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The behaviour of a three-dimensional magnet with a one-component order
parameter near the critical point in a homogeneous external field is investi-
gated. The calculations are performed in the case when the field and tem-
perature are dependent and related by some expression (the system tends
to the critical point along some trajectory). The high- and low-temperature
regions in the vicinity of Tc ( Tc is the phase transition temperature in the
absence of an external field) are considered. It is shown that in the weak
fields the system behaviour is described in general by the temperature vari-
able, but in the case of the strong fields the role of the temperature variable
is not dominant. The corresponding expressions for the free energy, sus-
ceptibility and other characteristics of the system are obtained for each of
these regions.
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1. Introduction

Despite the great successes in the investigation of three-dimensional (3D) Ising-
like systems made by means of various methods (see, for example, [1–3]) the direct
calculation of basic characteristics near the critical point for a 3D uniaxial magnet
in the external field is still an important issue. Such a calculation is our aim in this
research. Mathematical description is performed within the framework of the collec-
tive variables method. This method was successfully used in investigating the critical
behaviour of various magnetic and nonmagnetic systems, including its applications
to the descripiton of binary displacement alloys by Gurskii [4].

This paper is the continuation of the papers series [5–7], devoted to the inves-
tigation of the effect of an external field on a critical behaviour of the lattice spin
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systems. Near the critical point, the long-range correlations among the particles play
the key role [8]. It is appropriate to use the non-Gaussian distributions of the order
parameter fluctuations for such a description [9]. Exactly this approach makes it
possible to find the main characteristics of the 3D statistic systems near the phase
transition point in the absence of an external field without using the asymptotic
series of the perturbation theory, which appear when the Gaussian distributions are
used [10].

In the course of calculations, we will elaborate the simplest nontrivial model of
the phase transition, described by the Hamiltonian

H = −1

2

∑
l,j∈Λ

Φ(rlj)σlσj − h
∑
l∈Λ

σl, (1)

where the interaction potential Φ(rlj) is the positive function that depends only on
the distance rlj = |rl−rj| between particles, located at the N sites of the simple cubic
lattice with the period c. The quantities σl are the operators of the z-component
of the spin. They have the eigenvalues ±1, h being the normalized magnetic field.
Summation is performed in the volume of the periodicity (V = Nc3)

Λ = {l = (lx, ly, lz)|li = cni , ni = 1, 2, ..., Ni , i = x, y, z} , (2)

with periodic boundary conditions. Here N3
i = N .

We use the following Fourier transform for the potential of interaction:

Φ(k) =

{
Φ(0)(1 − 2b2k2), k ∈ B0,

Φ0 = Φ(0)Φ̄, k ∈ B\B0,
(3)

where the wave vector k varies in the boundaries of the first Brillouin zone

B =
{
k = (kx, ky, kz)|ki = −π

c
+

2π

c

ni

Ni
, ni = 1, 2, ..., Ni , i = x, y, z

}
, (4)

b is some constant quantity. The constant Φ̄ corresponds to the part of the Fourier
transform for the interaction potential, that is averaged with respect to large values
of the k ∈ B\B0 [10]. Such a model potential (3) is based on the fact that large
values of the wave vector are nonessential for calculating its critical characteristics.
The exclusion of self-interaction, which arises in such an approach, would cause only
the shift of the free energy. This is not essential for other thermodynamic functions.
The region of the wave vector values B0 in expression (3) is assigned in the following
way:

B0 =
{
k = (kx, ky, kz)|ki = − π

c0
+

2π

c0

ni

N0i
, ni = 1, 2, ..., N0i , i = x, y, z

}
, (5)

where the effective block lattice period c0 = cs0 is defined by the parameter s0 of the
model (s0 � 1), N0 = N0xN0yN0z, N0 = s−d

0 N . The dimension of the space d = 3.
The description of the model (1) near the critical point in the case of the depen-

dence of the field on the temperature is the object of the given paper. This specific
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case is appropriate to the phase transitions in various systems, in particular, in the
pseudospin-electron model [11]. In [12] it is shown that partition function of such
a model can be represented by the partition function of the Ising model with an
external longitudinal field, which depends on the temperature. Carrying out our
calculations, we enter some parameter ∆, which relates the external field h with the
reducing temperature τ (τ = (T − Tc)/Tc, where Tc is the temperature of the phase
transition at h = 0). The values of this parameter define the small (large) values of
the field in comparison with the value of the limiting field. The latter corresponds
to the condition of equality of the spontaneous moment and the moment induced by
the field. The Landau approach with the temperature-dependence field is presented
in Appendix.

2. Basic relations

The method for calculating the free energy of the model lattice system of the
one-component spins near the critical point in the presence of an external field is
suggested in [5–7]. The partition function of the model (1) with the potential (3) can
be introduced in the form of the N0-multiple integral with respect to the collective
variables [5,10]:

Z = Z0

√
2

N0−1
eã0N0

∫
(dη)N0 exp

[
−a1

√
N0η0 − 1

2

∑
k∈B0

d(k)ηkη−k

− a3

3!
N

−1/2
0

∑
k1,...,k3
ki∈B0

ηk1 ...ηk3δk1+...+k3 −
a4

4!
N−1

0

∑
k1,...,k4
ki∈B0

ηk1...ηk4δk1+...+k4

]
. (6)

For the quantity d(k), we have the expression

d(k) = ã2 − βΦ(0) + 2b2βΦ(0)k2,

ã2 = a2 + βΦ0. (7)

Here β = 1/(kT ) is the inverse thermodynamic temperature. The coefficients ã0, al

and the quantity Z0 are functions of h′ (h′ = βh). They are calculated in [5,7].
The step-by-step integration of the expression (6) is performed based on the

method developed in [9,10]. We arrive at the expression [5,7]

Z = Z0Q0Q1...Qnpjnp+1

[
Q(P (np))

]Nnp+1
Inp+1, (8)

where the partial partition functions Qn (n is number of the block structure) are

given in [5], jnp+1 =
√

2
Nnp+1−1

. The expression for Q(P (n−1)) is presented in [6],
and

Inp+1 =

∫
(dη)Nnp+1 exp

[
−ã

(np+1)
1 N

1/2
np+1η0 − 1

2

∑
k∈Bp

dnp+1(k)ηkη−k
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− 1

3!
a

(np+1)
3 N

−1/2
np+1

∑
k1,...k3
ki∈Bp

ηk1 ...ηk3δk1+...+k3

− 1

4!
a

(np+1)
4 N−1

np+1

∑
k1,...,k4
ki∈Bp

ηk1...ηk4δk1+...+k4

]
. (9)

The coefficients a
(n)
l are connected with the initial values of al through the recurrence

relations [5]. The region of the wave vector values Bp is defined as

Bn =
{
k = (kx, ky, kz)|ki = − π

cn

+
2π

cn

ni

Nni

, ni = 1, 2..., Nni
, i = x, y, z

}

when n = np + 1. Here cn = c0s
n, s � 1, NnxNnyNnz = Nn. The parameter s

determines the rate of increasing the effective block lattices and corresponds to the
renormalization group parameter. For the coefficient dnp+1(k) from (9), we have

dnp+1(k) = dnp+1(0) + 2βΦ(0)b2k2,

dnp+1(0) = a
(np+1)
2 − βΦ(0). (10)

It is convenient to pass on to the quantities wn, rn, vn, un from the coefficients
a

(n)
l using the equations

ã
(n)
1 = s−nwn, dn(0) = s−2nrn,

a
(n)
3 = s−3nvn, a

(n)
4 = s−4nun. (11)

The renormalized coefficients wn, rn, vn and un satisfy the following relations [5,6],
which are the solutions of the recurrence relations linearized near the fixed point:

wn = −ch1M1(h
′)En

1 − ch2M1(h
′)T (0)

13

(
ϕ

1/2
0 βΦ(0)

)−1

En
3 ,

rn = r∗ + c
(0)
k1 βΦ(0)τEn

2 + ck2T
(0)
24 ϕ

−1/2
0 (βΦ(0))−1En

4 ,

vn = −ch2M1(h
′)En

3 ,

un = u∗ + c
(0)
k1 (βΦ(0))2T

(0)
42 ϕ

1/2
0 τEn

2 + ck2E
n
4 . (12)

These relations are valid near the critical point when τ < τ ∗ and h < h∗ (h∗ ∼ (τ ∗)p0,
where p0 is given below in (17)). Just in this value area of variables τ and h (region
of the critical regime), the variables ωn, rn, vn and un are close to the coordinates of
the fixed point w∗ = 0, r∗ = −f0βΦ(0), v∗ = 0 and u∗ = ϕ0(βΦ(0))2. The quantities
El are the eigenvalues for the matrix R of the renormalization group transformation


wn+1 − w∗

rn+1 − r∗

vn+1 − v∗

un+1 − u∗


 = R




wn − w∗

rn − r∗

vn − v∗

un − u∗


 .
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They have the form [5]

E1 = s(d+2)/2, E3 = s(d−2)/2,

E2,4 =
1

2

{
R22 + R44 ±

[
(R22 − R44)

2 + 4R24R42

]1/2
}

, (13)

where the Rij are the matrix elements of R. Only one of the eigenvalues El is smaller
than unity, and the rest of them are greater than unity. For some fixed value of the
parameter s = s∗, where s∗ = 3.3783, we find

E1 = 20.977, E3 = 1.838,

E2 = 7.374, E4 = 0.397.

For such a preferred value of s nullifying the quantities

h
(n)
2 =

√
6(rn + q)u−1/2

n , h
(n)
3 = h30vnu−3/4

n

at the fixed point, our calculations become less complicated. Here q = q̄βΦ(0),

q̄ = π2 (b/c)2s−2
0 (1 + s−2), h30 = 243/4/6. The constant quantities T

(0)
km, which are

the combinations of the R
(0)
km = Rkm(u∗)−(k−m)/4 and Em, when s = s∗ take on the

values [6]

T
(0)
13 = −0.655, T

(0)
24 = −0.535, T

(0)
42 = 0.177.

The coefficients chl, c
(0)
k1 , ck2 appearing in (12) are given in [6], and M1 = tanhh′.

We attract your attention to the behaviour of the quantities h
(n)
2 and h

(n)
3 near

the critical point. Each of them takes on small values when n < np. It is easy to
make sure of this using the explicit solutions of the recurrence relations (12). We
have

h
(n)
2 = h22

[
c
(0)
k1 τEn

2 − 1

2
ϕ
−1/2
0 T

(0)
42 (c

(0)
k1 τEn

2 )2

]
,

h
(n)
3 = h32M1(h

′)En
3 (1 − h34c

(0)
k1 τEn

2 ), (14)

where h22 = (6/ϕ0)
1/2, h32 = −h30ch2(u

∗)−3/4, h34 = 3T
(0)
42 ϕ

−1/2
0 /4. For all values

n < np, where np is defined using the condition

c
(0)
k1 τE

np+1
2 = f0, (15)

we find that h
(n)
2 � 1. The analogous inequality takes place for h

(n)
3 , since M1(h

′) ∼
h′ � 1. Therefore, for all n < np, the quantities Qn can be presented in the form of

the series with respect to the h
(n)
2 and h

(n)
3 and, using (14), calculate their explicit

expressions. For values n > np, the quantity Inp+1 from (9) is calculated using the

Gaussian measure. It is related with coefficients a
(n)
3 and a

(n)
4 , which begin to decrease

fast (in comparison with dn(k)) when the number n increases.
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3. Definition of the weak field and strong field regions

The evaluation of the critical behaviour for the spin model in an external field to
a great extent depends on the correlation between field and temperature. When the
quantities τ and h reduce to zero with some rates, then we obtain the curve in the
coordinates of field and temperature. That curve defines some trajectory of tending
the system to the critical point. In [6,7,10] the critical behaviour of the model of
a 3D unaxial magnet was investigated in some limiting cases. In particular, in the
case of h = 0, the critical behaviour of such a model is investigated in detail in
[10]. The explicit analytic expressions for a number of the thermodynamic functions
at temperatures above and below Tc are obtained. Another limiting case, which
corresponds to the T = Tc and h �= 0, is investigated in [6]. The behaviour of the
system average spin moment and susceptibility near the critical point as a function
of the field is found. The existence of the limiting value of the field variable h̃c for
each value of the temperature τ̃ has been established in [7]. These two variables are
related by the expression

h̃c = τ̃ p0 , (16)

where the exponent p0 is the universal quantity:

p0 =
d + 2

2
ν. (17)

Here ν is the critical exponent of the correlation length. The new designations are
introduced as

τ̃ = τc
(0)
k1 /f0, h̃ = h′/f0. (18)

The condition (16) corresponds to the case when the field and the temperature effects
on the system near the critical point are equivalent. The value of the exponent p0

from (16) has been obtained in [7] under the condition that magnitudes of the critical
regime regions by the effect of temperature and field are equal. Then

np = mτ = nh. (19)

The quantity mτ characterizes the exit point from the critical regime by the tem-
perature in the absence of an external field [10]. For the temperatures above and
below Tc, we obtain

mτ = − ln τ̃

ln E2
− 1. (20)

In the region T < Tc, the value mτ is denoted as µτ for convenience. Then

µτ = − ln τ̃1

ln E2
− 1, (21)

where
τ̃1 = −τ̃ . (22)
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In the presence of an external field in addition to the quantities mτ and µτ we have
the exit point nh from the critical regime by the field variable, which has the form
[6]

nh = − ln h̃

ln E1
− 1. (23)

Exit of the system from the critical region with the given h̃ and τ̃ is characterized by
one of the quantities mτ (or µτ ) and nh, or by their combination. This depends on
the ratio of the quantities h̃c and h̃. In figure 1 the diagram of the regions, defined
by different trajectories of tending the system to the critical point (τ̃ = 0, h̃ = 0), is
shown. The curve 1 corresponds to the limit values of the field (16).

τ

Figure 1. Schematic sketch of the regions of the possible location of the trajecto-
ries of tending the system to the critical point. The curves 1 and 2 correspond to
the limiting value of the field when T > Tc and T < Tc, respectively. The regions
I and IV correspond to the small values of the field when T > Tc and T < Tc,
and regions II and III are characterized by the large values of the fields.

In a general case, the sizes of the critical regime regions effected by the field and
temperature are different in magnitude. Then, the equality (19) is not valid and we
consider two cases:

nh > mτ (24)

and

mτ > nh. (25)

In the present paper, we consider some specific case when the field h depends on
the temperature τ . In general, we can represent the function h(τ) at τ � 1 as the
following series:

h(τ) = aτ + bτ 2 + . . .
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Depending on which term is more essential, different cases can be considered. If only
the linear term in τ is present, then the function h(τ) will be represented by a straight
line, which lies inside the region of strong fields in the vicinity of the critical point.
This corresponds to the inequality (25). On the contrary, for the purely quadratic
dependence of h on τ , we get the parabola in the weak field region. For this case,
the inequality (24) is valid. In the most general case, one might use the following
relation:

h̃ = τ̃p0(1+∆). (26)

The weak field region is determined by ∆ > 0. The case of −1 < ∆ < 0 corresponds
to strong fields. At ∆ � 1 we come to the case h → 0, described in [10]. In view of
(20) and (23) from (26), we find

nh = mτ (1 + ∆) + ∆. (27)

In the limit ∆ → −1, we obtain the case of a strong external field for all values of
the variable τ̃ when τ̃ < τ̃ ∗.

The conditions (24) and (25) define the different ways of calculating the free
energy of the system. At first, let us consider the case of nh > mτ (or nh > µτ when
T < Tc), which corresponds to the weak field region.

4. Free energy of the system near the critical point at the weak
fields in the case of T > Tc

Let us calculate the free energy of the spin system when the external field de-
creases with the temperature coming down to Tc according to the law (26). We use
the expression (8), in which we assign

np = mτ = − ln τ̃

ln E2

− 1. (28)

According to the results of [7,14], we present the free energy of the system near the
critical point in the form of a few terms:

F = F0 + FCR + Fmτ +1 + Fp + FI . (29)

The quantity

F0 = −kTN

(
ln 2 + ln cosh h′ +

1

2
βΦ(0)Φ̄

)
(30)

corresponds to the contribution from the noninteracting spins when Φ̄ = 0. The
method of calculating the FCR (the contribution from short-wave modes of spin-
density oscillations), as well as Fmτ +1, Fp and FI (the contributions from long-
wave oscillation modes) is described in detail in [14]. We obtain the following final
formulas:

FCR = −kTNs−3
0

(
e0p + e1pτ̃ + e2pτ̃

2 + e3ph̃
2 + e4pτ̃

3ν
)

,
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Fmτ +1 = −kTN0fmpτ̃
3ν ,

Fp = −kTN0s
−3τ̃ 3ν [fp2 − (mτ + 1) ln s] ,

FI = −kTN0s
−3τ̃ 3ν

(
1

2
ln π + (mτ + 2) ln s − 1

2
I ′′
0

)
− kTNl11T h̃2τ̃−2ν . (31)

The expressions for the coefficients of the relations (31) are given in [14]. The quan-
tities Fmτ +1 and Fp form the contribution to the free energy FTR = Fmτ +1 + Fp,
related with the transition region (TR). We separated this region when calculating
the expression for the free energy at T > Tc in the case of h = 0 (see [10,15]). The
case of the weak fields (h̃ < h̃c) at T > Tc requires to separate the TR as well.

Based on equation (29), the summation free energy gets the form

F = −kTN
[
ln cosh h′ + l0 + l10T τ̃ 3ν + l2T h̃2 + l3T τ̃ + l4T τ̃ 2 + l11T h̃2τ̃−2ν

]
, (32)

where

l0 = ln 2 +
1

2
βcΦ(0)Φ̄ + s−3

0 e0p,

l10T = s−3
0

[
e4p + fmp + s−3

(
fp2 +

1

2
ln π + ln s − 1

2
I

′′
0

)]
,

l2T = s−3
0 e3p, l3T = s−3

0 e1p − 1

2
βcΦ(0)Φ̄f0/c

(0)
k1 ,

l4T = s−3
0 e2p +

1

2
βcΦ(0)Φ̄f 2

0 /(c
(0)
k1 )2, l11T =

1

4
a2

mp,

amp =
M20

M2
f0s (2/rmτ +2)

1/2 , rmτ +2 = f0βΦ(0)(E2 − 1). (33)

Here M2(h
′) is the cumulant of the second order [9,10], and the expression for M20

is given in [6,7].
The formula (32) describes the free energy of the lattice system of spins in the

weak external field ( h̃ < h̃c, where the limit field h̃c is defined in (16)). It is valid
for all T > Tc near the critical point.

Let us transform the last term of the expression (32). Taking into account (26),
it can be introduced in the form

Fη = −kTNl11T τ̃dν+(d+2)ν∆ . (34)

The contribution to the free energy (34) enables one to find the value of the
parameter ∆, when the exponent of the τ̃ exceeds number two. The exponent of τ̃
is equal to two when ∆′ satisfies the following equality:

dν + (d + 2)∆′ν = 2, ∆′ =
2 − dν

(d + 2)ν
. (35)
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For all ∆ > ∆′, the second derivative of the quantity Fη with respect to the tem-
perature comes down to zero when τ̃ → 0. However, in the region of the values

0 � ∆ < ∆′

it will tend to the infinity when the system tends to the critical point. Then, the
system trajectory lies between the following trajectories

h̃ = τ̃p0(1+∆′), h̃c = τ̃ p0 .

They define some transition region, where the effect of the terms like (34) will be
essential.

Let us consider the expression for the free energy (34)in terms of the field variable
h̃. Taking into account (26), we have

Fη = −kTNl11T h̃η′
. (36)

Here

η′ =
2d + 2(d + 2)∆

d + 2 + (d + 2)∆
. (37)

It should be noted that the expression (36) corresponds to the system with the
condition (26). Here, we introduce the dependence of the field value on the temper-
ature. This condition permits us to choose the weak field region, but requires that
the value of the field should decrease when the system tends to the critical point.
The free energy term of the type (36) permits us to define the susceptibility of the
system in the direction of the curve (26). Note, that for η′, the limit relations take
place

lim
∆→0

η′ =
2d

d + 2
, lim

∆→∞
η′ = 2. (38)

Let us calculate the quantity

σ+ = − 1

N

∂F

∂h
.

We will use the equation (32) as F , where the last term has the form of (36). We
obtain

σ+ = tanh h′ + 2l2T f−2
0 h′ + η′l11T f−1

0 h̃1/δ∆ , (39)

where

δ∆ =
d + 2 + (d + 2)∆

d − 2 + (d + 2)∆
. (40)

In the case of ∆ = 0, we have δ0 = 5, and when ∆ → ∞, we find δ∞ = 1.
The quantity of σ+ (39) decreases to zero when the system tends to the critical

point. The rate of decreasing depends on the value of ∆, i.e., on the system trajectory.
If ∆ = 0 (the case of h̃ = h̃c), we have

σ+ =
2d

d + 2
l11T f−1

0 h̃1/δ0 . (41)

370



Behaviour of a three-dimensional uniaxial magnet . . .

∆

δ
∆

Figure 2. Dependence of quantity δ∆ (40) on parameter ∆ when d = 3.

When parameter ∆ rises, the amplitude σ+ increases a little (see (38), (39)), and
the quantity δ∆ tends to one. The limit ∆ → ∞ corresponds to the absence of the
magnetic field, h′ = f0 lim

∆→∞
τ̃p0(1+∆) = 0, and then the quantity σ+ becomes zero.

The dependence of δ∆ on the parameter ∆ is shown in figure 2. The ∆-dependence
curve for δ∆ is compared in Appendix with the curve for the analogous quantity δ0∆

obtained using the Landau approach.
Let us find the quantity

χ+ = − 1

N

∂2F

∂h2
.

Using (32), it is defined by the epxression

χ+ = β
[
M2(h

′) + 2l2T f−2
0 + χ01h̃

η′−2
]
, (42)

where
χ01 = η′(η′ − 1)l11T f−2

0 .

The exponent η′ − 2 satisfies the relation

η′ − 2 = − 4

(d + 2)(1 + ∆)
. (43)

In view of (26), we find

h̃η′−2 = τ̃− 4
(d+2)(1+∆)

d+2
2

ν(1+∆) = τ̃−2ν .

Thus, the asymptote of the expression (42) by the temperature does not depend
on the parameter ∆ and for all trajectories, which belong to the weak field region
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(h̃ � h̃c), the system’s susceptibility has the form

χ+ = β
[
χ0 + χ01τ̃

−γ
]
. (44)

Here γ = 2ν, and
χ0 = M2(h

′) + 2l2T f−2
0 .

5. Critical behaviour of the system at the weak fields in the
case of T < Tc

Let us perform the calculation of the free energy of the system in the low-
temperature region in the case of the weak fields. As before, we will assume that the
applied field decreases when the system tends to the critical point according to the
law

h̃ = τ̃
p0(1+∆)
1 , (45)

where ∆ � 0. For the convenience of calculations, we introduce the quantity

τ̃1 = −τ̃ =
Tc − T

Tc

c
(0)
k1

f0
,

which is positive when T < Tc. In order not to use the new notices in the case of the
temperatures T < Tc, we will set the tilde above the corresponding values. If these
values satisfy the analogous expressions at T > Tc and T < Tc, then we will save
the notices, as for T > Tc, without the tilde.

We can represent the free energy at T < Tc according to (8) as a sum of the
following components:

F̃ = F0 + F̃CR + F̃p + F̃I . (46)

The quantity F0 is defined in (30). The coefficients of the components

F̃CR = −kTN0

(
e0p + e1pτ̃ + e2pτ̃

2 + e3ph̃
2 + ẽ4pτ̃

3ν
1

)
,

F̃p = −kTN0τ̃
3ν
1

[
f̃p1 − µτ ln s

]
,

F̃I = −kTN

[(
Ẽ02 + s−3

0 (ln s − 1

2
I ′
0)

)
τ̃ 3ν
1 + a1mh̃σ̃ + l11µh̃2τ̃−2ν

1

]

−kTNs−3
0 τ̃ 3ν

1 µτ ln s (47)

are given in [14].
Let us write down the final expression for the free energy near the critical point

when T < Tc according to (46). It has the following final form:

F̃ = −kTN
[
ln cosh h′ + l0 + l1mτ̃ 3ν

1 + a1mh̃σ̃ + l2mh̃2 + l3mτ̃ + l4mτ̃ 2 + l11µh̃2τ̃−2ν
1

]
.

(48)
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Here

l1m = Ẽ022 + s−3
0 (ẽ4p + f̃p1), Ẽ022 = Ẽ02 + s−3

0

(
ln s − 1

2
I ′
0

)
,

l2m = s−3
0 e3p, l3m = s−3

0 e1p − 1

2
βcΦ(0)Φ̄f0/c

(0)
k1 ,

l4m = s−3
0 e2p +

1

2
βcΦ(0)Φ̄f 2

0 /(c
(0)
k1 )2, l11µ =

1

8

(M20

M2

)2

f0/βΦ(0). (49)

The quantity l0 is given in (33).
The expression (48) corresponds to the free energy of the system near the critical

point in the weak fields when T < Tc.
As in the case T > Tc, we find the quantity

σ− = − 1

N

∂F̃

∂h
.

Taking into account (48), it is represented by the expression

σ− = tanh h′ + 2l2mf−2
0 h′ + a1mσ̃f−1

0 + η′l11µf−1
0 h̃1/δ∆ , (50)

which differs from the analogous expression at T > Tc (39) by the presence of the
term

a1mσ̃f−1
0 = a1mσ̃0τ̃

ν/2
1 f−1

0 , (51)

where

a1m = f0M20/M2, σ̃0 =

(
12f0βΦ(0)

uµτ +1
s−3
0

)1/2

, uµτ +1 = u∗
(
1 − f0ϕ

−1/2
0 T

(0)
42

)
.

Then l2m = l2T (see (33)), however l11µ from (50) is essentially smaller than l11T

from (39). We have

l11T =

(M20

M2

)2

f0
s2

2(E2 − 1)βΦ(0)
,

l11µ =

(M20

M2

)2

f0
1

8βΦ(0)
. (52)

The relation
l11T

l11µ

=
4s2

E2 − 1
(53)

is the universal quantity. As for the σ+ at T > Tc, weak fields (∆ → ∞) cause the
linear-field dependence of σ−, and the fields, which are close to the limit value h̃c

(∆ = 0), give σ− ∼ h̃1/5.
Let us estimate the quantity

χ− = − 1

N

∂2F̃

∂h2
.
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We obtain
χ− = β

[
M2(h

′) + 2l2mf−2
0 + χ02h̃

η′−2
]
, (54)

where
χ02 = η′(η′ − 1)l11µf−2

0 . (55)

The exponent η′−2 is defined in (43) and for all values of ∆ it takes on the negative
values. Therefore, the value χ− will tend to the infinity in the case of h → 0.

In view of (45), the temperature dependence of the quantity χ− has the form

χ− ≈ βχ02τ̃
−γ
1 (56)

when τ̃1 → 0. Here, as at T > Tc,

γ = 1.219. (57)

The ratio of the quantities χ+ (42) and χ− (54) at h → 0 is defined, in general, by
the singular components and according to (53) is equal to

χ+

χ−
≈ l11T

l11µ

= 7.16. (58)

6. Region of strong fields

We consider the trajectories of the system tending to the critical point, which
belong to the regions II and III in figure 1 (for the Landau approach, see Appendix).
In the case of strong fields at T > Tc, the field is related with a reduced temperature
by the expression

h̃ = τ̃ p0(1−∆1), (59)

where 0 < ∆1 < 1. For the following calculations, we will use the relations (20) and
(23). When the condition (59) is satisfied, we find

nh = mτ − ∆1(mτ + 1). (60)

Comparing (60) with the corresponding relation (27), which takes place in the case
of the weak fields, we discover an essential difference. For the weak fields, we have
(24), and in the case of strong fields, the inequality nh < mτ is performed. This
means that the quantity np should be identified with nh, and not with mτ (as this
takes place in the case of the weak fields):

np = nh = − ln h̃

ln E1
− 1. (61)

Let us calculate the free energy of the system in the case of T > Tc with large
values of the field. We have

Fh = F0 + FCR,h + Fp,h + FI,h . (62)
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The quantity F0 is given in (30). Using the formulas

FCR,h = −kT ln Q0 + F ′
CR,h,

F ′
CR,h = −kTN0

(
f

(0)
CR + f

(1)
CRτ̃ + f

(2)
CRτ̃ 2 + f

(3)
CRh̃2

− F10h̃
6/5 − F11h̃

6/5+∆11 − F12h̃
6/5+2∆11

)
,

∆11 =
∆1

p0(1 − ∆1)
,

Fp,h = −kTN0 [fp1c − nh ln s] h̃6/5,

FI,h = −kTNẼ02h̃
6/5 − kTN0h̃

6/5nh ln s (63)

and the expressions for their coefficients [14], one can calculate the free energy Fh.
We get

Fh = −kTN
[
ln cosh h′ + l0 + l1h̃

6/5 + l
(+)
11 h̃6/5+∆11

+ l12h̃
6/5+2∆11 + l2h̃

2 + l3τ̃ + l4τ̃
2
]
, (64)

where exponent ∆11 is given in (63), and

l0 = ln 2 +
1

2
βcΦ(0)Φ̄ + s−3

0 e0p, l1 = Ẽ02 + s−3
0 (fp1c − F10),

l
(+)
11 = −s−3

0 F11, l12 = −s−3
0 F12,

l2 = s−3
0 e3p, l3 = s−3

0 e1p − 1

2
βcΦ(0)Φ̄f0/c

(0)
k1 ,

l4 = s−3
0 e2p +

1

2
βcΦ(0)Φ̄f 2

0 /(c
(0)
k1 )2. (65)

The quantities F10, F11, F12 appear in the expression for the contribution to the free
energy F ′

CR,h. They are represented in [14].
As in the case of the weak fields, we calculate the quantity

σ
(h)
+ = − 1

N

∂Fh

∂h
.

Taking into account (64), we have

σ
(h)
+ = tanhh′ +

6

5
l1f

−6/5
0 (h′)1/δ +

(
6

5
+ ∆11

)
l
(+)
11 f

−6/5−∆11

0 (h′)
1
δ
+∆11

+

(
6

5
+ 2∆11

)
l12f

−6/5−2∆11

0 (h′)
1
δ
+2∆11 + 2l2f

−2
0 h′. (66)

Here δ = 5. In the case of ∆1 → 1 (then ∆11 → ∞), this result corresponds to
the analogous formula of the paper [6]. For another limiting case of ∆1 = 0 (then
∆11 = 0), the relation (66) reduces to the corresponding expression, obtained in [7].
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Let us find the susceptibility of the system

χ
(h)
+ = − 1

N

∂2Fh

∂h2
.

Using (64), we have

χ
(h)
+ = β

[
M2(h

′) + 2l2f
−2
0 + χ

(h)
01 h̃η0−2 + χ

(h)
02 h̃η0−2+∆11 + χ

(h)
03 h̃η0−2+2∆11

]
. (67)

Here

η0 =
2d

d + 2
,

χ
(h)
01 = η0(η0 − 1)l1f

−2
0 ,

χ
(h)
02 = (η0 + ∆11)(η0 + ∆11 − 1)l

(+)
11 f−2

0 ,

χ
(h)
03 = (η0 + 2∆11)(η0 + 2∆11 − 1)l12f

−2
0 . (68)

The formula (67) at ∆1 → 1 corresponds to the result of [6], and at ∆1 = 0 reduces
to the result of [7].

The research in the region of strong fields at T < Tc is similar to the case of
T > Tc. Like in section 4, we will use the quantity τ̃1 = −τ̃ . The field can be written
as

h̃ = τ̃
p0(1−∆1)
1 . (69)

The quantity nh, which characterizes the exit point of the system from the critical
regime of the fluctuations, in the case of the strong fields has the form (23). Com-
paring the magnitudes of the regions of the critical regime by the temperature and
field, we find

nh = µτ − ∆1(µτ + 1), (70)

where 0 < ∆1 < 1, and µτ is determined by the expression (21). We come to the
conclusion that nh < µτ , and, thus, the expression np = nh is valid. We have already
used such a condition in this section while calculating the free energy at T > Tc.

Let us represent the free energy for the case of T < Tc in the form

F̃h = F0 + F̃CR,h + F̃p,h + F̃I,h. (71)

Here F0 coincides with (30). The quantity F̃CR,h has the following form:

F̃CR,h = −kTN0

[
e0p + e1pτ̃ + e2pτ̃

2 + e3ph̃
2

− F10h̃
6/5 + F11h̃

6/5+∆11 − F12h̃
6/5+2∆11

]
. (72)

Comparing this expression with the corresponding expression at T > Tc, we can see
that their difference is related with the sign of the term near the coefficient F11:

F
(±)
∆ = ±kTN0F11h̃

6/5+∆11 . (73)
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The “+” and “−” signs correspond to temperatures above and below Tc, respecti-
vely.

The expression F̃p,h coincides with the analogous expression at T > Tc (see (63)).
The expression for F̃I,h does not change either. As in the case of T > Tc, it is given
by the formula, which is represented in (63).

In this way, the free energy of the system at T < Tc for the large values of the
field near the critical point has the form (64), where l

(+)
11 should be replaced by the

coefficient l
(−)
11 , for which, we have

l
(−)
11 = −l

(+)
11 . (74)

Thus, the description of the critical behaviour of a 3D Ising-like system in an
external field is performed for the case when the system tends to the critical point
along some trajectory in the coordinates of the field h̃ and temperature τ̃ (the val-
ues of the field and temperature are related by some expression). The description
of system properties can be performed in terms of independent variables temper-
ature and field (as done in our preprint [16]). This is important from the point
of view of comparing the results with the conclusions, which directly follow from
the hypothesis of the two-parametric scaling. Then, fixing one of the variables and
differentiating thermodynamic functions with respect to another variable, from the
scaling hypothesis one can obtain the known relations among the critical exponents.
Based on these relations when two critical exponents are available, other exponents
can be obtained. The results of investigation, presented in the paper when ∆ = 0,
correspond to the case, which also takes place in the analysis using independent
variables h̃ and τ̃ . Just when ∆ = 0, the system is in the external field h̃ = h̃c.
Then, all preceding considerations for independent variables turn out to be valid.

7. Conclusions

The method proposed for describing 3D one-component magnet near the critical
point takes into account the simultaneous effect of the temperature and field on
the behaviour of the system. The consideration is carried out in the ensemble when
the field and temperature are not independent variables. They are related by some
expression. The system tends to the critical point along some trajectory in coordi-
nates of the field h̃ and temperature τ̃ . The field is specific since it decreases with
τ̃ → 0. Such problems appear with describing the properties of a series of statistical
systems (see, for example, [11,12]).

It is established that the behaviour of the system varies depending on the rate
of the field decreasing. The weak field and strong field regions are defined. For the
former, the expression for free energy has the form (32) at T > Tc and (48) T < Tc.
The susceptibility in both cases is characterized by the temperature critical exponent
γ (the formula (44) at T > Tc and (56) at T < Tc). It is shown that this exponent
does not depend on the parameter ∆, which defines the trajectory of the system.
It is identical for each trajectory in the weak field region. For the strong field, the
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behavior of the system is defined by the field variable h̃. The expression for free
energy (64) has the same functional form for the region T > Tc and T < Tc. There
is a difference for one of the coefficients just in the sign (see (74)). The Landau
approach adapted to our research is considered in addition to the proposed analytic
method based on the use of a non-Gaussian measure density.

Appendix

Let us consider the effect of the external field, which depends on the temperatu-
re, on the behaviour of the magnetic system with one-component order parameter,
using the Landau approach. In this approach for the system near the critical point,
the free energy is represented as a series with respect to the order parameter σ.

F = F ′
0 + aτσ2 + bσ4 + g(∇σ)2 − hσ. (A.1)

Here a, b, g are quantities, which do not depend on temperature τ and field h.
We assume that the field h depends on τ , i.e., it is changed with the system

tending to the critical point. In the region of temperatures τ < 0, the spontaneous
magnetic moment

σS ∼ |τ |β0, (A.2)

where the critical exponent β0 = 0.5, as well as the moment induced by the field

σI = χh ∼ |τ |−γ0h (A.3)

exist in the system. Here γ0 = 1 is the critical exponent of the susceptibility χ.
Let us find the value of the field h = hc0 when the condition

σS = σI (A.4)

is satisfied. According to (A.2) and (A.3) we obtain

hc0 ∼ |τ |p0, (A.5)

where
p0 = γ0 + β0 = 1.5. (A.6)

The value hc0 will be called the limiting field.
The inverse proposition is valid too. When the field h from (A.1) is changed

according to the law (A.5) then at T < Tc the relation (A.4) takes place for all τ
(τ � 1).

It is known [13] that under the condition (A.5) one can express each thermody-
namic quantity via temperature τ or field h. Therefore, using the (A.5) from (A.3),
we find

σI ∼ h
1/δ0
c0 , (A.7)

where δ0 = p0/β0 = 3, as this takes place in the Landau theory.

378



Behaviour of a three-dimensional uniaxial magnet . . .

Let us consider the field part of the Landau free energy

Fh = −hσ. (A.8)

In the case of h = hc0 it can be represented in two equivalent forms. Taking into
account (A.2) and (A.5) from (A.8), we get

Fh ∼ −|τ |p0+β0, (A.9)

which is the evidence of the absence of divergence of the second derivative with
respect to the temperature in the critical point. At h = hc0 one can express the
quantity Fh via field variable h. Using (A.7), we find

Fh ∼ −h1+1/δ0 . (A.10)

The dependencies (A.9) and (A.10) are valid only in the case of performing the
(A.5). Let us consider a general case when the field h decreases with greater or
smaller rate in comparison with hc0. We assume

h = |τ |p0(1+∆), (A.11)

where ∆ is some parameter. At ∆ > 0 the field h decreases with a smaller rate than
hc0, and at −1 < ∆ < 0 it decrease with a greater rate than hc0.

We consider the case of ∆ > 0. Then the order parameter is defined, in general, by
the contribution of the spontaneous moment σS. For (A.8), we obtain the dependence

Fh ∼ −|τ |2+p0∆. (A.12)

Thus, for the dependence (A.11) the role of the field contribution is much smaller
than at h = hc0.

In the case of ∆ > 0 we write down the field contribution of the type (A.10). It
has the form

Fh ∼ −hη0 , (A.13)

where for the exponent η0, we have

η0 =
2 + p0∆

p0(1 + ∆)
. (A.14)

In the limiting cases, we obtain

η0 =

{
4/3, ∆ → 0,
1, ∆ → ∞.

Let us find the quantity

σ = −∂F

∂h
, (A.15)

which we will interpret as some “order parameter”. According to (A.13), we have

σ ∼ h1/δ0∆ , (A.16)
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∆

δ
0∆
δ
∆

Figure 3. Dependence of quantities δ0∆ from (A.17) and δ∆ from (40) on the
parameter ∆. The solid line corresponds to δ0∆ (Landau approach), and dash
line corresponds to δ∆ (non-Gaussian approximation).

where
δ0∆ = 3(1 + ∆). (A.17)

The dependence of this quantity on ∆ is shown by the line 1 in figure 3. As one can
see, this dependence has the inverse direction in comparison with curve 2, which is
obtained taking into account the contributions from long-range fluctuations of the
order parameter. At ∆ = 2/15, both quantities have the same value δ′0 = 3.4. Thus,
when the external field decreases with the smaller rate as the limiting field hc0 with
the system tending to the critical point, then the order parameter is proportional
to its spontaneous part (A.2). On the other hand, using (A.11), we find (A.16). The
latter equality represents the dependence of the order parameter on the external
field, which depends on the temperature according to the (A.11). In some particular
cases the equality (A.16) reduces to the well-known dependencies. The first of them
corresponds to the value ∆ = 0 when δ0∆ = δ0 = 3. Another case ∆ → ∞ on
account of (A.11) corresponds to the absence of the field. In this case, δ0∆ → ∞,
however, h → 0. Taking this limit we obtain the dependence (A.2).

According to the field h at ∆ > 0, the susceptibility of the system has the form

χ ∼ hη0−2, (A.18)

where

η0 − 2 =
β0 − p0 − p0∆

p0(1 + ∆)
. (A.19)

Let us consider the case of strong fields. In this case, it is convenient to write
down the relation (A.11) in the form

h = |τ |p0(1−∆1), (A.20)
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where 0 � ∆1 � 1. For all ∆1 > 0, the order parameter of the system is defined, in
general, by the contribution of the induced magnetic moment

σI ∼ h1/δ0 . (A.21)

The field part of the Landau free energy has the form

Fh ∼ −h1+1/δ0 . (A.22)

For the derivative of the type (A.15), we get the dependence (A.21), and for the
susceptibility of the system along the direction of the curve for (A.20), we have

χ ∼ h−2/3. (A.23)

The latter coincides with (A.18) at ∆ = 0. Thus, when the external field h decreases
more slowly than hc0 with the system tending to the critical point, the field part
of the expression for the Landau free energy is a homogenous function of the field
with the exponent of homogeneity 1 + 1/δ0. The susceptibility of the system along
the direction (A.20) is proportional to the h with the critical exponent −2/3. These
both exponents do not depend on the parameter ∆1 in contrast to the case of the
weak fields.
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Поведінка тривимірного одновісного магнетика
поблизу критичної точки в зовнішньому полі

М.П.Козловський, І.В.Пилюк, О.О.Притула

Iнститут фізики конденсованих систем НАН України,
79011 Львiв, вул. Свєнцiцького, 1

Отримано 26 березня 2003 р., в остаточному вигляді – 24
травня 2004 р.

Досліджена поведінка тривимірного магнетика з однокомпонентним
параметром порядку поблизу критичної точки у випадку наявності
однорідного зовнішнього поля. Розрахунки виконані у випадку, коли
величини поля та температури є залежними та зв’язаними між со-
бою певним співвідношенням (система прямує до критичної точки
по певній траєкторії). Розглянуті області температур вищих та ниж-
чих за Tc ( Tc – температура фазового переходу при відсутності по-
ля). Показано, що при слабких значеннях поля поведінка системи
описується в основному температурною змінною, а для випадку си-
льних полів роль температурної змінної не є домінуючою. Для кож-
ної з цих областей отримані відповідні вирази для вільної енергії,
сприйнятливості та інших характеристик системи в околі критичної
точки.
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