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In the present paper we suggest a possible mechanism of repolarization of
a short hydrogen bonded chain. This mechanism is based on the coherent
tunnel reorientation of ionic groups and is additional to the other one that
is realized due to the coherent tunnel repolarization of the hydrogen bonds
described in the previous work (J. Mol. Struct. 416, 161 (1997)). With the
aid of the instanton method the tunnelling frequency of this reorient tran-
sition is calculated in the WKB approximation. The tunnelling frequency of
such a flip-flop process does not depend on temperature, and this effect
can be observed at low temperatures when tunnelling chain repolarization
prevails over the thermal activation one.
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1. Introduction

Many basic properties of physical and biological objects are governed by hydro-
gen bonds. Ferroelectric, structural phase transitions, ion and proton transport in
such systems are related to proton motion at a hydrogen bond and reorientation of
the ionic groups [1]-[9]. The short hydrogen-bonded chains are one of the main pro-
ton channel elements of proton-conducting biomembranes [10,11]. It is well known
[10,12–17], that this chain has a great polarisability which fluctuates between two
opposite directions. Many optical and kinetic properties of H-bonded chains are
defined by different mechanisms of the polarization oscillations. Thus, the polar-
ization modes themselves ensure the possibility of a polaron to be involved into
the proton transport along the chain [18], and transport of the ionic and orienta-
tional defects can be considered, in some cases, as a result of a chain repolarization
(see e.g. [6,7,20,21]). Here we propose a possible mechanism of repolarization of
short hydrogen bonded chains based on macroscopic quantum tunnelling [22–26].
This mechanism corresponds to the tunnelling of a macroscopic variable through
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a barrier between two minima of the effective potential of a macroscopic system.
In particular, such effect is observed in a small ferromagnetic particle whose size
is smaller than the characteristic one of a magnetic domain [25,27,28]. The mag-
netic moment of a one-domain particle has several equilibrium directions of easy
magnetization determined by the crystalline anisotropy and shape of the particle.
The oscillation induced switching of the particle’s magnetic moment between these
directions does not disappear with temperature decreasing [29]. In other words,
at low temperature the particle magnetic moment tunnels between different en-
ergy minima. The repolarization of the hydrogen bonded chain can be realized
as an effect due to the repolarization of the hydrogen bonds O-H...O ↔ O...H-O)
and/or due to reorientation of the ion groups O-H...O-H ↔ H-O...H-O . One of the
possible mechanisms of repolarization is a soliton mechanism of an overbarrier re-
construction of a chain [6,7,20,21]. As it was shown in [26] in the framework of the
pseudo-spin representation for the proton subsystem, the polarization vector of a
short H-bonded chain can tunnel, as a single domain, between two opposite states
O-H...O-H...O and O...H-O...H-O which have the same energy. These transitions
take place by way of a coherent tunnel repolarization of chain hydrogen bonds and
do not lead to the formation of defects as it is in the case of the successive over-
or through-barrier repolarization of each hydrogen bond.

In the present paper we show that a tunnel repolarization of a short one-domain
H-bonded chain can be due not only to the proton motion along the hydrogen
bond [26] but can occur due to the coherent tunnel motion of protons around
heavy ions (coherent tunnel reorientation of the hydroxyl group: O-H...O-H... ↔
H-O...H-O...). The latter becomes possible when protons are tightly bound with
the ion groups, so that the probability of proton transfer processes along the hy-
drogen bond is lower than that of orientation effects of the group O-H. To illustrate
the feasibility of such transitions it is sufficient to study the simplest models of
orientation oscillations of the ionic groups of a hydrogen bonded chain [7,8,20,21].
In the two-level approximation, these models can be reduced to the model of an
easy-axes ferromagnetic with a transverse external field for which the effect of a
macroscopic quantum coherence was considered in detail (see, e.g., [16–20]). The
authors of [21] proposed a model of the orientation kink-defect in a quasi one-
dimensional ice crystal. The main dynamic variable in that case was the angle
between the direction of an O-H bond and that of the water molecules chain. The
potential energy of this system is determined by the interaction between the near-
est water molecules and the two-well potential, whose minima correspond to the
equilibrium orientations (...O-H... and ...H-O...) of water molecules in the chain. If
we neglect the excited states and consider a 2-level scheme, then, in a pseudo-spin
representation, the secondary quantised Hamiltonian of such a system is known
to be reduced to the model of easy-axes ferromagnetic with a transverse external
field [5]. To estimate the frequency of coherent orientation tunnel transitions we
consider another model [8] that takes into account both the proton dynamics of
hydrogen bonds and the reorientation processes of O-H groups. This model admits
two limiting cases of particular interest for the study. In the first case the coherent
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tunnel repolarization of one-domain chain is determined by the hydrogen bonds
repolarization and was described in [26]. In the second case, studied below, the
repolarization is determined by a hydroxyl-group reorientation that takes place
through the proton motion around an ion group.

2. Pseudo-spin realization of the orientation molecule motion
of one-domain H-bonded chain

We will consider a quasi one-dimensional hydrogen bonded chain, schemati-
cally presented as A-H...A-H...A-H... . Suppose that two different configurations
of the chain H-A...H-A... and A-H...A-H... have the same energy. The purpose of
the present paper is to show that transitions of the short chain between these
configurations can occur through the coherent tunnel reorientation of groups A-H.
The motion of a proton in an H-bond can be described in terms of a two-well po-
tential. Using a two-level approximation, i.e. taking into account only two lowest
proton levels, one may introduce Fermi-operators a+r,k(ar,k) and a+l,k(al,k) of proton
creation and annihilation in the right and left wells of a k-th hydrogen bond. As
shown in [8], orientation transitions of A-H groups can be described in terms of
a proton subsystem as a pseudo-tunnel effect. The Hamiltonian of this model can
be written as [8]:

H = H0 +Ht +Hr +Hc, (1)

where

H0 =
∑

k

w
′

(1− nr,k) (1− nl,k+l)+wnr,knl,k+1+ε (1− nr,k)nl,k+l+εnr,k (1− nl,k+1)

(2)
determines a short-range interaction between protons at the nearest hydrogen
bonds; w′, w, ε are the energies of proton configurations in minima of the potential
near an ionic group; nr,k(nl,k) is an operator of the proton number in the right
(left) well of a k-th H-bond. The term Ht describes a tunnel transition between
two proton states in the hydrogen bond:

Ht = −ηΩ0

∑

k

a+l,kar,k + a+r,kal,k, (3)

where Ω0 is the tunneling frequency.
In such an approach, orientation transitions of the ionic groups (A-H)↔ (H-A),

can be described as a pseudo-tunnel effect with frequency Ωr:

Ht = −ηΩr

∑

k

a+r,kal,k+l + a+l,k+1
ar,k. (4)

The term

H0 = U
∑

k

nr,knl,k + V
∑

k

(1− nr,k) (1− nl,k) (5)
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corresponds to the Coulomb repulsion energy between two protons in the same
hydrogen bond and that of free electron pairs, with protons missing [8,9,30]. For
simplicity, we regard that all hydrogen bonds are equivalent and the chain obeys
the periodical boundary condition.

Consider the situation when a proton is strongly connected with a heavy atom,
so that one can neglect the tunnel proton transitions along the hydrogen bond
in comparison with the reorientation effects of the groups A-H. It enables us to
suppose that only one proton is localized near every heavy atom, i.e. nr,k+ nl,k = 1,
and we can introduce the notion of a pseudospin (see, e.g.,[5]):

sxk =
1

2

(

a+r,kal,k+1 + a+l,k+1ar,k
)

, (6)

syk =
1

2

(

a+r,kal,k+1 − a+l,k+1
ar,k

)

,

szk =
1

2

(

a+r,kar,k − a+l,k+1
al,k+1

)

,

where z is a pseudospin component that corresponds to the orientation of the k-th
A-H group, the x-th component is an operator of the tunnel reorientation and
the y component is an operator of the local current. Using our assumptions from
equation (1-5) and equation (6) we get a reduced Hamiltonian for the orientation
motion of an ionic group in the H-bonded chain

H ′ = −~Ω
∑

k

sxk + J
∑

k

szk−1s
z
k, (7)

where Ω = 2Ωr, J = U +V , and the equations of motion for operator sk are given
by

~
dsxk
dt

= J(syks
z
k+1 + szk−1s

y

k), (8)

~
dsyk
dt

= ~Ωszk − J(syks
z
k+1 + szk−1s

y

k),

~
dsxk
dt

= −~Ωsyk.

Thus, in a two-level approximation the Hamiltonian of orientation oscillations of
the ionic group in the hydrogen bonded chain, equation (7), corresponds to the
model of easy-axis ferromagnetic in the transverse external field 2~Ωr. As it has
been specified above, we can obtain H ′ by quantizing the classical model [21] and
determine the parameters Ω, J in an explicit form.

In the mean field approximation the motion equation of the average value of
pseudospin Sk = 〈sk〉 has the following form [5]:

~
dSk

dt
= Sk × F k, (9)

where

F k = −
∂〈H

′

〉

∂Sk

. (10)

206



Coherent tunnel repolarization of a H-bonded chain

Equations (9) and (10) are equivalent to the equations of free classical precession
of a pseudospin round the momentary value of the mean field F k. In our case the
classical value of pseudospin Sk corresponds to the orientation of an A-H group
and can be rewritten in terms of its polarization vector P k = 2Skd (where d is a
dipole momentum of an A-H group).

Now we take into account the fact that the short H-bonded chain is a single
orientation (or polarization) domain. Following [25,26], one can set Sk = S. Then
equation (9) is given by

~
dS

dt
= −S ×

∂E

∂S
, (11)

where E is the orientational anisotropy energy

E = −~ΩSx − J (Sz)2 . (12)

Vector S characterises the orientation (or polarization) of a one-domain chain. In
the spherical coordinate system vector S = (S sin θ cosφ, S sin θ sinφ, S cos θ) and
equation (11) reduce to

~S
dθ

dt
sin θ =

∂E

∂φ
, (13)

~S
dφ

dt
sin θ = −

∂E

∂θ
.

The classical action for the single-domain chain corresponding to equation (13) is
of the form:

I = N

∫

dt

(

~S
dφ

dt
cos θ − E (θ, φ)

)

, (14)

where N is the number of A-H groups in the chain. The anisotropy energy

E (θ, φ) = JS2 sin2 θ − ~ΩS sin θ cosφ+
~
2Ω2

4J
(15)

has two minima: S0 = S(sin θ0, 0, cos θ0) and S
′

0 = S(sin θ0, 0,− cos θ0) (here
θ0 = ~Ω/2JS), which determine two equilibrium chain orientations with oppo-
site directions.

Thus, our problem is reduced to the model of a one-domain ferromagnetic par-
ticle with anisotropy energy given by equation (12) or equation (15). The problem
of the macroscopic quantum coherence which corresponds to the tunnel switching
of the particle magnetic momentum between the two equilibrium directions with
the same energy was considered in detail (see, e.g., [25,26,28]), and we make use
of these results to estimate the tunnelling frequency for our case.

3. Coherent tunnel reorientation

Since the tunnel splitting ~∆ for the model given by the anisotropy energy,
equation (15), was calculated in [28], there is no need in repeating these calculations
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in the present paper. In this part, following [28], we dwell upon the key points of
these calculations.

In order to estimate the tunnelling rate ~∆ of the chain transition between
states S0 and S

′

0 we make use of the quasi-classical (WKB) approximation that
can be obtained in the instanton method framework (see, e.g., [28]). The tunnelling
rate or the energy splitting is given by an expression of the type:

~∆ = b~ωp

(

IE
2π~

)
1

2

exp

(

−
IE
~

)

, (16)

where ωp is oscillation frequency in the well (or small-angle precession) , b is a
dimensionless prefactor that can be of the order 10, and IE is the Euclidean action
for the subbarrier rotation of S. In our case IE has the form:

IE = N

∫

dτ (−i~Sφ cos θ + E (φ, θ)) , (17)

where τ = it, and the extremum of IE is determined by the solution of the equations

i~S
dθ

dτ
sin θ =

∂E

∂φ
, (18)

i~S
dφ

dτ
sin θ = −

∂E

∂θ.

The subbarrier trajectory corresponding to the switching of S from S0 at τ = −∞
to S

′

0 at τ = ∞ is the instanton solution of equation (18

cos θ = − cos θ0 tanh(ωpτ), (19)

sinφ =
i

2

cot2 θ0 sech
2(ωpτ)

[1 + cot2 θ0 sec h2 (ωpτ)]
1

2

,

where 2ωp = ~Ωcot θ0 is small oscillation frequency in the well. Calculating the
action for this trajectory we obtain

IE (cos θ0)

~
= 2SN

[

− cos θ0 +
1

2
ln

(

1 + cos θ0
1− cos θ0

)]

. (20)

The tunnelling rate in the quasi-classical approach is determined by the WKB
exponent (depending only on IE) and the prefactor, which was calculated in [28].
Using these results one can write the energy splitting ~∆ for the orientation tran-
sitions of a one-domain hydrogen bonded chain as

~∆ = 8JS

[

SN

π

]
1

2

(

x5

1− x2

)
1

2

(

1− x

1 + x

)
x

2

exp

(

−
IE (x)

~

)

, (21)

where x = cos θ0.
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4. Discussion

We can see from equations (20) and (21) that the tunnelling rate significantly
depends on the atom number N of a hydrogen bonded chain. But for a short H-
bonded chain this parameter is not large. Then the tunnelling rate is not very small
and the spontaneous repolarization is possible. Reference [8] gives the following
estimations for the parameters of the model J and Ωr: the value J/~ = 6410
cm−1 corresponds to the energy of D- and L-defect (U/~ = 6410 cm−1 and V/~ =
6410 cm−1 ) found in [30]; the pseudotunnel orientational frequency changes in
the range 0 6 Ωr 6 2500 cm−1 (see [8]). Setting Ωr = 250 cm−1 and N = 5,
we obtain ∆ ≈ 5.1 × 109 sec−1, while for Ωr = 50 cm−1 the tunnel frequency is
≈ 1.6 × 106 sec−1, for the same N . For typical material parameters, the rate of
macroscopic quantum tunnelling in a ferromagnetic particle is known to be of the
order 106÷ 108 sec−1 [25]. Comparing this with our result, we can expect that at a
low temperature the chain orienation tunnels between the two opposite directions.
We can estimate critical temperature Tc , which corresponds to a crossover from
the thermal to the quantum regime, i.e., the regime where reorientation frequency
does not depend upon temperature (see [25]). The probability of switching the
chain polarization vector due to thermal activation is proportional to exp(− ∆E

kBT
),

where ∆E = NJS(1−sin θ0)
2 is a barrier height. Comparing it with the tunnelling

probability

exp(−
IE
~
) ≈ exp(−

∆E

kBTc

) (22)

we obtain critical temperature Tc :

Tc ≈
~∆E

kBIE
. (23)

The value of Tc has the order of 156.5 K for Ωr = 250 cm−1 and of 103.8 K for
Ωr = 50 cm−1, .

Using the simplest model of protons’ motion around heavy ions in a hydrogen
bonded chain we have considered a possible mechanism of the tunnel oscillations of
the chain polarization. This mechanism is based on the coherent tunnel motion of
protons around heavy atoms and is additional to the other one realized through the
coherent motion of protons along the hydrogen bonds, as described in the previous
work [26]. In our study of the coherent tunnel reorientation we neglected the
effects of dissipation and interaction with vibrations of a heavy sublattice. These
interactions can play a significant role in tunnelling processes (see, e.g.,[5,31]). The
vibrations of A...A bonds lead to the modulation of a two-well proton potential
and, consequently, to the renormalization of the model parameters Ω0, Ωr , and J .
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Когерентна тунельна переполяризація ланцюжка

водневих зв’язків

П.М.Томчук, С.П.Лук’янець

Інститут фізики НАН України, 252650 м.Київ, просп. Науки, 46

Отримано 24 квітня 1998 р.

В роботi запропоновано можливий механiзм переполяризацiї корот-

кого ланцюжка водневих зв’язкiв. Цей механiзм базується на коге-

рентнiй тунельнiй переорiєнтацiї йонних груп i є додатковим до меха-

нiзму когерентної тунельної переполяризацiї водневих зв’язкiв, який

був дослiджений у попереднiй роботi (J.Mol.Struct. 416,161 (1997)).

Частота цих тунельних переходiв була отримана в квазiкласичному

наближеннi, використовуючи iнстантонний метод. Такi осциляцiї мо-

жуть спостерiгатися при низьких температурах i їх частота не зале-

жить вiд останньої, у випадку коли тунельнi процеси домiнують над

термiчно активованими процесами.

Ключові слова: водневий зв’язок, макроскопiчне квантове

тунелювання, макроскопiчна квантова когерентнiсть, пренос

протона

PACS: 64.60.Cn, 66.30.Lw

211



212


