V=0,
and a general element in the dual space G* is written as

n= (aaaWaIB)a Waﬂ+Wﬂa:0-
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Indices are raised and lowered with Minkowski metrics n = (— + ++).
The commutation relations in G are those corresponding to the semidirect sum

[(bﬂ’ VMI/)’ (Cu’ TMI/)] = (VMI/CV o Tﬂybl” Vuprll o Tupvpu) (34)
and the dual product is:
o e 1 v
{1, €) = ((aa, W), (B, VY,)) = aab® + SWH VY, . (35)
Other useful results are listed below: [1]
1. The coadjoint action:
= (aa, W) — ad* (97" ) = (al,, W) with
al, = A, ag and Wi = Yoty — ypay, + L L7 W, (36)
2. The Liouville form:

1
agz,u) = apA,Pdz? + §WPVAanAUp . (37)

3. The momentum mapping for the left action of G:

T (hy 1) = ad* (W) it = (Dps o)
whose components correspond to

the linear momentum pp=asA,° (38)

and the angular momentum Joo = TpPo — ToPp + WaﬂAp“AUﬁ (39)

4.1. The reduced phase space: explicit realizations

Poincaré group has two Casimir functions, namely, the square of mass and the
square of Pauli-Lubanski 4-vector. According to subsection 3.3, given any couple
of possible values (c1,¢;), we shall have a submanifold I, .,) and each connected
component of it will be a realization of a I',, u € G*. The implicit equations are:

a = aua,n” (40)

o nyyaﬂallwaﬂnﬂm—aapwnr (41)

Now, the point is to find the simplest representative (a,, W, ) for a given couple
(€1, ¢2). It is important to realize that ¢; and ¢y are the Minkowski squares of two

mutually orthogonal 4-vectors, namely, a, and numga”Waﬂ. Hence, if one of them
is either timelike or lightlike, the other is necessarily spacelike. That is,

1 <0=>c>0 and e <0=c >0.
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To find a simple representative (a;,, W,5) for I'qw), we shall use that the
skewsymmetric matrix W, can always be written as:

1
Wa,@ = Eaa[; — Eﬂaa + inaﬁﬂbeZV (42)

where the formulae relating Eg, b* and ¥” to W,z and ag depend on the class of
the latter relatively to the Minkowski metric.
If a?a, # 0, it follows obviously that:

1 1
Ea — W ayay 3 Ea —
a,ar a,ar

nalgwa'gW‘“’ , and b =d". (43)

In the case a”a, = 0, a lightlike vector b* can be chosen such that b*a, = 1 and
the vectors E, and X3 are given by:

E, =Wy b, Yo = Napua®WH . (44)

In this second case the decomposition(42) is not unique.
It immediately follows from (42) and (36) that:

) 1
F(a,W) = F(a,W’) with Clzﬂ = inalgwb"E”. (45)
Hence, the 4-vectors a, and X, determine I'¢, w).
According to the discussion above, these two 4-vectors are orthogonal to each
other and are obviously connected with the two Casimir functions of Poincaré
group. Hence, only the cases listed below are possible:

c1 #0, co :c% S c1 =0, co =X, 2H

I 11 111 v \% VI

c1<0,c2>0 | ¢1>0,c2>0 | ¢c1>0,c2a<0 | ¢c1>0,ca=0 c1=0,c2=0|¢c1=0,c2>0

The different cases are analysed with detail in the appendices. As a summary,
the several reduced phase spaces I, 1) are realized as the submanifolds of T*(R®)
defined by the constraints:

Qsl Epppp_cl =0, ¢2E7Tp7rp+K:0a (46)
v =1r,— L =0, o =11, =0 3 =17, Yy =pm, =0
where:

K = ¢3/4¢q in cases I, I1, II1, and IV, K = —1/4 in the case V and K =0
in the case VI, and

L =1 in the cases I, II, III, and V, L = ¢; in the case IV, and L = ¢ in
the case V1.
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The Poisson bracket structure on each of these submanifolds is obtained as the
Dirac bracket structure obtained from the canonical elementary Poisson brackets
on T*(R?):

{zyapu} = 5Za {rllaﬂ-u} = 5:: (47)
together with the constraints listed above. Among them, ¢,, a = 1,...,4, are
. Co
second class constraints, whereas ¢; and ¢, + 2—1/)1 are first class.
1

In terms of these variables, the generating functions of infinitesimal Poincaré
transformations are:

linear momentum Dy (48)

angular momentum Joo = TpPy — TaPp + TpTy — T6T, . (49)

Appendix A: Cases |, Il and Ill

The vectors a, and ¥, can be complemented with a unitary and orthogonal
vector R, and with
c
Ls = Npuaa" RS, LPLg = —a’a,%,%" = — = . (50)
1
As aresult, {a,,¥,, R,, L.} is an orthogonal tetrad in terms of which the Lorentz
matrix A, 7 can be written as

lLO' a ZU
A o= Ppa +Sp

— R 51
, LeLy,  p®pa  $%Sq T (51)

where: [, = A, "Ly, pp =N, %a,, 5, = A, 73, and 7, = A, 7R, is also an orthogo-
nal tetrad.
Using (50) and (51), the Liouville form (37) becomes

1
0" = p,da’ + §lpdrp . (52)

Notice that the 16 variables z7,r, l,,p, can be used to coordinate (redundantly)
the reduced phase space I'(, 1) in case that ¢; # 0 and ¢; # 0. Indeed, given three
non-null orthogonal vectors 77, (,,p,, the fourth vector in the tetrad is obtained
from lg = nguap”r’s®. The point in ') corresponding to ad*(h™')(a, W) is
coordinated (also redundantly) by h = (2, A, ?) with the Lorentz matrix given
by (51).

Those 16 variables are, however, redundant in I', ) and are constrained by
the following relationships:

P =pp’ —c1 =0, ¢ #0, A =1lP +co/c1 =0, 3 #0
hh=rrP —=1=0, Y=1°l,=0, ¢3=1r"p" =0, Yy =1pP =0
(53)
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In terms of these variables, the linear and angular momenta, (38) and (39),
respectively, are

1
pp and  J,, = 2,pp — Tepp + §(rplg —14l,) - (54)

Now writing 7, = 3/, in equations (54) and (52), the expressions (49), the elemen-
tary Poisson brackets (47) and the constraints (46) follow immediately.

Appendix B: Case IV
In this case the tetrad a,, R,,%,, Lg is completed so that
L, = r*a, = IL"R, = R'a, = R"¥, =0, R'R, =cy, LFy, =1 (55)

and ngwaaﬂZ“L”Ra = —¢.
In terms of this tetrad the Lorentz matrix Ap 9 can be written as

a’ +r,R°
A, 7= 1,57 s, L7 + 2L Tt (56)
P Pa
with
lyb=A,"Ls,p,=A,%a5,5,=A, 7%, and ro =N\, R,.
Similarly as in appendix A the Liouville form is:
B p 1 p
6° = p,dz’ + §SpdT : (57)
and the linear and angular momenta are:
1
pp and  J,, = x,p, — Topp + i(rpsg —T4Sp) - (58)
The same comments as in appendix A do hold and the constraints are:
1 =pp’ —c1 =0, ¢ #0, 4o = 5,5 =0, co=0 (59)
77/)1574pr_61:07 ,QZ)QErpSp:Oa ¢3ETppp:07 1/)4E<Sppp:0

Finally, writing 7, = 15, in equations (58) and (57), the expressions (49), the
elementary Poisson brackets (47), and the constraints (46) follow immediately.

Appendix C: Case V

Since a, and X, = 7apa’WH are orthogonal null vectors, they are linearly
dependent. By a Lorentz transformation, a representative of I', ) can be chosen
such that a, = %,.
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Consider now a tetrad a,, Lg, R,, S, such that

I*L, = I*R, = IS, = R*a, = R*S, =0,  R‘R,=S"S,=1, [Lta,=1

(60)
and 7,,00° LPSY R = 1.
In terms of which the Lorentz matrix A 7 can be written as
A, =1,0" +p,L° +1,R” + 5,57 (61)
with:
lb=A,"Ls;py=2A7,%5,5,=17,5, and ro =N\, R,.
The Liouville form can be obtained as in appendix A and it yields:
1
08 = p,da’ + ispdr”, (62)
and the linear and angular momenta are:
1
py and  J,; = T,pe — Tepp + 5(1",,30 —T4Sp) - (63)
The same comments as in appendix A also hold and the constraints are:
o1 =pp’ —c1 =0, ¢ =0, 4y =5,8/-1=0, cg=0
P =r,r” —1=0, p=71"s,=0, 13 =5p’ =0, Wy = 1ppf =
(64)

Finally, writing 7, = 15, in equations (63) and (62), the expressions (49), the

elementary Poisson brackets (47), and the constraints (46) follow immediately.

Appendix D: Case VI
Complete a, and X, to a tetrad a,, Lg, R,, ¥, such that
"L, =L"R, =L"Y, = R'a, = R'Y, =0, R'R, = ¢y, Lta, =1 (65)

and nﬂuyaaﬂL”R”Ea = 9.
In terms of which the Lorentz matrix Ap 7 can be written as

o o o . TpR7+5,25°
Ap = lpa _'_ppL + % (66)
with
lb=A,"Lo,py=A,%5,5,=A,7%, and r,=A,"R,.
The Liouville form can be obtained as in appendix A and it yields:
1
0F = p,da’ + §lpd7“”, (67)
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and the linear and angular momenta are:

1
pp and  J,, = x,p, — Topp + §(Tplg —14l,) . (68)
The same comments as in appendix A also hold and the constraints are:

P =pp’ —c1=0, ¢, =0, dog=5,8"=0, c2 #0 (69)
1/)157"1)7"/)—02:0, ¢2ETpSP:0a s = s’pf = 0, 1/)457";;17”:0

Finally, writing 7, = 3/, in equations (67) and (68), the expressions (49), the

elementary Poisson brackets (47), and the constraints (46) follow immediately.
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TOHOBOI Aji rpynu NyaHkape Ha cebe. MpoknacndikoBaHO HN3KY MOXJIN-
BUX PO3B’A3KiB Ta NobynoBaHO peanisadii y TepmiHax [ipakoBoro ¢op-
Maniamy 3 B’a3s9Mu.

KnioyoBi cnoBa: pesistuBictnyHa 4acTuHka 3i CriiHom, rpyna
lNyaHkape, ramisibTOHOBA 4isi

PACS: 03.20, 03.30
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