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The concentration dependance of electroresistivity of the liquid binary al-
loys of transition metals Fe, Co and Ni is calculated. We considered the
contribution to conductivity from the s-electrons, described within the mod-
el of nearly free electrons. The role of the partially occupied d-bands is
reduced to resonance scattering of the s-electrons on d-states. The inter-
action of the s- and d-electrons is described by the hybridization potential
of s- and d-states. The interaction with the ions, not including the partially
occupied d-states, is described using the pseudopotential of the electron-
ion interaction. The electroresistivity of the alloys is calculated in the sec-
ond order of the perturbation theory in pseudopotential and hybridization
potential. The concentration dependance of electroresistivity of the bina-
ry alloys approaches the linear regime as the resonance scattering of the
s-electrons on d-states prevails over the scattering on the ions. The calcu-
lations exhibit good agreement with the experimental data.
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1. Introduction

The nowadays theory of the electron transport phenomena began from the sem-
inal work of Ziman [1]. In his study the electroconductivity of simple metals was
calculated using the model of nearly free electrons in the second order of the per-
turbation theory in pseudopotential of the electron-ion interaction. In the following
paper [2] this approach was extended to deal with the binary alloys of the simple
liquid metals. The results of that paper provide excellent agreement of the concen-
tration dependence of the simple liquid metals [3–5] with the experiment and is
extensively used to the present day [7–10].

In later works [10], the Ziman’s formula [1] was generalized to the case of tran-
sition liquid metals by introducing the single-particle t-matrix to replace the pseu-
dopotential of the electron-ion interaction. The idea behind this approach is that
the pseudopotential of the electron-ion interaction in the transition metals is not a

c© V.T.Shvets, S.V.Savenko, S.V.Datsko 275



V.T.Shvets, S.V.Savenko, S.V.Datsko

sufficiently small parameter, but the t-matrix, in fact, constitutes the sum of the
infinite perturbation series in pseudopotential. The attempts to use this method in
order to calculate the resistivity of the binary alloys of transition metals did not
bring much of a success [11]. Just like in the case of simple liquid metals, the con-
centration dependence appeared to be essentially nonlinear, with the tendency to
conform to the Nordheim rule. At the same time the experimental results suggest
that electroconductivity of liquid binary alloys of transition metals does not show
strong concentration dependence [12–14]. In many cases this dependence is close to
the linear one [13,14,11].

Another description of the electron transport phenomena is based on the Mott
model [15]. It describes the scattering of the conductivity s-electrons on the ionic
subsystem using the potential of the hybridization of s- and d-states. This approach
was successfully employed in calculating the conductivity of the liquid transition
metals [16] (for more details see [17]). However, the concentration dependence of
the resistivity of binary alloys of transition metals calculated using this method
significantly differs from the experimental values, and appears to be almost linear
in this case.

In this paper we are using two-parameter model to describe the electron trans-
port phenomena in disordered alloys of transition metals. The interaction of the con-
duction electrons, which are only s-electrons, with the ion subsystem includes two
different mechanisms. The interaction with the ionic core, not including the d-states
of the partially occupied d-shells, is treated with the use of the pseudopotential of the
electron-ion interaction. The interaction with the d-electrons is incorporated within
the s-d hybridization framework. The first mechanism leads to the concentration
dependency that is similar to that of simple metals, while the second one results in
a linear concentration dependency. The interplay of these two contributions shapes
the concentration dependency of electroconductivity of any specific alloy.

2. Hamiltonian

We chose the model Hamiltonian of the electron subsystem of the binary alloy
of transition metal in the form

H = Hs +HAW +HBW +HA∆ +HB∆ +HAd +HBd . (1)

Here

Hs =
∑

k

εka
+
k ak (2)

is the Hamiltonian of the noninteracting gas of s-electrons, a+
k , ak are the operators

of nucleation and annihilation of the electron in the state with the wave vector k,
respectively,

εk = �
2k2/2m (3)
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is the energy of the free electron;

HAW = V −1
∑
k,q

wA(q)ρA(q)a+
k ak, (4)

HBW = V −1
∑
k,q

wB(q)ρB(q)a+
k ak (5)

are the Hamiltonians of the interaction of s-electrons with the ionic cores of types
A and B, wA(q), wB(q) are the formfactors of the corresponding model local pseu-
dopotentials, and V is the volume of the system,

ρA(q, t) =

NA∑
n=1

exp(−iqRAn), (6)

ρB(q, t) =

NB∑
n=1

exp(−iqRBn) (7)

are the Fourier transforms of the densities of the electron subsystems of the A and
B types, NA, NB - the quantities of the ions of each type, RAn,RBn are the radius-
vectors of the corresponding ions;

HA∆ = V −1/2

NA∑
k,n=1

[∆A,k,n,ma
+
k bA,n,m + ∆A,n,m,kb

+
A,n,mak], (8)

HB∆ = V −1/2

NB∑
k,n=1

[∆B,k,n,ma
+
k bB,n,m + ∆B,n,m,kb

+
B,n,mak] (9)

are the Hamiltonians of the interaction between s- and d-electrons, b+A,n,m, bA,n,m,

b+B,n,m, bB,n,m are the operators of nucleation and annihilation of d-electrons in the
state characterized by the set of quantum numbers m on the n-th ion of the corre-
sponding type, ∆A,k,n,m,∆A,n,m,k,∆B,k,n,m,∆B,n,m,k are the matrix elements of the
hybridization potentials of s-electrons with the d-electrons of corresponding types.
Just like in the case of matrix elements of pseudopotential we assume that they can
be factorized, namely

∆A,k,n,m = ∆Am(k) exp(−ikRAn), (10)

∆A,n,m,k = ∆Am(k) exp(ikRAn), (11)

∆B,k,n,m = ∆Bm(k) exp(−ikRBn), (12)

∆B,n,m,k = ∆Bm(k) exp(ikRBn). (13)

Finally,

HAd =

NA∑
n=1,m

εA,n,mb
+
A,n,mbA,n,m , (14)

HBd =

NB∑
n=1,m

εB,n,mb
+
B,n,mbB,n,m (15)
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are the Hamiltonians of noninteracting d-electrons of corresponding types, εA,n,m,
εB,n,m are the energies of the d-states in corresponding pure metals.

The model Hamiltonian put forward in this paper corresponds to the following
representation of the wave functions in secondary quantization formalism:

ψ(r) =
∑
k

ak| k〉 +

NA∑
n=1,m

bA,n,m| A, n,m〉 +

NB∑
n=1,m

bB,n,m| B, n,m〉, (16)

ψ+(r) =
∑
k

a+
k 〈k | +

NA∑
n=1,m

b+A,n,m〈A, n,m | +
NB∑

n=1,m

b+B,n,m〈B, n,m |, (17)

where | k 〉, 〈 k | are the orthogonolized plane waves [18], describing the state of
the s-electrons. They are obtained by orthogonalizing the plane waves to the wave
functions of d-electrons of the partially occupied d-bands. At that, the mutual or-
thogonality holds. | A, n,m〉, | B, n,m〉, 〈A, n,m |, 〈B, n,m | are the wave functions
of d-electrons that form the partially occupied d-bands. They are orthogonolized
similarly to the wave functions of all the other ions in the metal. The orthogonolized
plane waves and the orthogonolized atomic wave functions constitute the complete
orthogonal set of functions.

As a model Hamiltonian of the electron subsystem in the coordinate representa-
tion we chose the following

H =
∑

l

Hl, (18)

where

Hl = Tl +

NA∑
m=1

VA(|rl − RAm|) +

NB∑
m=1

VB(|rl − RBm|). (19)

Here Tl is the kinetic energy operator of the n-th s-electron, VA(|rl−RAm|), VB(|rl−
RBm|) are the self-consistent potential energies of the interaction between s-electrons
and the ions of different types. On transition to the representation of secondary quan-
tization in the above discussed mixed basis, the following matrix elements appear

〈k|Hl|k′〉 = εkδkk′ + wA(|k − k′|)ρA(k − k′) + wB(|k − k′|)ρB(k − k′),

〈k|Hl|A, n,m〉 = ∆A,k,n,m, 〈A, n,m|Hl|k〉 = ∆A,n,m,k,

〈k|Hl|B, n,m〉 = ∆B,k,n,m, 〈B, n,m|Hl|k〉 = ∆B,n,m,k,

〈A, n,m|Hl|A, n,m〉 = εA,n,m, 〈B, n,m|Hl|B, n,m〉 = εB,n,m. (20)

The matrix elements of the type 〈A, n,m|Hl|B, n′, m′〉 can be neglected in the cases
where the nearly free model is applicable.

3. Resistance coefficient

To calculate the specific electroresistivity coefficient of the liquid binary alloys
we use the approach similar to that used at the calculation of resistivity of the pure
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transition metals [17,19]. At that

ρ =
n

e2m

1

τ
, (21)

where
n = k3

F/3π
2 (22)

is the density of conduction electrons,

kF = (3π2z/v)1/3 (23)

is the Fermi wave vector of the conduction electrons,

z = cAzA + cBzB (24)

is the average valency of the alloy, zA, zB are the valencies of the alloy components
(number of s-electrons per ion), cA = NA/(NA +NB), cB = NB/(NA +NB) are the
concentrations of the alloy components, such that cA + cB = 1,

v = cAvA + cBvB (25)

is the average volume per ion in the alloy, v1, v2 are the volumes per ion in the pure
metals.

In the second order of the perturbation theory in pseudopotential and the hy-
bridization potential, the inverse relaxation time is as follows:

τ−1 = τ−1
Z + τ−1

M . (26)

Here, the first contribution stems from the scattering of the electrons on the ions.
For the pure metals it is the Ziman’s relaxation time [1]

τ−1
Z =

m

4πv�3k3
F

2kF∫
0

[
w(q)

ε (q)

]2

S(q)q3dq. (27)

Here ε(q) is the dielectric permittivity of the conduction electrons, S(q) is the static
structure factor of the ion subsystem. The distinctive property of this formula is its
strong dependence on the structure of the metal due to the presence of a structure
factor.

This contribution for the binary alloys can be calculated using the following
substitution [2]

w(q)S(q, ω) → cAcB[wA(q) − wB(q)]2

+ c2Aw
2
A(q)SAA(q) + 2cAcBwA(q)wB(q)SAB(q) + c2Bw

2
B(q)SBB(q),

(28)

where SAA(q), SAB(q), SBB(q) are the partial structure factors of the ion subsystem
of a binary alloy. The same result can be obtained by rigorous treatment. From
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this expression one can conclude that the concentration dependence of the binary
alloys is nonlinear and can have a substantially parabolic character if the formfac-
tors wA(q), wB(q) significantly differ for distinct components. In this case the first
contribution can take especially large values.

The second contribution in (26) corresponds to the Mott’s relaxation time [15]

τ−1
M =

2π

�v
|∆(kF)|2G(εF). (29)

Here G(εF) is the density of the d-states, normalized to the number of d-states per
ion. There are 10 such states in 3d-metals.

This contribution to the inverse relaxation time for the binary alloys of transition
metals can be obtained using the following substitution

|∆(kF)|2G(εF) → cA∆2
A(kF)GA(εF) + cB∆2

B(kF)GB(εF). (30)

The concentration dependance of this contribution is linear. If it were the only con-
tribution to the inverse relaxation time of the binary alloy it would have been linear
as well. So, in the second order of perturbation theory, the inverse relaxation time
is the superposition of two contributions previously suggested in order to separately
deal with simple and transition metals. In the higher orders of perturbation theory
the superposition principle fails [19].

4. Results and discussion

The huge number of parameters characterizing the components of alloy makes
the numerical analysis of the concentration dependence of electroresistivity quite a
complicated task. At that, the use of model expressions for various matrix elements,
partial structure factors and the density of d-states is inevitable.

For the partial structure factors of the liquid binary alloy of transition metals we
use the exact solution of the Percus-Yevick of the hard-sphere model [20], the packing
fractions are taken from [21]. If the packing fraction and the number densities in
the ion subsystem are known we can easily calculate the corresponding hard sphere
diameters.

For the formfactor of the pseudopotential we use the model local pseudopoten-
tial due to Krasko-Gurskiy [22]. It includes two fitting parameters: the effective ion
diameter and effective depth of the potential well induced by the ion for the con-
duction electrons. To reduce the number of fitting parameters we put the effective
ions dimensions equal to those of hard spheres. The second fitting parameter can be
determined from the contribution to the resistivity caused by the scattering on the
ion cores. We operate on the assumption that for pure metals with completely or
partially occupied d-bands this is the only relevant contribution. As long as Fe, Co,
Ni are the 3d metals, and in the fourth period of the periodic table that contains
these metals, the metal row is preceded by Ca with no d-electrons at all, and ends
with the Cu, the contribution of interest should accept values between the resistiv-
ities of Ca and Cu. In view of the absence of more precise information, we use the
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following linear interpolation

τ−1
n = τ−1

Ca + n(τ−1
Cu − τ−1

Ca )/10, (31)

where n is the number of d-electrons in the metal, the completely filled shell contains
10 electrons. In accordance with this formula, the contribution τ−1

Z for the metals
considered in the paper should constitute 20% − 25% from τ−1

M . Consequently, the
concentration dependence of the resistivity can be significantly nonlinear. Using the
experimental data for resistivity of Ca and Cu, we can specify the contribution under
discussion for Fe, Co, Ni. Then, yet undetermined parameter of the pseudopotential
can be found from the condition that this contribution is described by formula (27).

For the dielectric permittivity of the conduction electrons we use the random
phase approach allowing for the exchange interaction and correlations of conduction
electrons in local field approximation [23].

For the density of states we use the following expression

G(ε) =
10

Γ
√

2π
exp

[
−(ε− εd)

2

2Γ2

]
. (32)

Here εd is the mean energy of the d-states, Γ is the half-width of this zone. The
values of these parameter for Fe, Co, Ni were taken from [24].

We adopt the hybridization potential in the spherical symmetric form, proposed
at [25]

∆(k) = Ak2, (33)

where A is the fitting parameter. The values of A are chosen such that the formu-
la (21) with the relaxation time (26) produce the resistivity values of pure liquid
transition metals. It should be noted that at calculation of the concentration depen-
dence of the resistivity of the binary alloys it is conventional to fit the experimental
data at the limiting points of the corresponding curve, that describe the resistiv-
ity of pure metals. The curvature of the theoretical curves for the concentration
dependence of resistivity is determined by the relation between τ−1

Z and τ−1
M contri-

butions. The following figures illustrate the concentration dependence of resistivity
of the FeNi, FeCo, CoNi alloys. All the parameters of the pure metals required for
calculations are taken at a temperatures of their melting. The experimental values
of the electroresistivity coefficients are taken from [14].

The graphs bring about a good agreement between the theory and experimental
data.

Though the current paper deals with the liquid state of these metals, the ob-
tained results hold for amorphous metals as well. It follows from the fact that the
concentration dependencies of the electroresistivity in liquid and amorphous states
are virtually the same. The curves can be brought into coincidence by the transla-
tion. [14]. The latter remark is particularly important, because of the recent growth
of interest to the electron transport phenomena in amorphous metals and their alloys
[26,27].
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Figure 1. Concentration dependence of electroresistivity for the CoNi alloy, — -
theoretical curve, � - experimental data.

Figure 2. Concentration dependence of electroresistivity for the FeCo alloy, — -
theoretical curve, � - experimental data.

Figure 3. Concentration dependence of electroresistivity for the FeNi alloy, — -
theoretical curve, � - experimental data.
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Електропровідність сплавів перехідних
рідких металів

В.Т.Швець, С.В.Савенко, С.В.Дацько

Одеська державна академія холоду,
Дворянська вул., 1/3, 65026, Одеса, Україна

Отримано 22 квітня 2004 р.

Розрахована концентраційна залежність електроопору бінарних
сплавів рідких перехідних металів Fe, Co, Ni. Електронами провід-
ності вважаються лише s-електрони, що описуються в моделі май-
же вільних електронів. Роль d-електронів частково заповненої d-
оболонки зводиться до резонансного розсіяння s-електронів на d-
станах. Взаємодія s-електронів з іонною підсистемою, що не міс-
тить частково заповнених d-станів, описується псевдопотенціалом
електрон-іонної взаємодії. Взаємодія s- та d- електронів описується
потенціалом гібридизації s- і d-станів. Електроопір сплавів розрахо-
вується у другому порядку теорії збурень за псевдопотенціалом та
потенціалом гібридизації. Концентраційна залежність електроопору
бінарних сплавів рідких перехідних металів тим ближча до лінійної,
чим більше резонансне розсіяння s-електронів на d-станах переви-
щує їх розсіяння на іонній підсистемі. Результати чисельних розра-
хунків знаходяться у добрій відповідності з експериментальними да-
ними.

Ключові слова: електроопір сплавів, рідкі перехідні метали

PACS: 72.14.E, 72.15.C
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