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In our previous paper [1] we proposed a Coulomb potential regularization
as one of the methods for short-range correlation accounting in the elec-
tron liguid model. The present paper formulates the criterions of optimal
choice of regularization as well as calculates the energetic, structural and
dielectric characteristics of the model.

Key words: short-range correlation, local-field correction function,
correlation energy, binary distribution function, compressibility

PACS: 05.30.Fk

1. Introduction

As known, the random-phase approximation (RPA) is a universal method for
long-range correlation accounting in the fermi-particles systems (for example, in
degenerated electron systems with Coulomb interaction). The generally accepted
method for short-range correlation accounting in the modern theory of fermi-systems
is based on the local-field concept. Since, the calculation of the local-field correction
function (LFCF) for systems with intermediate and strong non-ideality is compli-
cated, only approximate solutions are available [2]. LEFCF was investigated in the
common patterns but its microscopic theory is unfinished so far. In this situation
looking for alternative methods accounting for the short-range correlation between
particles remains urgent. It is very important to develop a simple and effective
method of calculating the characteristics of the metallic system models.

A simple and promising approach to the evaluation of this problem can be based
on the idea of correlation modelling for the degenerated fermi-systems particles with
Coulomb interaction. This idea has emerged due to the model approach to the de-
scription of electron-ion interactions in metals. The modelling of interaction poten-
tial between particles is equivalent to LFCF modelling. Similarly to the electron-ion
interaction theory, the effective interaction potential between electrons in an elec-
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tron liquid model (ELM) should be chosen weak at short distances and tends to the
Coulomb potential €?/r at long distances. This approach permits to restrict our-
selves to the variants of perturbation theory that were developed for a description
of weak non-ideal systems in calculating the ELM characteristics in a wide range
of the coupling parameter. The idea of the model effective potential of interaction
between electrons can be derived from the Heisenberg indeterminacy principle. Inde-
terminacy of the electron position is close to the de Broglie wavelength A. Therefore,
electrons can be described as spatially distributed charged particles of a linear size
about A. The effective potential of interaction of two “smeared” electrons that de-
fines their cross-correlation, should have the properties of quantum wave packets
interaction potential

vt = (1), )

where f(r/A) is the dimensionless linear function at r < A and tends to unity in
case of 7 > X (Vig(r) ~ €*/X for r < X\ and Vig(r) ~ €*/r for r > )). Asymp-
totic properties of a weak long-range potential Vi(r) follow from general physical
principles. However, the selection of the function f(r/)\) is ambiguous.

If p(r) is charge distribution function of the “smeared” electron that satisfies the
normalization condition

e = / drp(r), (2)

then the interaction potential of two electrons can be written by the following ex-

pression:
I r
Valry =) = [ [ ariar, =202 3

vy — 15

Let us find explicit expressions for p(r) selecting various functions f(r/A). Table 1
gives some variants of p(r) selection in the form of function |r|, Fourier-transform
of these functions

pla) = / drp(r)e, (4)

as well as a dimensionless function f(r/\).

In table 1 we used the following notations: p(r) = e 'p(r), p(q) = e p(q), r* =
r/A, ¢ = qX; K1(z) is the modified first order Bessel function [3] with an asymptotic
z7Vat z < 1 and 7/2(22)"2 exp(—2A) at z > 1. The parameters 7, o, 3,6 are of
the order of unity. The criterions for the selection of these parameters and variants
can be formulated as the result of calculation of model physical characteristics.

Hereinafter we will use Fourier-transform for the potential:

1

Valr) = - 37 Vaala) expliar)

4me?

Vee(a) = Vyp*(a), V= o
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Table 1. Some variants of selecting the p(r), p(q) and f(r*)

Variant | p(r); p(q); f(r*)

p1(r) = VA2 T K ()

1 pr(a) = {7+ (¢*)*} 12
fi(r*) =1 — exp{—r*}
p2(r) = a®2A73r =% exp{ —a(r*)?}

2 pa(a) = exp{—(q*)*(4a) 7'}

Var*

fo(r*) = \/2/7 bf d exp(—27/2)
p3(r) = FPA"{4mr*} L exp{—pr*}

3 ﬁg(q) — ﬁ2{ﬁ2 + (q*)2}—1
f3(r*) =1 {14 (r*B)/2} exp(—Sr*)
pa(r) = AT {8} T exp{—or}

4 pa(a) = 0*{0* + (¢*)*} 2
) =L (i ) o)

The function p(r) or p(q) can be modelled. In the latter case we can use the
following expression

fr*)=1- %/dr*/ dg*p*(q") expig™r™). (6)

2. Description of the ground state of the electron liquid model
in a random-phase approximation with effective potential

In the case of the ground state of the model, the de Broglie wavelength of electron
is defined by Fermi wave number. Therefore, we will use the potentials from table 1
at A = kg'. To calculate the two-particle correlation function we restrict ourselves
at the beginning by RPA, because V(r) is a long-range but weak potential:

PEPA () = N72070 ST 1P (0, —2) i, B (2, —a) = p (e, —2) {1+ Leg(2)}
q;v

(7)

Let(x) = Vg (q)V 1S (x, —z). Here pd(x, —x) is spectral representation of two-

particle correlation function of the electron ideal system at T'= 0 K, z = (q,v), q is

wave vector, v is the Bose-Matsubara frequency and r is the distance between two

particles [8]. Having compared the formula (7) with the expression for us(x, —z) in
the local-field representation [4]

HQ(xv —ZL‘) = :U’(Q)(xv —ZL‘){l + V_IVq,ug(x, —I)[l - G(x)]}_lv (8)
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we can see that Vi(g) is the modelling of a static variant of LFCEF:

G (q) =1 - p*(q). (9)

The average value of the system energy will be calculated using the expression

E = E0+2B—VZV/d)\u2 —x), (10)

where Ej is the ideal system energy and puj(x, —) is spectral representation of
two-particle correlation function of the model system with Fourier-representation
AVee(q) of interaction potential. Thus, Vee(q) plays the role of self-consistent effective
potential accounting for short-range correlation (local-field effects).

By extracting the ideal correlation contribution to the approximation uy(x, —x) —
p9(x, —z) we can represent the total energy in the usual dimensionless form

E = NRy{eo(rs) + eur(rs) + ec(rs)}, (11)

where eo(r5) is the ideal system energy at 7= 0 K in Ry per electron, egp(r) is the
Hartree-Fock energy contribution and e.(rs) is the so-called correlation energy,

eo(rs) = g (2)2, enr(rs) = —iﬂ, (12)

Ts 2w Ts

n = (97/4)"3 r, is non-ideality parameter (Wigner-Brueckner parameter).
According to expressions (7), (9)

() = ( ) / du / g [P(@)] (L + Ls(g, )] — La(a )}, (13)

where ¢ = |qlk;!, u = v(267¢)~. One of the criterions of selecting distributions
p(r) or p(q) parameters can be based on the comparison of calculation results of
the energy correlation term equation (13) with the previous ones from Monte-Carlo
(MC) method [5]. In paper [6] there was proposed an approximative expression for
numeric values of energy, obtained in [5] according to which

elrs) = —2bo / dz(by + )1+ bz + baa? + bya®] ! (14)

a

at a = re/* by = 0.0621814, b, = 9.81379, by = 2.82214, b; = 0.69699. However, the
energy being an integral characteristic is not very sensitive to the approximations
used in the calculation. Therefore, the mentioned criterion cannot be a single one
and other criterions should be added to it that follow from other characteristics as
functions of non-ideal parameter.
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As known, the binary distribution function Fp(r) = 1+ ps(r) in a traditional ap-
proximation RPA (on Coulomb potential) has non-physical negative values at short
distances ((rkp < 1)) for ry > 0.82 [7]. According to the definition Fy(r) must be
positive at any r, values. Also, from general physical principles there follows a mono-
tonicity dependence Fy(r) at short distances where there are no Fridel oscillations
[2]. Thus, we have a second criterion for the selection of parameters

F5(0) =14 p2(0) = 0; |pa(r1)] > |pa(ra)] for r <ryri, <1 (15)

The next criterion can be obtained from a long-wave asymptote of the polariza-
tion operator in the static limit. The spectral representation of two-particle corre-
lation function ps(x, —x) is determined by the polarization operator My(z, —x) as
follows (see, for example [8])

po(, —) = Ma(z, —2) {1 + %MQ(J:, —x)}l . (16)

Using formula (7) from the last expression My(x, —x) in RPA with an effective
potential can be written as follows:

M2RPA(x7 —.T) = Mg(-f, —.T) {1 - %Mg(f, —l‘)[l - ﬁQ(Q)]}_ : (17)

Taking into account that M(0,0) = kN?/V (where k = —V 19V /dp is com-
pressibility of the system) we derive a relationship

@:1_%{1—752@}

K n q?

, (18)

q=0

where rg = 3V (2epN)™! is the compressibility of the ideal system. On the other
hand, x can be found based on the thermodynamic relation, using ground state
energy: as it is known p = —9E/JV, therefore, k= = V(9*E /OV?) or

O’E [*E,\

B 2280 (19)
Kk  0V?2 | oV?
Using expression (11) and by transition from variable V' to variable
AR
s = % |:47TN } ’
we will get the relationship

@ =1+ TS[S%F + 8/0,/1 — Q[fi{F + 8/0]7 (20)

K rs€p — 2€p

where ¢/ = (d/dr,)e(r,),e” = (d?/dr?)e(r,). According to the formulae (14), (20),
we obtain
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2 b 4 _
@ — 1_x__£[1+b1$+b2$2+b3x3] 1><
K mn  6n?

X {3 + gbw + (L4 biz) [by + 2bow + 3b32%] [1 + by + byz® + bsa”] _1} ’
(21)

where z = ri/?. If the calculations of relationships (18) and (20) are correct, then
the results must be convergent, or the relationships of (18) and (21) must be close.
Namely, the values of non-ideality parameter must be close, that correspond to
ko/k = 0. As it follows from the formula (21) the change of ky/k sign will be at
r? = 5.2633. In the range of r; > 7 the electron liquid is non-stable.

-0.00

e(r), Ry

Figure 1. Correlation energy e.(rs) in different approaches. Model potential in
variant 1 at v = 1.25 (solid curve), at v = 1.0 (top dashed curve) and at v = 1.5
(low dashed curve); Coulomb potential: MC method (black filled circles), LECF[9]
(the line with triangles).

Let us represent the calculation results of model characteristics of the electron
liquid in RPA with a model potential. Figure 1 shows the dependence of correlation
energy €.(rs) on non-ideality parameter rs. It was calculated using the expression
(19) for the first selection variant of function 5(q) (see table 1). Here black filled
circles correspond to the MC results [5], triangles represent the best LECF [9], low
curve corresponds to the traditional RPA with Coulomb potential, top dashed curve
matches up the parameter v = 1.0 and low dashed curve corresponds to v = 1.5.
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Bold solid curve is very close in the metals range to MC and corresponds to the case
of v = 1.25. In the range of intermediate values of r¢ this curve is more close to MC
than the calculation results with LECF [9].

1.279F,(n)

1.0

0.8
0.6 7
0.4

0.2

0.0

| . =5 rke

-0.2 T T T T T T T T T 1
0 1 2 3 4 5

Figure 2. Binary distribution function for the model potential (variant 1) at
v = 1.25.

Binary distribution function in this approach F&FA(r) = 1+ pSPA(r) is shown in

figure 2. These results correspond to the value of v = 1.25. As we can see, FATA(r)
has small negative values at short distances, and positive values are only in the range
of 0 < ry, <3.3.

1.0 T Ko/K

Figure 3. Inverse compressibility kg/x in different approaches. Calculated via
formulae (18) (curve 1), (20) — (curve 2) and the result of MC method (dashed
curve).

Figure 3 shows the dependence of inverse compressibility xo/k on r in different
approaches. The dashed curve corresponds to the MC method [5], other curves
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represent RPA with the model potential at v = 1.25 calculated via formulae (18)
and (20).

In the represented variant the LFCF G°(q) (9) has excessive values in the range
of small wave vectors, if 1.0 < 7 < 1.5 (as we know, G(q) ~ g¢*> + -+ at ¢ < 1,
where 1/4 < g < 1/3). This causes invalid behavior of compressibility calculated by
expression (18): at v = 1.5 the compressibility will be equivalent to zero at 70 ~ 3.3.

sc(rs), Ry
-0.1 1

/ o =2.13776
-0.2 1 /[1

|

rS
-0.3 T T T T
0 2 4 6 8

Figure 4. Correlation energy for the model potential (variant 2) at o = 2.13776
(solid curve), ordinary RPA (dashed curve), results of MC method (black filled
circles).

Let us consider the same model characteristics using the other selection variant of
the model potential. Namely, variant 2, where 5(q) = exp{—¢*/4a}. The dependence
of the correlation energy on r is shown in figure 4. Solid bold curve corresponds to
the parameter o = 2.13776. To make a comparison, the dependence of correlation
energy in traditional RPA and the calculation results of MC method [5] are shown.
In the range of small 7 in this variant, e.(rs) is better described than in the variant
1. But in the range of large r, values we have the opposite situation: better results
are received from variant 1. The same situation is observed for a binary function:
the results improve for a small 7, (for an example, at s = 1 we have F5(0) = 0.276
which corresponds to the better results obtained by other authors [10]), and become
worse for large 7. But in both selection variants of p(q) all the results are certainly
better than in ordinary RPA (ORPA) with Coulomb potential.

The fact that p;(q) better describes the model at a large value of 5 and that py(q)
is better for small r,, may be used for building a model potential as a superposition
of the first and the second variants. To amend the compressibility we will use variant
1 at v = 1.5. To describe a model in a wide range of r; we shall build an effective
potential in which

pla) = Alrs)p2(q) + [1 = A(ro)]pa(q), (22)
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or
() = Alrs)p3(q) + [1 = A(ry)]pi(a), (23)
where coefficient A(r,) is a function of ry such as A(ry) = 6 * (1 — r,/10), p1(q) =
W+ @172 pa(q) = exp(—45¢%), v = 5/4, and a = 2.13776.
The compressibility which is calculated by the polarization operator, is defined
identically in both variants:

R

If § = 0.8, then compressibility vanishes near 7% = 4.32.

1 e,(r). Ry
0.00 T

-0.05 1
-0.10 1
-0.15 1
-0.20 1

-0.25 1

-0.30 \ \ \ \
0 2 4 6 8

[ ]
Figure 5. Correlation energy for the model potential corresponding to formula
(23) (top solid curve), model potential in variant 1 at v = 1.25 (top dashed curve),
model potential in variant 2 at @ = 2.13776 (low dashed curve), Coulomb poten-
tial via MC method (black filled circles), ordinary RPA for Coulomb potential

(low solid curve).

For all r,, the correlation energy, calculated in RPA according to the model
potential (23), better conforms to the MC method results [5] than variant 2, as
shown in figure 5. The dash curves represent the correlation energy top for variant 1
v = 1.25 and the lower curves for variant 2 a = 2.13776. The binary function for this
approximation has a better behavior than in variant 2 but it has a small negative
value at r = 0 for intermediate and large rs. To amend the binary distribution
function for a wide region of ry we must use the next approximation over RPA
because this approach turns out to be deficient. The compressibility, calculated by
equation (24), is closer to the compressibility obtained via MC method [5].

Let us consider another important but poorly investigated one-particle charac-
teristic of the ELM, i.e., momentum distribution function [11,12]. We can use only
the case of absolute zero temperature to investigate the effect of the short-range
correlation rather than the temperature smearing of the Fermi surface.
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According to the definition
Nks = <a;5ak,s>H = Zﬁl(:u)Sp {azsak,seiﬁ(HiuN)} ) (25)

where p is chemical potential correspondence to the given particle density and tem-
perature, Z(u) is the partition function. As it follows from the formula (25), ny
can be represented in the form of variation derivative of free energy F' with respect
to the variable e, = h*k?/2m,

10 o >’ :%{MW 5udQ(,u)}:16_F

2 6e dex O dpu 2 dep’

(26)

Nks =
because 02/0u = —pN. In the T = 0 case, F' coincides with the average energy

which is determined by formula (10). Thus, for the model potential in RPA case we
obtain the representation

n Zv Vet 13, ) ) (27)
los = Tk — 45\/ “ Sep

in which n{ _ is electron momentum distribution function of an ideal system,

o ”k n?(
_ -9 s qo,s 9
55 IU/Q Z {7/1/ ( 8)

O+ €k — Ek_ qU}Q

At the first glance the deviation |ny, — ny |, calculated by formula (27) will
exceed the similar deviation for the Coulomb potential, due to a slighter screening
n (27). But the integral for dud(x, —x)/0e) over the frequency is equal to zero.
Therefore, formula (27) can be presented in an equivalent form

5#2( —7)
55k: 8

0

Nks = nk,s 4ﬁv2 Z V2 ~2 /’LQ(x _x>
v —1
{1 e -0} (20)

From formula (29) it follows that deviation |ny, — ny | will be smaller than for
Coulomb potential. Going over to undimentional variables (k = |k|/kr, ¢, u) and
integrating over angular variables of vector q we obtain a representation in the form
of two-dimensional integrals. At k < 1

00 1+k 0) s
= 1 dma / dg  1,"(q,uw)p*(q)
o Uk 1 q2+4wa12(0)(q,u)p‘2(q)

12
k+Q/2 125 4
2 2
(k+q/2)* +u <1;§> iy
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+/@ 1 (q,u)*(q)
14k 9 ¢+ 470‘60)((17“)52@)

k—l—q/Q Q/Q—k
" [_(’f+Q/2)2+u2 IRCPEE +u2} } (30)

at k > 1
9 k+1 0o ) et
L dg / dul” (q,u)*(q) kg2 . -
k k—1 73 ¢+ 47TO‘I ( u)p*(q) (k—q/2)* +u? <%)2 + u?

where o = rym2n~ 1

The results of numerical calculations are given in figure 6, where dashed curves
correspond to the Coulomb potential [11]. Therefore, the correct model considera-
tion of short-range correlation decreases the deviation |ny s — ny. |. Thus the model
approach, represented in this paper can be used as a simple and reliable method for
the calculation of electron momentum distribution in a metallic region. The relative

deviation of n, at £k — 1 — 0 for r, = 9 takes the value of 20%.

0.0 T
0.0 0.5

Figure 6. Momentum distribution function for the model potential (solid curves)
and Coulomb potential (dashed curves) at rs =1,3,5,7,9.

3. Free energy of the electron liquid model

Let us calculate the free energy of the ELM with temperatures minor in the
comparison to the temperature of degeneration. To this end we will use the model
potential with temperature independent parameters. As it is well known [7], the
contribution of interaction to F'is defined by the charging energy
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F—Fy=(206V)" ZV /dm2 —x). (31)

According to our model approach, function 3 (x, —x) should be calculated according
to the potential AVt (r) with finite temperature.

In this paper we show the results of calculations in the form of a series by dimen-
sionless parameter (77*)?, where T* = kgT'/cr is dimensionless temperature. Using
a power series of function ug(x, —r) by this parameter obtained using Zommerfeld
method in the linear approximation we have

F = N{e(ry) — (2T*)*e5(rs) } Ry, (32)

where e(r;) is the average energy in Rydberg per electron at T = 0 K and the
correction e9(rs) in the RPA is equal to:

1+

dgqIs? (g, u

4rs IQ(O) (Q7 u) ~2 -
du ——0(q)|

™ ¢

Ui
go(rs) = 215

0) B 3N1 1 5 G u? + (14 q/2)?

o==+1

(33)

The first term in formula (33) caused by the temperature dependence of free
energy of ideal system. In the approximation (32) we obtain an expression for heat
capacity of the model:

2F ) 2\
C’U = _Tﬁ = 2N IM< (77> kBSQ(TS) + . (34)

Utilizing the well known relation between heat capacity and density of states on the
Fermi surface Np [7]

c, w2

From formula (34) and (35) we obtain

2
Ny = 4N (T—) ea(ry), (36)
n
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where Ni¢ = k3 (2m%ep) 7! is the density of states of an ideal system. Figure 7 shows
the dependence of relative density of states Ng/Ni¢ on the coupling parameter in
RPA with the model potential (23) (curve 1) and with Coulomb potential (curve 2).

Ng /N9

0 2 4 6 8
Figure 7. Dependence of relative density of states Ng /N}ﬁi on coupling parameter

in RPA with model potential (23) (solid curve) and with Coulomb potential
(dashed curve).

4. Local-field approximation with an effective potential

We want to achieve the correctness of all characteristics of ELM in the region
of weak and intermediate non-ideality. Thus, we will overstep the RPA with model
potentials. As in the case of formula (8) of the traditional perturbation theory, by
using the summing of diagrams in the reference system approach [8] for the function
po(x, —x) we obtain a representation

V@) oy a1 - GM(:r)]} e

u2(:r,—fr)zug(w,—w){1+ )

Here Gy(z) is a LFCF for the system of particles with a model potential Vi (q).
Equating expressions (8) and (37) we obtain a relation

G(z) =1 p*(a){1 — Gu(x)}, (38)

which may be considered as one of the simple ways of calculating the LEFCF. We use
the Geldart-Taylor approximation (these authors for the first time have calculated
the static correction for polarization operator for Coulomb potential in the linear
approximation [13]) because V(q) is a weak potential. In this approximation we
obtain

Gl(\/ll) (x) = _{QB%f(q)}_l{Mg(x7 —l‘)}_2 Z V:?f(ql):ug(xv —Z, X1, —1‘1), (39)
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where pd(x, —z, 1, —x1) is a four-particle semiinvariant correlation function of the
reference system [8]. Performing the summing over frequencies we get the following
representation:

G (@) = {Val@)} {d(x, —2)} "Re Y Vielki — ko)

{1y s = ey g0 HMe s — Mg 1V + 10 — kg, ]

<{liv + e — Etaal ™ — [0+ 21 — E10a] ). (40)

Let us investigate the asymptote of (40) for small and large values of wave

vectors. In a long-wave limit we substitute p(q) = 1 and use the series nj)__, =

k—q,s
n%s + dnﬁ’s/dek(sk_q — ex) + -+ Going over from the sums over vectors kq, ky to
integrals in a spherical system of coordinates we reduce the calculation to a one-

dimensional integral

¢D(2) = gu(v) (i) g < ke )

In a static limit we have

OolH

0(0) = 5 [ a0 - 01" = § [ dgas?( (42)

and in the large frequencies limit we have

Z%/dqqq—l “(q). (43)

Here t = cosf cosine of the angle between vectors k; and ky. At p(q) = 1 we
obtain the corresponding asymptote for LFCF in Geldart-Taylor approximation for
the system with Coulomb potential (g(0) = 1/4, g(oco) = 3/20). In the large wave
vector limit we obtain the following asymptote:

1 o 4y,
G\ (@) = 5~V 2V (@) Y Ver(ky — ko)

ki ,ko;s
X g, iy { (k1q)” + (koq)® — 2(ki1q) (koq) } +
1 1 1
1
= 5= —~*2 /dkl k;f/dkg k%/dtﬁQ([kark% — 2y keot] V) 4 -+ (44)
0 -1

According to the last formula for Coulomb potential p(q) = 1 the LFCF asymptote
is equal to 1/3 [4]. For the potentials of quantum packet type, Gl(vl[) (x) acquires
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negative values for the large wave vectors and essentially differs from LFCF in the
weakly coupled electron liquid case. However, according to formula (39) in the LFCF
for ELM G(z) in such an approximation remains positive and tends an asymptote

1 1 1
GW(z) = 1—— —%/dkl k%/dm k%/dt (kT + k3 — 2kikat]"?)  (45)
0 0 -1

at ¢ > kr (at p(q) = 1 this limit is equal to 1/3). The numerical calculation of Gl(vl[) (x)
using (40) can be done for an arbitrary effective potential. In the 7' = 0 K case and at
any given p(q), the calculation reduces to a five-dimensional integral. Let us proceed
from sums to integrals and use the dimensionless variables. We use the cylindric
coordinate system (axis OZ is parallel to vector q). Since k; = (kgp;, krzi, @;), then
kr?(ki,q) = ziq, kp’(ky — ka)? = p? + p2 + (21 — 22)% — 2p1p2 cos(ipy — o). With
substitution ¢ = p; — o after integration over ¢, we transform the expression into
the form

Gif(z) = ﬁ—2<q>f;3<q, u)(16m) !

1 )1/2 3)1/2

X //dzld22 dp1 pl/dpzpz/dw Z 717

0 0 0
X 7 (Pyl3,) Prugy {21 = 25} {(:])" 25 — u® 22 + 23]}

x {u® + (2‘1’)2}72 {u?+ (2‘2’)2}71 , (46)

where 2§ = 21 +1/201q, 25 = 20+ 1/202q, Py = p3 + p3+ [2] — 25]% — 2p1p2 cOS .

In the case of variants 1, 3 and 4 (see table 1) the calculations can be reduced
to a two-dimensional mtegral since the integration over variables ; and pZ can be
performed in an analymcal form. To illustrate we show an expression for G ( ) for
variant 1 in which p%(q) = y*(y* + ¢*)~*

Gl(\}l)(%u) = (72+Q)[27120 q, //dzleQ Z 0109

o1,00=%1

X \I!(zl—l— q,22—|— 1 — 251 —23). (47)

2 2

Here the following notations were used:

Va;byw;v) = Pola;byw;v) — O, (a; b; w;v),
1

O, (a;b;w;v) = 8(a —b)J(s2,w,v) (0> + )" (a® +u?)*{a’b — u*(2a + b)},
J(sg,w,v) = %[W(si,w,v) —w—v— 53]
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1
+ wln{as;Q[W(si,w,v) + 52 +v—wl}

1
+Uln{§s;2[W(

W(s2,w,v) = {s)+2s2(w+0v)+ (w—v)*}

s2,w,v) + 55 +w — ]},

(48)

where 52 = ~% 4 (a — b)* and ®(a; b; w; v) coincide with @, (a; b;w;v) at y = 0.

2.0

1.57

1.0

0.5

0.0

-0.5

Figure 8. Local-field correction functions GS&I) (z) and GV (x) in the static case
for the system with model potential.
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Figure 9. Correlation energy calculated via LFCF for the model potential (top
solid curve), Coulomb potential: ordinary RPA (low curve), MC method (the line

with filled circles).

Figure 8 shows the properties of functions Gl(vl[)(x) and GW(z) in the static
case. For v = 2.5 function, GY(z) have a long-wave asymptote g(q/kr)?, where
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Figure 10. Binary distribution function calculated via LFCF for the model po-
tential.

g ~ 1/3, which gives r¥ ~ 5.0 and provides a correct behaviour of compressibility.
The dependence of the correlation energy in this approximation is shown in figure 9:
the curve with filled circles corresponds to the results obtained with MC method [5],
dashed line corresponds to RPA with the model potential, solid curve corresponds
to LFCF Gl(vl[) () and to the model potential (23). The average deviation from the
results obtained with MC method in the range of 0 < r, < 10 is 8%, while the
average deviation in RPA with the model potential is equal to 26%. The binary
distribution function in this approximation has a correct behaviour in the range of
0 < rs < 5.5 (figure 10).

5. Conclusions

The modern theory of strong degenerated systems is based on the local-field
concept. However, looking for alternative methods remains urgent because the mi-
croscopic local-field correction function theory is still unfinalized. The model ap-
proach, based on regularization of Coulomb potential was proposed by the authors
earlier. In this paper we suggest the criterions of selecting the form of the model
potential, which correct describes the set of characteristics of the electron liquid
model (i.e., the correlation energy, the binary distribution function, the compress-
ibility) in a wide region Wigner’s parameter r,. We have analyzed several weak
long-range interaction potentials between particles, which have an asymptote e?/r
at large distances and is regular when » — 0. The application of these potentials
gives good results for a small, intermediate and strong non-ideality of the system
by using the methods typical of weakly non-ideal systems. As it follows from our
calculations, one of the best model potentials are possessed by the Fourier-transform
Vet (q) = 4dme?q 2 exp{—(2a) " (q/kr)*} at a = 2.1377.... When utilizing the model
potentials we reduce to the calculation of the characteristics like the momentum
distribution of electron and local-field correction function. On the whole, the regu-
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larization of the Coulomb potential is a simple and promising method of calculating
the characteristics of metallic systems.
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Perynapusauia noteHuiany sk cnocido BpaxyBaHHs
KOPOTKOCSXKHUX KOpeEeNSLin y Teopil eNIeKTPOHHOI
pianHn

M.B.Baspyx, H.J1.Tuwwko

JbBiBCbKUIA HaLLiOHANBHUIA YHiIBEpCcUTET iMeHi IBaHa ®PpaHka, kadeapa
acTtpoddisuku, Byn. Knpuna i Medogiq, 8, Jibsis, 79005, YkpaiHa

OtpumaHo 1 kBiTHA 2004 p.

B nonepegHii poboTi aBTOpiB [1] 3anNpONOHOBAHO iAe perynsipusaui
noTteHujany KynoHa sk 0amH i3 cnocobiB BpaxyBaHHA KOPOTKOCSKHUX KO-
pensauin B Moaeni enekTpoHHOI piavHu. B aaHiin poboTi cdhopmynboBaHO
KpuTepii onTuMmansHoro BMGopy perynsapuaadii i po3paxoBaHo eHepre-
TUYHI, CTPYKTYPHI Ta AieNeKTPUYHI XapakTepucTukn Mogeni.

KniouoBi cnoBa: mMozesib e/1eKTPOHHOI PianHU, KOPOTKOCSIKHI
Kopensuii, nonpaBka Ha JlIoKkaJlbHe rnoJe, KopessuiiHa eHeprisi, biHapHa
QYHKLIS pO3roaiy, CTUCNBICTb

PACS: 05.30.Fk
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