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Resonance scattering of a monochromatic transverse acoustic wave of the
Rayleigh polarization from an isotop defect layer is considered. The phase
velocity ¢ of the incident wave along the defect plane is assumed to lie
in the interval ¢; > ¢ > ¢ . It is shown that the phenomena of the total
reflection of the transverse wave from the thin plane defect and the total
transition take place for the frequencies depending on the defect parame-
ters. The former can always be observed for a heavy defect and never for
a light one. The latter is possible for both light and heavy defects.
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When we speak about a planar defect in an elastic medium or crystal lattice,
we mean a thin layer of a few atomic distances thick, whose elastic properties
differ from those of the host material. There is a number of planar defects in real
crystals: grain or twinning boundaries, stacking faults, dislocation walls are typical
examples of planar defects.

In the theory of elasticity a planar defect is assumed to be concentrated at
some plane and the presence of a planar defect in an elastic medium is associ-
ated with boundary conditions at some interfaces for the equation of motion of a
non-perturbated medium. In publications [1,2] which were among the first papers
devoted to the problem, the boundary conditions consisted in a local perturbation
of the elastic moduli at the interface. The result showed the appearence of a local
vibration frequency below the lower edge of a transverse vibration band and also
features of the transverse spectrum below the edge of a longitudinal band.

A more complete description of the dynamics of an elastic planar defect can be
given on the basis of the following procedure. An elastic sandwich A — B — A with
the usual boundary conditions at the iterfaces A — B and B — A was considered
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and futher approximation kh < 1 was used ( k is a two-dimentional wave vector in
the defect plane, h is a real thickness of the B layer). Such consideration is used,
for exaple, in [3].

Our interest in the scattering from the thin defect layer has been caused basi-
cally by the recent publication [3] which asserts that the existence of frequencies
corresponding to the resonance reflection coefficient could reach the value equal to
unity.

We are interested in solving a specific scattering problem for which the form
of the boundary conditions is not significant and also propose to make use of the
simplest type of such conditions. We consider a defect which is a monoatomic layer
consisting of isotop atoms with mass M different from the mass of the host atoms
m.

If the planar defect is located at the plane z = 0, the dynamic equation for
elastic displacement u(x,t) can be written in the form:

82u,~ 82u

— Vo =
Patg k0ik 77/)8t2

where o0y is a stress tensor, n = %, h is the defect thickness, p is the mass
density of the medium and 4(z) is a delta-function.
The r. h. s. of equation (1) is equivalent to the following boundary conditions:

“hé(z),  i=1,2,3; (1),

ot? "’

for the dynamic equation of the theory of elasticity in a medium without a defect.
Here ot =0(2 = +0), 0~ = 0(z = —0).

Consider the problem of the scattering of a monochromatic transverse acoustic
wave of Rayleigh polarisation from a thin defect layer in an isotropic medium. If
the elastic wave propagates along the x-axis and is polarized in the sagital plane,
then the displacement vector w(u,,0,u,) is

o, — 0, = —nph

1z

~1,2,3 2)

u = u(z) exp(ikx — iwt). (3)

The vector function u(z) defines dependence on z and consists of two parts
(transverse and longitudinal)

u=u +ul (4)

It is well known that
rotu; = divu; = 0. (4a)

Assume that the phase velocity of the wave ¢ = w/k lies between the transverse
¢; and longitudinal ¢; sound velocities of the medium (¢; < ¢ < ¢).

Under such conditions the transverse wave u® is a homogeneous wave in each
semispace and a longitudinal wave is localized at the interface. The amplitude of
such a wave reaches its maximum at the defect decreasing up to the constant value
at infinity. We call these waves pseudosurface waves (PSW).
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If the incident transverse wave falls on the defect from the lower elastic semis-
pace, the displacement field in the both semispaces has the form:

ul) = ngexp(iqz) + Aexp(—iqz), z<0, (5a)
ul) = Bexp(iqz), z>0, (5b)
ul) = M exp(sx2), 2<0, (6a)
u = Nexp(—sxz), z>0, (60)

where ny is a unit polarization vector of the incident transverse wave:

0 _ 0 _ginfh: n° — 0. — 2 202 — 2,2 2
n, = cosf, n; =sind; n, = —(k/q)n,; c;q = \J/w? — k?c;, cjoc = ([ k%c] — w?.

The boundary conditions (2) in the case under consideration are simplified:

¢ (55 - 52 ) = wau-(0) 7
@ (% - 52 ) = w0 ®

where Wy = nhw?. Writing equations (7) and (8) we take into account that the
total displacement and its derivative with respect to x are continuous at the plane
z=0.

The amplitudes A and B of the scattered wave, and M and IN of the localized
longitudinal vibrations can be calculated on the basis of the boundary conditions
(7) and (8) and the conditions of continuity of the total displacement vector. The
results of the calculations can be presented in the following form:

0 2
A, = "}Z% [2%012 (%2 - w—z) <k‘2 + é) nhe } o A= (kA (9)

; Ci
2iqn2 2 2
By = —=1* [20ec} +nhw®] . B.=—(k/q)By; (10)
2]{?2 h 2,0
Ne = %[%ﬂd, N, = (is/k) Ny (11)
2]{?2 h 2,,0
M, = % [iq(l —snh) — (> + nhkz)} ; M, = —(isx/k)My; (12)

2
D =nh w—z(nhw2 + 23¢}) + (3 — ¢*)nhk*c} | — 2iq [(23¢c] + nhw®) — (nhk)?cis] .

! (13)

As it was expected, the following expression (the conservation law) is valid for
all the allowed c:

|A>+ |B|? = 1. (14)
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The condition B = 0 corresponds to total reflection from the defect and A = 0
means total transition.
We see that a total reflection exists under the condition

2001/ k2c} — w? = —nhw?. (15)

A total reflection is possible provided the defect layer is heavy (M > m).

In the long-wave approximation (kh < 1) the phase velocity of the resonance
reflected wave ¢ = w/k is close to the longitudinal sound velocity ¢; and defined
by the expression

8

i.e., depends on the perturbation squared: Ac/c ~ (nhk)?.

Bear in mind that condition (15) defines frequency ( or phase velocity ¢) of
stationary localized longitudinal vibrations satisfying boundary condition (7) in
the absence of a transverse component. The total stationary solution, apart from
wave (6), includes a standing transverse wave

c=¢ {1 _ 1(nhk)2] | (16)

ul) = asin(¢qz), z<0, (17a)

u) =0, 2>0, (17b)

which exists only on one side of the plane defect.
The condition of the total transition (A = 0) gives

/{ZQ 2 + kQ 2,2
2R} — = e (13)

We can see that when the defect is heavy (n < 0), one can obtain the total
transition solution (A = 0) only under the condition ¢; < ¢ < v/2¢;. In the long-
wave approximation (kh < 1) the phase velocity ¢ (¢ — v/2¢;) is given by the
relation

l-0 c?
c=V2¢ |1 — |nlhk————| . o= L. 19
So, the dependence on (nhk) is linear.
In the case of a light defect (n > 0), Eq.(18) leads to a conclusion that the
total transition is possible for phase velocities v2¢, < ¢ < ¢ and, when ¢ — ¢ in
the long-wave limit (kh < 1), we obtain

c=¢ [1 - %(nhkfﬁ} : (20)

i.e., (20) provides Ac/c ~ (nhk)? , but in a more complex way than in (16).

Therefore, the total reflection can only occur in the case of a heavy defect
(n < 0). The total transition of the transverse wave may occur in the cases of both
heavy (1 < 0) and light (n > 0) defects, but for different frequencies.
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Pe30HaHCHe pO3CisitHHA nonepeYyHol 3BYKOBOI XBUJTi
NJOCKUM KpucTtaniyHmm aedekrom

A.Kocesuu ', 1.Cemarin ?

Di3nKO-TEXHIYHUI IHCTUTYT HU3bKMX Temnepatyp iM. b.1.BepkiHa
HAH Ykpainun, 310164 m. Xapkis, np. JleHina, 47

XapkiBCbKMiN OEPXKABHMIN YHIBEPCUTET,
310077 m. XapkiB, marigaH Csoboau, 4

OtpumaHo 21 TpaBHa 1998 p.

Po3rngHyTO pe3oHaHCHe PO3CisiHHA Ha i30ToMn-a4edeKTHOMY Lwapi MOHO-
XpOMaTUYHOI NoNepeyHoi 3BYKOBOI XBUJIi peneiBcbkoi nonsipm3aadii. da-
30Ba WBMNAKICTb ¢ Nagaryoi XxBuii B3A0BX AedEKTHOT NIOLLNHM 33 Npu-
MYLWEHHAM NIeXUTb B iHTepBani ¢; < ¢ < ¢ . [NlokasaHo, Wwo asuwa rno-
BHOrO BigOUTTS NoONepeyHoi XBWJIi Big, TOHKOrO MJI0CKOro aAedekTy Ta no-
BHOIO NPOXOOXKEHHS BiabyBaloTbCA NpU YacToTax, WO 3asexarb Big, na-
pameTpiB gedekTy. Neplue 3aBXan MOXHa CNOoCTepiraTt Ang BaXKux ae-
deKTiB Ta HiKoMM Ansa nerkmx. [pyre 9BuLLLe MOXINBE K AN BaXKMX, TaK
i Ana nerknx oedexTiB.

Knio4oBi cnoBa: po3cisiHHSI, nornepeyHa xBuJisi, nioCKui 4epekt
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