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Collective center-of-mass variables are introduced in the Lagrangian for-
malism of the relativistic classical mechanics of directly interacting parti-
cles. It is shown that the transition to the Hamiltonian formalism leads to
the Bakamjian-Thomas model. The quantum-mechanical system consist-
ing of two spinless particles is investigated. Quasi-relativistic corrections to
the discrete energy spectrum are calculated for some Coulomb-like inter-
actions having field theoretical analogues.
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1. Introduction

There are two types of classical relativistic direct interaction theories (RDIT),
namely, manifestly Poincaré-invariant four-dimensional formulations and three-
dimensional approaches [1]. Applying each of them to the description of real phys-
ical N-particle systems we come across the problem of space-time interpretation of
some formal constructions. In four-dimensional approaches difficulties are caused
by the presence of redundant variables specific to many-time formalisms and in
three-dimensional ones they are caused by the so-called no-interaction theorem.
In the relativistic Hamiltonian mechanics, this theorem forbids identification (in
the interaction zone) of canonical variables q,* with physical (covariant) position
coordinates z,' (a = 1,N; i = 1,2,3) which transform as a space part of the
events in the Minkowski space-time [2]. In the Lagrangian formulation [1,3-5] the
no-interaction theorem asserts that the interaction Lagrangian depends inevitably
on all higher time derivatives T, = déz,'/dt*, s = 1,2..., of the physical particle
coordinates. This theorem is essentially related to the use of individual particle
variables (PV) in both the Hamiltonian and Lagrangian approaches.
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In papers [1,3-6] the following approach to the construction of RDIT was pro-
posed. The starting point is the 3-dimensional Poincaré-invariant Lagrangian for-
malism [1,3] with using the physical coordinates z,° and with allowing the con-
nection to field theories via the Fokker-type formalism [6]. These aspects of the
Lagrangian description along with the possibility to use the Nother theorem for
obtaining the conservation laws [4] are the main advantages of this approach from
the point of view of the physical interpretation of the theory. The next step is a
transition to the canonical Hamiltonian formalism admitting the quantization of
the theory [5,7].

Another aspect of RDIT is the problem of how to separate the motion of
the system as a whole from the internal motion of its constituents. This problem
can be solved in a manner similar to that of the non-relativistic mechanics case by
introducing center-of-mass variables (CMV). Relativistic generalization of the non-
relativistic notion of the center-of-mass is ambiguous. The most frequently used
are, firstly, the center-of-inertia (covariant center-of-mass) whose coordinates R!
are transformed by the Poincaré group as 3-coordinates of the Minkowski-space
points, and, secondly, the center-of-spin (or canonical center-of-mass) with the
canonical coordinates @ [8,9]. External variables @Q* and P; describing the motion
of a system as a whole, along with the corresponding set (g%, ppi), b =1, N — 1 of
6(IN —1) internal variables are often used in the relativistic Hamiltonian mechanics
[10]-[13].

In the relativistic Lagrangian formalism it is natural to choose the coordinates
of the center-of-inertia R as external position variables and to formulate the prob-
lem of constructing the relativistic Lagrangian mechanics of an N-particle system
in terms of CMV. This set also contains 3(N — 1) internal variables p,’ [14]-[17].
The internal variables p,’ may be introduced by postulating their transformation
properties with respect to the Poincaré group. The corresponding relations which
are written down in section 2 constitute the prerequisites which enable us to find
a connection between CMV and PV and, accordingly, between the relativistic La-
grangians in terms of these two classes of variables. An important feature of CMV is
the existence of the Poincaré-invariant interaction Lagrangians which depend only
on a finite number of time derivatives (section 3). The transition to the Hamil-
tonian formalism (section 4) leads to the well-known Bakamjian-Thomas model
supplemented by the relations between the canonical variables and the physical
particle positions. In sections 5 and 6 the first-order quasi-relativistic approxi-
mation (up to ¢~ terms) is considered from both the classical and the quantum
mechanical viewpoints. Relativistic corrections to the energy spectrum of a two-
particle system with Coulomb-like interactions are calculated as an illustration.

2. Realization of the Poincaré group P(1,3) in terms of the
Lagrangian CMV

Since the external variables R’ describe the motion of an N-particle system as
a whole, we require their transformation properties with respect to the Poincaré
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group to be the same as those of the physical coordinates z,’ of a single point
particle. In the instant form of dynamics [3,1] they are [14,17]:

HR; = R, PiRj = bij, Jil; = —eiule, (2.1)
KiR; = —td;; + 072Rz‘Rj-

Here H := D — 0/0t, P;, J;, and K, are generators of time and space transla-
tions, space rotations, and boosts, respectively, and D is the total time derivation
operator. As usual, the dot denotes the time derivation (e.g., R; = DR; are the
components of the external velocity R) We postulate further that similar to the
case of non-relativistic mechanics the internal CMV p,’ are the components of the
translationally invariant 3-vectors p, (b = 1, N — 1) which do not depend explicitly
on time:

Hovi = pvi, Pipy; =0, Tipyj = —€ijkpPok - (2.3)

The transformation of these variables with respect to boosts is determined by the
Poincaré group structure. It can be shown that the commutation relations of the
Poincaré algebra AP(1,3), along with equations (2.1)—(2.3), lead to the following
conditions [14,17]:

Kipyj = ¢ (Rl-p,,j + Ripy; — 5z‘j(RPb)) : (2.4)

The expressions for generators X, = {#, P;, J;, K;} of the Poincaré group in terms
of CMV may be obtained from equations (2.1)—(2.4) immediately [14].

3. Poincaré-invariance of the Lagrangian description

The evolution of a particle system is described by the solutions of the Euler-
Lagrange-Ostrogradsky equations

S (=Dy’ ;g —0. {2} ={Rio)} (3.1)

following from the variational principle ¢ [ Ld¢ = 0. The conditions of Poincaré
invariance of equations (3.1) may be expressed by the system of first-order differ-
ential equations for the Lagrange function:

X, L =D, (3.2)
where the auxiliary functions €2, have to satisfy the compatibility conditions:
Xagg - X/;Qa = Ca,nyQ'ya (33)

with .47 being the structure constant tensor of the Poincaré group P(1,3). For
this group the relations (3.3) admit the following set of functions €,:

Q?—L = L, QP:‘ = 0, sz = 0, QKi = C_2RZ'L . (34)

427



R.Gaida, V.Tretyak, Yu.Yaremko

In which case the conditions (3.2) of Poincaré invariance take on the form:

L
PL=0, JiL=0, (H-D) E—aa—fo,
(Ki — ¢ 2R;D)L — ¢ >R,L = 0. (3.5)

The structure of equations (3.5) is quite different from the structure of the
Poincaré invariance conditions in terms of PV z, [3,4]. Whereas the interaction
Lagrangian as a function of the particle variables is defined on J*°7, equations
(3.5) admit Lagrangians that depend on CMV and their time derivatives of finite
orders. The simplest structure of L is given by

L(R,R,p, p,) =T7'Flaw, B;,7),b =T, N—1T; (3.6)

here I'"! = v/1 — ¢2R2 and F is an arbitrary function of scalar products of the

vectors

a, = p,+c 'T[Rp)], B,=Td&,—c TRy, (3.7)
v = I'R+c¢ 'T?RR]+ ¢ T(RR)R. (3.8)

Contrary to oy and 3, , the v dependence of L is not necessary. The Lagrangian
(3.6) depending on a finite number of CMV can be made equivalent to the La-

grangian defined on an infinite-dimensional set of PV T, ¢, only if the CMV are
functions of all these PV. The set of equations (2.1)-(2.4) with generators H, P;,
Ji, and K;, determined in terms of PV [3,4], may be regarded as the basis for
determining these functions [17].

Using the Nother theorem for Lagrangians with higher derivatives [1]-[4] we
found ten integrals of motion (F, P, J, K) corresponding to the Poincaré-invariance
of the theory, based on Lagrangian (3.6). From their analysis we obtain [14,17] the
following equation of external motion

MR + ¢ ?[R,s] = K, (3.9)

in the rest frame of reference (E = Ey = Mc*, P =0, J =s, K = Kj)). It should
be noted that the equation

MR + ¢ ?[R,s] =0, (3.10)

being the consequence of (3.9), was obtained in [18] for classical particles with a
spin; it is a three-dimensional form of the well-known Mathisson equation. Spin s
is equal to the internal angular momentum of the system.

Solving (3.9) in a coordinate system with the origin at point Ry = Ky/M, where
K is the value of integral K in the rest frame and the Oz axis is directed along
spin s, we see that point R(¢) describes a circular motion in a plane orthogonal to
the spin:

R, (t) = Asin(wot — ), Ry(t) = Acos(wot —a), R, =0. (3.11)
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Here, frequency wy = Mc?/s; A and « are constants of the integration. Taking
into account the usual non-relativistic limit procedure, in accordance with which
the center of mass is at rest as measured in the rest frame, we must set A = 0.
Indeed, as ¢ % — 0 (wy — oc), the limits of the trigonometric functions in equation
(3.11) do not exist. This means that in the set of solutions of equations (3.1) for
the Lagrangian (3.6) we keep only those which satisfy the standard free-particle
equation R = 0.

4. The Hamiltonian description

There are several ways to obtain the Hamiltonian formulation corresponding to
the Lagrangians with higher derivatives and with supplementary conditions, like
R = 0 [7,19,20]. Here we use an approach close to that of [19]. Let us perform a
change of the variables (R, p,) — (Q, qs), where

_ [P,
Q= R T re) @)
2. .
w = Lp—F<R(Rp). (42)

Relation (4.1) is a definition of the canonical center-of-mass [8]. In terms of new
variables, the Lagrangian (3.6) has the form:

L(R7 ﬁ'a Py p.b) = L(Qa 07 Qy, Qb) + LI = I’(Qa b, Qb) + LI ) (43)

where L' contains only the terms which do not contribute to the equations of
motion if the external equation of motion R = 0 is satisfied. Therefore, the term L’
may be omitted in equation (4.3) and, thus, the transformation to the Hamiltonian
description may be performed in the usual manner on the basis of Lagrangian L.
Using the Legendre transformation we construct Hamiltonian H corresponding to
Lagrangian L:

H = /P2 + M2(qy, 73)c*, (4.4)
where
oL oL , <~ OF
P=—, m=—, Mc= By— — F . 4.5
0 ' 94 2P, 0 )

We note that the external momentum variable R is a motion integral (the total
momentum of the system).

Expression (4.4) for H reproduces the particle-system Hamiltonian of the Ba-
kamjian-Thomas model [10]. The advantage of our way of constructing this model
is the possibility to express the internal Hamiltonian M(qp, 7;) in terms of the
interaction Lagrangian which, in turn, may be related to some field models [6]. On
the other hand, in our approach the canonical variables Q, P, q,;, and 7, have a
definite relation to the Lagrangian CMV R, p, and their time derivatives R, Py, and,
therefore, to the individual particle variables x,, at least in the approximations in

the parameter ¢ 2.
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5. Quasi-relativistic approximation

Let us consider the main steps of our approach in the first-order approxima-
tion in ¢™? (i.e. quasi-relativistic or post-Newtonian approximation). We use the
following sufficiently general form of a quasi-relativistic two-particle Lagrangian
with static non-relativistic potential U(r) [21,1,4]:

2 2 4
Z myv; — MaU, 1
L — < 9 + 862 > - U(T) — @ ((—V1V2 + 2AU2)U(T‘)+

a=1

b (Vv +2B(v)?) TS 2u1(r)> , (5.1)

where r = x; — X9,V = v; — vy, A and B are arbitrary constants and wu;(r) is an
arbitrary function. For interactions which correspond to the linear field theories,
we have ui(r) = 0 and constants A and B depend on the tensor structure of
interaction [1,21]. For example, we have A = B = 0 for a vector interaction, and
A = —1,B = 0 for a scalar interaction.

Further we consider a specific case of interactions which correspond to the
non-relativistic long-range potential

U(r) =

%, (5.2)

where a is a constant of the interaction. We suppose that the Galileo-invariant

function u;(r) has the form:
631

(=, (5.9
where a; is the constant. Let us note five significant cases covered by the interaction
described in a quasi-relativistic approximation by the Lagrangian of type (5.1)
where functions (5.2) and (5.3) enter:

e o= ¢e1e9, A= B = 0, and a; = 0: the Darwin Lagrangian which describes
an electromagnetic interaction of two point charges;

e a = —Gmymy,2A = 3, B = 0, and 2a; = G*mymam(m = my + my) : the
Einstein-Infeld-Hoffmann Lagrangian which describes a gravitational inter-
action of two point masses;

o o= ejeg — Gmimy,2A = —3Gmimy/a, B = 0, and 20y = G(Gmymaom +
e%mQ + e%ml — 2e1e9m): a gravitational interaction of charged bodies (the
Bazanski Lagrangian [22]);

o a=—Gmimy,2A =1+2v,B =0, and 20y = (28 — 1)G*mimym: a gravita-
tional interaction in the PPN-formalism [23] which classifies suitable theories
of gravitation (i.e. those which do not contradict the four classical experi-
ments, satisfy the conditions of the Lorentz-invariance, and admit N-particle

Lagrangian functions) in the first-order approximation in ¢ ?;
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e o = —Gmymy, A = —2B = 1, and «a; = 0: the Lagrangian of the quasi-
relativistic approximation of the Whitehead-Shield theory of gravitation [24]
where the massless tensor field of the second rank as an intermediate field is
assumed.

The correspondence between CMV and PV for a two-particle system in the first-
order quasi-relativistic approximation has the following form [17] :

xo = R (04 S (R - (Ro)) -

2

_ :—E(Rp)p' + % (no® +U(p)) p} : (5.4)

where a,b = 1,2,b # a,m = my + ma, p = mymsy/m. Using these relations in the
Lagrangian (5.1) leads to the following two-particle quasi-relativistic Lagrangian
in terms of CMV:

mR?  pp? mR*  up 3 RITER
L = = U -2 )+ SRR -
2 i 2 (n) + 8¢? i 8¢? < m) i 42 P
_ PR+ EA(RipRS L of(ae (1 .2
53 (RA)"+ 5 (R[p[Rp]]) + 52 {(R (m + 2A> p ) U(p)+
P 52 _Rp2) LU _ 1
b (2 -28) (o2 - 1) S50 - St (55)

This expression agrees with the corresponding approximation of the Lagrangian
(3.6).

In the quasi-relativistic approximation the canonical external variable (4.1)
becomes

[P, s]
= R _ =
Q= R uE v,
_ H . .
= R+5 [R[pp]} . (5.6)
The total momentum
E .
P=Ply,= c_2R (5.7)

is canonically conjugated to Q. Quasi-relativistic inner canonical variables are
defined by the relations

Rlosl| 1 o

2 u2op

R2\ 0L 19\

a = p+ (5.8)
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where A(p, p) is an arbitrary Galileo-invariant function. Choosing this function in
the form

b, 5) = (pp) (ﬂ (1 - 3—“) i1 (1L an) U(p)) , (5.10)

8 m 4 m

we obtain the Hamiltonian function depending on the square of the inner momen-
tum 7r and therefore being convenient for quantization:

g_P P <7r2

T 2m 2m2 \ 2u

P w2

~8m3e * 2u(q

+U(q)> ) +v(q) (5.11)

ﬁ:i+£1;—262{2(1+%+4A—4B)U(q)—(1—3—M>qd—U} (5.12)

6. Quasi-relativistic Schrodinger equation

Starting with the Hamiltonian function (5.11) we write down the stationary
Schrodinger equation: R
(H—-E)Q.q| E,P)=0. (6.1)

The total wave function (Q,q|E,P) of the system is equal to the product ¥(Q)(q)
of the external wave function ¥(Q) and the inner one ¢(q). We consider the states
with sharply defined total momentum P, so the external wave function is then a
plane wave, ¥(Q) = exp(ikQ), where the wave vector k = P/hi. Due to the
separation of the external and internal variables in equation (6.1), we obtain the
following wave equation:

(h=&)i(q) =0, (6.2)

where p2 £p? pi
E=F— —+ — (6.3)

2m  2m2c¢2 8m3c?’

Here EF and P are eigenvalues of the non-relativistic Hamiltonian and total mo-
mentum operators, respectively.
The internal Hamiltonian operator is defined by the formula

h=-X+uv(q), (6.4)

where the first term is some Hermitian operator which corresponds to the classical
function 72/u(q) = a(q)7?. We use the following sufficiently general quantization
rule:

X = a(q)#* + 897, a(q)]#; + M2 (a(q)) (6.5)
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where the inner momentum operator is chosen in the usual form:

0

_— 72 = —h2A . .
aqz b ™ (6 6)

T = —1ih
This rule preserves the rotational invariance of the inner Hamiltonian and depends
on one parameter A € R. The value A = 1/2 corresponds to the symmetrization
(7%a(q) + a(q)7?)/2.

To illustrate our approach we consider the Coulomb-like potential (see equa-
tions (5.2) and (5.3)). In this case the functions a(q) := p~'(¢q) and v(q) take the

form:
1 1 Q 3 W
= — 1+ —Ci— =-——+2A-2B .
a(q) p ( + e Ch q) , O 1 Im + , (6.7)
« 1 Q 1 W Jhory
v(q) . ( W 2q> , Go=g - B (6.8)

Here i = mymsy/m and the parameters A, B, ay, and « are defined by the type of
interaction (see section 5).
After some calculations we arrive at the following Hamiltonian operator:

j o ! o q 0 Adrwal
) < T e pag WCNS(Q)) +v(q) (6.9)

where 7 denotes a well-known transcendental number instead of the value of the
inner momentum.
We shall study the discrete spectrum of H, when o < 0. The use of methods

of the perturbation theory (e.g., see [25]) allows us to obtain quasi-relativistic
corrections to the non-relativistic Bohr expression

g (0) _ ,LLO(Q 1

= - 1
" 2h% n?’ (6.10)

where n is the main quantum number. Let us rewrite the Hamiltonian operator
(6.9) in the form

A LA () Co—Cia* W « q 0
h=—=h"+ ————+ 501 | 55 +47Ad 6.11
1(q) * uc? g2 2 p2c? 1 ¢ 0q +4mwAd(q) | ( )
where B

T % (6.12)

is a non-relativistic energy operator possessing spectrum (6.10). According to the

stationary perturbation theory [25], the quasi-relativistic term 87(5) is equal to the
matrix element

£W = / a2 (Ve (@) = (VYo (6.13)
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where 1)\)) (q) are the eigenfunctions of operator (6.12) and

2
C:-Cia® | o 1<3§+4m5( )) (6.14)

nlm
1 Q-

V=—0C-h"+ + -

pe? g Cpe @2 e

is a quasi-relativistic perturbation of the non-relativistic energy operator (6.12).

While calculating (6.13) we take into consideration that 1/)7(3271(q) are the eigenfunc-

tions of h(®. We also use the average values of the following functions of r = q
[25]:

oy pal N s 2
</r >0 - h2 n2 I <T >0 - h4 n3(2[ + 1)J
313
o
(0000 = [ O = 5500 (6.15)
One can easily check that the average value is
q 0
[ i@ S 5ot a) = 2mlulh O (6.16)

Therefore, the quasi-relativistic correction to the energy spectrum is given by

pat 1 <ﬁ MG =) g, )2—015(”) : (6.17)

n 20+ 1

Sﬁ) T 2Hic2 3
We note a dependence of the obtained spectrum on the quantization parameter \.

For the case of an electromagnetic interaction, when the parameters A = B = 0,
a1 = 0 (see section 5), spectrum (6.17) agrees with the results of the conventional
quantum electrodynamics provided that A = 1/2. Let us consider a hydrogen-like
atom. Then the constant of interaction o = —Ze?, where Ze is the charge of
the nucleus. Since the mass of the nucleus is much greater than the rest mass of
electron m,, we have yu — m, and, therefore, the ratio u/m — 0. Here m is the total
mass of the atom. Introducing these parameters into equations (6.7) and (6.8) we
obtain Cy = 3/4 and Cy = 1/4. According to equation (6.17), the quasi-relativistic

correction is equal to
1y me(Ze)t 1 (3 n
Gl = e i \8 T ww1) (6.18)

It is in good agreement with the quasi-relativistic correction to the hydrogen-like
spectrum which follows from the Dirac equation (see [25, p.216]).

Now let us consider parapositronium. The mass of an electron is equal to the
mass of a positron and, therefore, ;1 = m,/2 and the ratio u/m = 1/4. Whence
the constants C; = 11/16 and Cy = 3/16. Putting these parameters into equations
(6.17) we re-obtain an expression for the quasi-relativistic splitting of the para-
positronium spectrum which is conventionally found by using the Breit equation

[26]:
241 /11 1
g _ me(e)” 1 _ . 6.19

nl 2h4e? n3 \32n  20+1 (6.19)
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7. Conclusions

The transformation of particle variables into center-of-mass ones for a class
of two-particle quasi-relativistic Lagrangians with interactions having field-theo-
retical analogues has been carried out. As a result, the motion of a system as a
whole was separated from its inner motion. A set of canonical variables in terms
of which the Hamiltonian has a quadratic dependence on the inner momentum
variable is found. The problem is quantized. The quasi-relativistic splitting of the
discrete energy spectrum is obtained. As expected, the degeneracy in the orbital
quantum number is eliminated.

In the specific case of an electromagnetic interaction between particles, the
quasi-relativistic corrections to the non-relativistic discrete spectrum are in agree-
ment with the corresponding approximation of the spectrum of a hydrogen-like
atom obtained by using the Dirac equation (modulus of the spin of the electron
which was not taken into account). For parapositronium (where the summary spin
is equal to zero) the spectrum obtained within the frame of the CMV-formalism
coincides with the one derived by using the Breit equation.
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Center-of-mass variables

KeasipensaTMBiCTUYHI 3MiHHI LLeHTpa mac y
3aCTOCYBaHHSAX

Plainpa|, B.TpeTsik, K0.Apemko

IHCTUTYT ®I3NKN KOHOEHCOBAHNX CUCTEM
HauioHanbHoi Akagemii Hayk Ykpainm,
290011 JlbBiB—11, BYN. CBEHLjLBKOrO, 1

OTtpumaHo 12 yepsHsa 1998 p.

Y narpaHxesomy dopmManiami pengaTnBiCTUYHOI KNaCUYHOT MeXaHiKn Npsi-
MO B3aEMOII0HYMX YACTUHOK BBEAEHI KONEKTUBHI 3MiHHI LleHTpa mac. lNo-
KasaHo, L0 BigNOBiAHNI raMinbTOHIB popmaniam Beae 0o moaeni bakam-
mxisHa-Tomaca. BuB4aeTbCs KBAHTOBO-MexXaHi4YHa cuctema i3 oBox 6e3-
CNIHOBUX YaCTUHOK. NS HN3KM KYyJIOHOMNOAiIOHMX B3aEMO/AIN, O MaloTb
TEeopeTUKO-N0oJIbOBI aHasor, NigpaxoBaHO KBA3iPENATUBICTUYHI NONpas-
KN 00 ONCKPETHOI0 EHEPr'eTUYHOIrO CAEKTPY.

Kniouogi cnoBa: kBasipesisaiTuBicTu4Ha MexaHika, 3MiHHIi LeHTpa Mac,
piBHSAHHS LLpeainrepa

PACS: 03.20.+i
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