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The article reports an attempt to study the protein folding problem by generalized-ensemble Monte Carlo sim-
ulations with reference interaction site model theory. Generalized-ensemble algorithms greatly enhance the
configurational space sampling in computer simulations. The reference interaction site model theory treats
solvent effects with solvent molecular shape and estimate solvation free energy around proteins. We have
developed simulation algorithms which combine generalized-ensemble algorithms and one-dimensional refer-
ence interaction site model theory. This treatment can also use a simulation with three-dimensional reference
interaction site model theory. In this review, we describe the methods and present the results of these simula-
tions for a peptide.
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1. Introduction

In usual simulations, a peptide molecule and quite numerous surrounding solvent molecules
are treated simultaneously. However, the number of solvent molecules required becomes huge for
a large peptide or a protein. Moreover, in the usual simulations with explicit molecules, the treat-
ment of a mixture of more than one solvent species, such as a saline solution, is nontrivial. The
reference interaction site model (RISM) theory [1–4] was developed from the statistical mechanics
of molecular liquid and can treat not only an infinite number of solvent molecules but also the salt
effects. The theory estimates the solvation free energy of a solute molecule with fixed structures in
infinite dilution. Therefore, the RISM theory is particularly suitable for these treatments.

Besides the solvation theory, effective simulation algorithms are also important for studying
protein folding and stability. The generalized-ensemble algorithm is one of the most powerful
configurational space sampling methods (for a review, see [5]). This method is based on non-
Boltzmann probability weight factors so that a random walk in potential energy space may be
realized. The random walk allows the simulation to go over any energy barrier and to sample a
much wider configurational space than by conventional methods. From the simulation run, one
can not only locate the energy global minimum but also calculate the canonical-ensemble average
of any physical quantity at any temperature. Two of the most well-known generalized-ensemble
algorithms for simulating protein systems are perhaps the multicanonical algorithm (MUCA) [6,7]
and the replica-exchange method (REM) [8–11].

In the previous works, we developed an algorithm for solving the full one-dimensional (1D)
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RISM equations for the system of a solute molecule with many atoms in water and salt solution
that is more robust and orders of magnitude faster than the conventional one [4,12]. We analyzed
the solvation structure and conformational stability of a pentapeptide Met-enkephalin with 1D
RISM theory [13]. We also reported the results of the attempt to combine Monte Carlo (MC)
simulated annealing and 1D RISM theory [14].

Moreover, we tried to combine the generalized-ensemble algorithms and 1D RISM theory to per-
form simulations of protein system [15,16]. First, we combined 1D RISM theory and multicanonical
MC algorithm and performed a simulation of Met-enkephalin in aqueous solution. The effectiveness
of the combinational simulation was shown in [15]. In the simulation, however, we only used the
solvation free energy at “a room temperature” as the solvent effects because the multicanonical
algorithm cannot treat temperature-dependent energy even though the solvent free energy depends
on temperature. In order to include the effects of the temperature dependence of the solvation free
energy, we then used the replica-exchange MC simulation. In this case, we had to modify the for-
mula for the replica-exchange criterion to treat the temperature-dependent energy and performed
the replica-exchange MC simulation with 1 D RISM theory [16]. In the article, we review the above
attempt to combine the generalized-ensemble MC algorithms and 1D RISM theory.

2. Method

2.1. Hybrid RISM/MC method

In usual MC simulations, the energy function is given by an instant value of the potential
energy for the entire system configuration. In the simulations given in this article, the total energy
function ET at a temperature T is given by the sum of the conformational energy EC and the
solvation free energy ESOL of the biomolecule in a fixed conformation rC:

ET(rC, T ) = EC(rC) + ESOL(rC, T ). (1)

Here, the conformational energy EC consists, for example, of electrostatic term, Lennard-Jones
term, and torsion-energy term. In the article, we use the RISM theory to calculate ESOL. The
total energy function in equation (1) is different from the usual potential energy, because we
use the “solvation free energy” ESOL. We refer to the total energy function as “the solvent-induced

potential”. The solvent-induced potential depends on temperature because the solvation free energy
is a function of temperature. The validity of using the solvent-induced potential as total energy
in Monte Carlo simulations was discussed in book [4] and [16]. From the argument, the ensemble
average of a physical quantity A(rC), which depends solely on coordinates rC, is given by

〈A〉T =

∫

drCA(rC) exp{−β(EC + ESOL)}
∫

drC exp{−β(EC + ESOL)}

. (2)

The “exact” equation, equation (2), implies that the ensemble average of A(rC) can be calculated
using the integration over the conformation of the biomolecule alone when the energy function in
the Boltzmann factor is taken to be the solvent-induced potential ET = EC+ESOL in equation (1).

In the case of the MC simulation at a temperature T with the weight factor W (rC, T ) =

exp[−β{ET(rC, T )}], the canonical transition probability from the state X = {r
[i]
C } to X ′ = {r

[j]
C }

is given by the Metropolis criterion [17]:

w(X → X ′) =

{

1 , for ∆ 6 0 ,
exp (−∆) , for ∆ > 0 ,

(3)

where ∆ = β(ET

(

r
[j]
C , T

)

−ET

(

r
[i]
C , T

)

) and β = 1/kbT . After performing the simulation, we can
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exactly obtain the average of physical quantity A(rC) by

〈A〉T =

∫

drCA(rC)W (rC, T )
∫

drCW (rC, T )

=
1

NSIM

NSIM
∑

i=1

Ai(rC), (4)

where NSIM is the number of samples taken.

2.2. One-dimensional reference interaction site model

ESOL is calculated using 1D RISM theory [4,12–14]. It is assumed that the solute is present
in the solvent at an infinite-dilution limit. The calculation process is split into two steps where
the bulk solvent (step 1) and the solvent near a solute molecule (step 2) are successively treated.
The basic equations for step 2 comprise the site-site Ornstein-Zernike (SSOZ) relation and the
hypernetted-chain (HNC) closure equation. Let the subscript S and the subscript V denote the
solute molecule and the solvent molecule, respectively. The model of the water molecule that we
adopted is the SPC/E model [18]. Suppose that the solute molecule has NS atomic sites and the
solvent molecule has NV atomic sites (NV = 3 for water). The SSOZ relation in the Fourier space
is given by

ηsv = wsvcsvHvv − csv , (5)

ηsv = hsv − csv , (6)

Hvv = wvv + ρvhvv , (7)

where Hvv, ηsv, and wss are NV × NV, NS × NV, and NS × NS matrices, respectively, ρv is
the matrix of the number density of the solvent, h is the matrix of the site-site intermolecular total
correlation functions, c is the matrix of the site-site intermolecular direct correlation functions,
and w is the intramolecular correlation matrix. Hvv is calculated in step 1 and is part of the input
data for step 2. The HNC closure equation is given by

cAB(r) = exp {−uAB(r)/kBT + ηAB(r)} − ηAB(r)− 1, (8)

A = 1, . . . , NS , B = 1, . . . , NV,

ηAB(r) = hAB(r)− cAB(r), (9)

where uAB(r) is the site-site interaction potential energy. A is an atomic site in the solute molecule,
and B is an atomic site in the solvent molecule. After the site-site intermolecular correlation
functions hAB(r) and cAB(r) are obtained by solving the RISM-HNC equations, the solvation free
energy ESOL for the solute molecule is calculated from [19]

ESOL(rC, T ) = 4πkBT

∫

∞

0

F (r)r2dr, (10)

F (r) =

NS
∑

A=1

∑

B= H,O

ρB

[

hAB(r)2

2
− cAB(r)−

hAB(r)cAB(r)

2

]

, (11)

ρ H = 2ρV , ρO = ρV , (12)

where ρ are number densities. The dimensionless number density of water ρVd
3 (d=2.8 Å) is 0.7317.

3. Generalized-ensemble algorithms

The generalized-ensemble algorithm is based on non-Boltzmann probability weight factors so
that a random walk in potential energy space may be realized. We introduce two generalized-
ensemble algorithms, multicanonical algorithm and replica-exchange method, which are commonly
used in computer simulations of biomolecules.
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3.1. Multicanonical algorithm

We briefly summarize the idea and implementations of the multicanonical algorithm [6,7]. In
the multicanonical ensemble the probability distribution of energy Pmu(E) is defined in such a
way that a configuration with any energy has equal probability: The multicanonical ensemble is
based on the following non-Boltzmann weight factor Wmu(E) so that the probability distribution
of potential energy Pmu(E) is flat and a one-dimensional random walk in potential energy space is
realized:

Pmu(E) ∝ n(E)Wmu(E) = const , (13)

where n(E) is the density of states. We then have

Wmu(E) ∝ n−1(E) . (14)

Unlike in the case for the canonical ensemble where the Boltzmann weight factor is used, the mul-
ticanonical weight factor Wmu is not a priori known, and one needs its estimator for a numerical
simulation. The estimator of the multicanonical weight factor Wmu is usually calculated from iter-
ations of short multicanonical simulations (see, for instance, [21–23]). Once the weight factor Wmu

has been determined, one performs with this weight factor a multicanonical simulation with high
statistics. Monitoring the energy in this simulation, one would see that a random walk between
high-energy states and the ground-state configurations is realized. Finally, from this simulation one
can not only locate the energy global minimum but also calculate the ensemble average of any phys-
ical quantity X for a wide range of temperatures (T = 1/kbβ) by the reweighing techniques [24]:

〈A〉T =

∫

dE A(E)Pmu(E)w−1
mu(E)e−βE

∫

dE Pmu(E)w−1
mu(E)e−βE

, (15)

where Pmu(E) is the distribution of energy obtained by the final simulation. We remark that we use
ET(= EC +ESOL) for E, where ESOL depends on temperature. However, E in the multicanonical
simulation should be independent of temperature. Therefore, we fixed the temperature in ESOL at
298.15 K in the present simulation. This means that the expectation value is accurate only in the
vicinity of this temperature in the present simulation.

3.2. Modified replica-exchange MC method

In our simulations, we use solvent-induced potential as total potential energy of the system.
The solvent-induced potential is a function of temperature because the solvation free energy ESOL

depends on temperature. When the potential energy depends on temperature, we need to modify
the formula for the regular replica-exchange method. In this subsection, we describe the modified
replica-exchange method which can treat the temperature-dependent energy function (see [16,20]).

The ensemble of replica-exchange method consists of M non-interacting copies of the original
system in the canonical ensemble at M different temperatures Tm (m = 1, . . . ,M). We arrange the
replicas so that there is always exactly one replica at each temperature. Then there is a one-to-one
correspondence between replicas and temperatures; the label i (i = 1, . . . ,M) for replicas is a
permutation of the label m (m = 1, . . . ,M) for temperatures, and vice versa:

{

i = i(m) ≡ f(m) ,
m = m(i) ≡ f−1(i) ,

(16)

where f(m) is a permutation function of m and f−1(i) is its inverse.

Let X = {x
[i(1)]
1 , . . . , x

[i(M)]
M } = {x

[1]
m(1), . . . , x

[M ]
m(M)} stand for a “state” in the replica-exchange

ensemble. The state X is specified by the M sets of coordinates x
[i]
m in replica i at temperature
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Tm. In the replica-exchange simulation with the solvent-induced potential, the weight factor for

the state X = {· · · , x
[i(m)]
m , · · ·} is given by the product of exp[−β{ET(r

[i]
C , Tm)}] for each replica:

WREM(X) =

M
∏

i=1

exp
(

−βm(i)

{

ET

(

r
[i]
C ;Tm(i)

)})

, (17)

=

M
∏

m=1

exp
(

−βm

{

ET

(

r
[i(m)]
C ;Tm

)})

, (18)

where i(m) and m(i) are the permutation functions in equation (16) and r
[i]
C is a coordinate of a

protein in replica i at temperature Tm. Note that the temperature dependence of the total energy
ET comes from the solvation free energy ESOL (see equations (8), (10), and (11)).

We now consider exchanging a pair of replicas, i and j, which are at temperatures Tm and

Tn, respectively: X = {· · · , x
[i]
m, . . . , x

[j]
n , · · ·} → X ′ = {· · · , x

[j]
m , . . . , x

[i]
n , · · ·}. From the condition of

detailed balance of replica-exchange, we obtain the following relation:

WREM(X)w(X → X ′) = WREM(X ′)w(X ′ → X), (19)

where w(X → X ′) is the transition probability of going from state X to state X ′ and w(X ′ → X)
is the transition probability of going from state X ′ to state X. From equations (18) and (19), we
have (see also [16,20])

w(X → X ′)

w(X ′ → X)
= exp(−∆), (20)

where

∆ = βm

{

ET

(

r
[j]
C , Tm

)

− ET

(

r
[i]
C , Tm

)}

− βn

{

ET

(

r
[j]
C , Tn

)

− ET

(

r
[i]
C , Tn

)}

. (21)

Here, r
[i]
C and r

[j]
C are the set of the coordinates of atoms in replica i and replica j, respectively.

We remark that if ET is independent of temperature, we have

∆ = (βm − βn)
(

ET

(

r
[j]
C

)

− ET

(

r
[i]
C

))

, (22)

which we usually use in the regular replica-exchange simulation.
As a result, the transition probability of the replica-exchange process is given by the Metropolis

criterion [17]:

w(X → X ′) =

{

1 , for ∆ 6 0 ,
exp (−∆) , for ∆ > 0 ,

(23)

where ∆ is given by equation (21). Without loss of generality we can assume T1 < T2 < · · · < TM .
A REM MC simulation is then realized by alternately performing the following two steps:

1. Each replica in canonical ensemble of the fixed temperature is simulated simultaneously and
independently for certain MC steps (see equation (3)).

2. A pair of replicas at neighboring temperatures, say x
[i]
m and x

[j]
m+1, are exchanged with the

probability w(X → X ′) in equation (23).

Note that in step 2 we exchange only the pairs of replicas corresponding to the neighboring tem-
peratures.

4. Computational details

The peptide we considered in the present article is Met-enkephalin, and it has the amino-acid
sequence Tyr-Gly-Gly-Phe-Met. The peptide has 75 atomic sites, i.e., NS = 75. The 1D RISM-
HNC equations and the replica-exchange method have been incorporated in the program KONF90
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[25,26]. A hybrid of the Newton-Raphson method and the Picard iteration strategy for solving
the RISM equations have been employed as described in detail in [4]. The conformational energy
is based on ECEPP/2 [27]–[29]. In ECEPP/2, the conformational energy is given by electrostatic
energy Eele, hydrogen-bond energy Eh, Lennard-Jones energy Ev, and torsion energy Etor. The
peptide-bond dihedral angles ω were set equal to 180◦ for simplicity. The remaining dihedral angles
φ and ψ in the main chain and χ in the side chains constitute the variables to be updated in the
simulations (for Met-enkephalin the number of degrees of freedom is 19). One MC sweep consists
of updating all these angles once with Metropolis evaluation [17] for each update.

For the calculation of multicanonical weight factors, five iterations of 100 MC sweeps (500 MC
sweeps in total) were required. Initial conformations were randomly generated. All thermodynamic
quantities were then calculated from one production run of 10000 MC sweeps, which followed
additional 100 MC sweeps for equilibration. ESOL are calculated at 298.15.

For the replica-exchange MC simulation, we used four replicas with four temperature values,
200 K, 298 K, 368 K, and 500 K. ESOL was calculated at the corresponding temperatures. Before
taking the data, we made equilibration simulations of 5,000 MC sweeps per replica. The total
number of MC sweeps for the subsequent REM production run was 20,000 MC sweeps per replica.
Replica exchange was tried every 20 MC sweeps.

5. Results and discussion

5.1. Results of the multicanonical MC simulation

In figure 1 we show the time series of the solvent-induced potential (ET) for Met-enkephalin
from regular canonical MC simulations at 300 K and 800 K (we refer to those simulations as MC–
300 and MC–800, respectively) and from the multicanonical MC simulation. The time series of
MC–300 and MC–800 consist of 1000 MC sweeps, while those of the multicanonical MC simulation
consist of 10000 MC sweeps. ESOL were calculated at 298.15 K for MC–300 and MC–800. The
solvent-induced potential ranges from about 173 to 185 kcal/mol in MC–300 and from 178 to
220 kcal/mol in MC–800, respectively (see figure 1(a)). On the other hand, the solvent-induced
potential range between 172 and 200 kcal/mol is observed (already within 1000 MC sweeps) by the
multicanonical MC simulation (see figure 1(b)). It is found that the multicanonical MC simulation
covers a much wider configurational space than the canonical simulations. A random walk in
energy space covering a range of about 170-200 kcal/mol was successfully realized during 10000
MC sweeps.
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Figure 1. Time series of the solvent-induced potential ET (kcal/mol) for: (a) the regular canoni-
cal Monte Carlo simulations at 300 K (MC–300) and 800 K (MC–800) (1000 MC sweeps); (b) the
multicanonical MC simulation (10000 MC sweeps) [15]. In all simulations, ESOL was calculated
at 298.15 K.

We now consider the low-energy conformations of Met-enkephalin obtained during the multi-
canonical MC simulation in aqueous solution (which we refer to as MURISM). Multicanonical MC
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simulations in the gas phase (which we refer to as MUGAS) [31,32] and MC simulated annealing
runs in aqueous solution based on 1D RISM theory (which we refer to as SARISM) [14] were also
performed in previous works. We compare the low-energy conformations obtained by MURISM
with those from MUGAS and SARISM. In figure 2 we show the lowest-energy conformations ob-
tained from MUGAS, SARISM, and MURISM. For the latter two cases (figures 2(b) and 2(c)),
eight low-energy conformations are superimposed. In figure 2(b) the eight conformations are the
lowest-energy conformations from eight different simulated annealing runs [14]. In figure 2(c) the
eight representative conformations were chosen from those in which the energy was less than 174.0
kcal/mol and the root-mean-square distances of the backbone atoms from Gly2 to Phe4 were larger
than 0.4 Å (this implies that similar structures are excluded as much as possible).

(a) (b) (c)

Figure 2. The lowest-energy conformations of Met-enkephalin obtained by the previous multi-
canonical simulation in gas phase [32] (a), superposition of the eight lowest-energy conformations
from the previous simulated annealing runs in aqueous solution [14] (b), and superposition of the
eight representative low-energy conformations of Met-enkephalin obtained by the multicanonical
MC simulation in aqueous solution [15] (c).

As is shown in figure 2(a), conformations in gas phase form intrachain hydrogen bonds between
the amide nitrogen and carbonyl oxygen in the backbone, which make the structure compact.
Especially, the lowest-energy conformation has two intrachain hydrogen bonds between Gly2 and
Met5 and forms a type II’ β turn involving Gly-Gly-Phe-Met (see figure 2(a)) [32]. The end-to-end
distance of this conformation is 4.8 Å and the conformation is indeed compact. Here, the end-
to-end distance is defined as the distance between the nitrogen atom at the N terminus and the
oxygen atom at the C terminus.

On the other hand, for the multicanonical MC simulation in aqueous solution, the eight con-
formations in figure 2(c) are fully extended. The results are in good agreement with those of the
simulated annealing runs (see figure 2(b)). The end-to-end distance of the lowest-energy conforma-
tion of MURISM is 11.7 Å, close to that of SARISM (13.6 Å), and the average end-to-end distance
at 298.15 K is also about 12 Å. It is clear that the conformations tend to be extended in aqueous
solution. Apparently, the amide nitrogen and carbonyl oxygen in the backbone of low-energy con-
formation in aqueous solution form hydrogen bonds with oxygen and hydrogen of water molecules,
respectively. The solvent effect based on 1D RISM theory tends to make hydrogen bonds with
backbone atoms and water molecules. The results are in qualitatively good agreement with the
observations in the NMR experiments [30].

The solvent-induced potential of the lowest-energy conformation in the multicanonical MC sim-
ulation is 172.1 kcal/mol and lower than that obtained by the simulated annealing runs (SARISM)
(175.4 kcal/mol) [14]. Moreover, the areas of dihedral angles of backbones are widely sampled in the
multicanonical MC simulation (see [16]). The multicanonical MC simulation can thus sample much
wider configurational space and provide lower-energy conformations than the simulated annealing
simulation.

501



A.Mitsutake et al.

5.2. Results of the replica-exchange MC simulation

The replica-exchange MC simulation was performed with four replicas at the four temperatures
Tm: 200 K, 298 K, 368 K, and 500 K. In figure 3 the time series of the temperature label m and
of the solvent-induced potential ET for one of the replicas are shown. We see that the replica
takes every temperature value and randomly walks in temperature space as expected (figure 3(a)).
Correspondingly, this replica undergoes a random walk in energy space (figure 3(b)). Other replicas
also exhibit similar behavior (data not shown). In table 1 we list the acceptance ratios of replica
exchange. It is clear that they are of the same order (the values vary between 16 % and 29 %).
For an optimal performance of REM simulations, the acceptance ratios of replica exchange should
be sufficiently uniform and large (say, > 10 %). We can see that the REM simulation has indeed
achieved an optimal performance.

1

2

3

4

-5000 0 5000 10000 15000 20000 25000

m

MC sweeps

(a) (b)

Figure 3. Time series of the temperature label m (a) and of the solvent-induced potential ET

(b) for one of the replicas [16]. The negative values of MC sweeps correspond to the part of
equilibration.

Table 1. Acceptance ratios of replica exchange.

Pair of temperature [K] Acceptance ratio
200 ←→ 298 0.16
298 ←→ 368 0.29
368 ←→ 500 0.25

In figure 4 the time series of the solvent-induced potential and the histogram of the solvent-
induced potential distribution at the four temperatures are shown. The difference of solvent-induced
potential ET between the neighboring temperatures increases rapidly as the temperature difference
increases, because one of its component energies, solvation free energy ESOL, depends on tempera-
ture (see equation (10)) and is almost proportional to temperature (see [16]). From figure 4(a) and
4(b) we find that there are no overlaps between pairs of neighboring distributions. In the regular
replica-exchange method, the histograms of the total potential energy distributions at neighboring
temperatures need to overlap for the replica exchange to occur (see equation (22)). Therefore, at
first glance, it seems that the number of temperatures chosen above (four) is too small. However, it
turned out that the four temperatures were sufficient for ideal replica-exchange performances (see
table 1). The point is that we exchange replicas by using ∆ in equation (21) instead of ∆ of the

regular replica-exchange method in equation (22). This can be understood as follows. ET(r
[i]
C , T )

increases rapidly as temperature T increases and is almost proportional to temperature (see equa-

tion (10)). The term β{ET(r
[j]
C , T )−ET(r

[i]
C , T )} is therefore almost temperature-independent. The

magnitude of ∆ in equation (21) is then of the order of one. The acceptance probability exp(−∆) in
equation (23) is thus sufficiently large for the replica exchange to occur. Hence, replica exchange is
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Figure 4. Time series of the solvent-induced potential at the four temperature values (200, 298,
368, and 500 K) (a) and probability distributions of the solvent-induced potential at the four
temperatures (b) [16].

indeed possible between all pairs of neighboring temperatures. This system requires much less num-
ber of replicas than the case for a regular replica-exchange simulation where the energy function
is temperature independent.

(a) (b)

Figure 5. The lowest-energy conformations of Met-enkephalin obtained by the replica-exchange
simulation in aqueous solution at 200 K (a) and 298 K (b) [16].

We now consider the lowest-energy conformations of Met-enkephalin obtained by the replica-
exchange MC simulation in aqueous solution. The lowest-energy conformations obtained at 200 K
and 298 K are shown in figure 5(a) and figure 5(b), respectively. These conformations are fully
extended as in the results of the multicanonical MC simulation. The results are also in qualitatively
good agreement with the observations in the NMR experiments [30].

In table 2, we show the energy components and end-to-end distance for the lowest-energy confor-
mations at 200 K (REP1) and 298 K (REP2) obtained by the replica-exchange simulation. We also
list these values obtained by the multicanonical MC simulation in gas phase (MUGAS), simulated
annealing runs (SARISM), the multicanonical MC simulation in aqueous solution (MURISM).
The solvent-induced potential, conformational energy, and solvation free energy of MUGAS in
parentheses were obtained from [14] in which these values of conformation almost identical to the
lowest-energy conformation in gas phase (see figure 2(a)) were calculated.

The values of the solvent-induced potential at 200 K (REP1) and 298 K (REP2) are 99.8 kcal/mol
and 172.1 kcal/mol, respectively. The values of the conformational energy components of REP1
and REP2 are similar to each other, while the solvation free energy values are different due to
different temperatures (see equation (10)). Each energy component of REP2 is almost identical
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Table 2. The energy components (kcal/mol), end-to-end distance de−e (Å) for the lowest-energy
conformations obtained by a previous multicanonical MC simulation in gas phase (MUGAS),
previous simulated annealing runs (SARISM), the multicanonical MC simulation in aqueous
solution (MURISM), and at 200 K (REP1) and 298 K (REP2) from the replica-exchange MC
simulation. The values in parentheses were calculated for the similar conformation of the lowest-
energy conformation (see figure 2(a)) in gas phase in [14].

ET Econf Eele Eh Ev Et Esol de−e

MUGAS (184.8) –12.2(–12.0) 20.3 –6.2 –27.5 1.2 (196.8) 4.8
SARISM 175.4 9.6 26.5 –1.0 –16.3 0.5 165.8 13.6

MURISM 172.2 11.6 27.2 –0.9 –15.5 0.9 160.6 11.7
REP1 99.8 12.3 29.2 –1.3 –16.0 0.4 87.5 10.9
REP2 172.1 11.2 28.4 –1.6 –16.2 0.6 160.9 9.2

with that of MURISM, reflecting the fact that the two cases correspond to the same temperature
(298.15 K). The lower-energy conformations of SARISM, MURISM, and REP are similar to one
another (i.e., extended) and have similar energy components. The conformational energy EC is
about 10 kcal/mol and the solvent free energy ESOL is about 160 kcal/mol. On the other hand,
EC of the lowest-energy conformation in gas phase is about –12 kcal/mol [32]. ESOL is about
196.8 kcal/mol [14]. ET of the lowest-energy conformation for gas phase is about 184.6 kcal/mol.
EC of the lowest-energy conformation in aqueous solution is about 10 kcal/mol and it is much hi-
gher than that in the gas phase because energy components of the conformational energy, Eele, Eh,
and Ev, of the simulations with 1D RISM are higher than those in the gas phase. On the contrary,
ESOL of SARISM, MURISM, and REP are much lower than that in MUGAS. As a result of the
summation of ESOL and EC, in aqueous solution, the extended structures obtained by SARISM,
MURISM, and REP are more stable than the compact ones by MUGAS.
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Figure 6. Average end-to-end distance obtained by the replica-exchange MC simulation in aque-
ous solution (SOL) and the previous multicanonical simulation in gas phase (GAS) [16]. Here,
the end-to-end distance is defined as the distance between the nitrogen atom at the N terminus
and the oxygen atom at the C terminus.

We calculated some thermodynamic quantities at the given temperatures by equation (4). In
figure 6, the average end-to-end distance in aqueous solution as a function of temperature is shown.
These average values vary only between 12 Å and 13 Å; the conformations are extended in the entire
temperature range. The end-to-end distance of the peptide in gas phase exhibits a coil-globule-like
transition with increasing temperature. In aqueous solution, on the other hand, no such transition
is observed, since the conformation is always extended due to hydrogen bonds between the peptide
and water molecules. The results are similar to the replica-exchange molecular dynamics simulation
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with explicit water molecules [5]. We also calculated the pair distribution function as a function of
temperature to study how the peptide is hydrated. In figure 7 we show the distribution functions
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Figure 7. The pair distribution functions between water atoms and backbone atoms averaged
over the different conformations of the peptide at each temperature [16]. The pair distribution
function is with respect to the oxygen atom in the backbone of the 3rd residue and the hydrogen
atom (a) or the oxygen atom (b) in water.

averaged over the different conformations of the peptide. The peaks in figure 7(a) and 7(b) imply
that the oxygen in the backbone of Gly 3 makes hydrogen bonds with water molecules. With the
increasing temperature, the peaks become low as the hydrogen bonds become weak. The data
clearly show that in aqueous solution the backbone atoms of conformations make hydrogen bonds
with water molecules. As a result, the conformations are extended.

We now study the relation between the conformational energy (EC and its energy components:
electrostatic energy Eele, hydrogen bond energy Eh, Lennard-Jones energy Ev, or torsion energy
Etor) and the solvation free energy ESOL. The results at 298.15 K are shown in figure 8. We also
show the relation between ESOL and the sum of Eele and Eh. The energy ranges of both abscissa and
ordinate are set to the same (25 kcal/mol) to understand the contributions of their energies to the
total energy clearly. From figure 8(a), we find a clear inverse correlation between EC and ESOL. The
tendency is the same for the results obtained at the given four different temperatures and becomes
more pronounced as the temperature is lowered (see [14]). The dotted and solid line in figure 8(a)
is the area in which the solvent-induced potential ET is 172.1 kcal/mol (corresponding to the
energy of the lowest-energy conformation in aqueous solution) and 184.5 kcal/mol corresponding
to that in gas phase, respectively (see table 2). The conformations corresponding to the points
between the solid line and the dotted line have ET between 172.1 kcal/mol and 184.5 kcal/mol.
Most conformations are in the energy region. In an aqueous solution these conformations are more
preferable than the lowest-energy conformation in the gas phase. There are some conformations
corresponding to the point near the dotted line. Considering this fact and the inverse correlation
between EC and ESOL, it is established that the competition between the conformational energy
and the solvation free energy occurs in aqueous solution. From figure 8(a) to figure 8(e), we also see
that Eele, Eh, and Ev which are components of the conformational energy EC have clear inverse
correlations between ESOL. It implies that the solvent effect based on 1D RISM theory tends to
break the interactions between intra-chain atoms and to make more interactions between peptide
atoms and water molecules.

6. Conclusions

We have developed an algorithm combined with the generalized-ensemble algorithms and 1D
RISM theory. This is the first attempt of the kind. For this purpose, we reasonably introduced the
solvent-induced potential and developed a modified replica-exchange method.
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(a) (b) (b)

(a) (b) (b)

Figure 8. The relations between the solvation free energy ESOL and the total conformational
energy EC at 298.15 K (a), and its components, electrostatic energy Eele (b), hydrogen bond
energy Eh (c), Lennard-Jones energy Ev (d), or torsion energy Etor (e), or the sum of electrostatic
energy and hydrogen bond energy (f) and solvation free energy.

Firstly, we performed a multicanonical MC simulation of Met-enkephalin in aqueous solution.
Secondly, we performed the modified replica-exchange MC simulation of Met-enkephalin in aqueous
solution to study temperature dependence. At a room temperature, both simulations have similar
results. We obtained a lot of information concerning the solvent effects from these simulations.
The conformations in aqueous solution tend to be extended because the backbone atoms make
hydrogen bonds to water molecules although the lower-energy conformations in a gas phase tend
to make hydrogen bonds between intra-chain backbone atoms. Thermodynamic quantities were
also obtained as a function of temperature. The present approach is beneficial for performing
protein folding simulations. We shall also apply these modifications to other systems which use a
solvent-induced potential such as three-dimensional reference interaction theory.
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Комбiнацiя алгоритмiв узагальненого ансамблю i
одновимiрної базисної моделi взаємодiючих силових
центрiв
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Отримано 15 жовтня 2007 р., в остаточному виглядi – 26 листопада 2007 р.

Стаття присвячена вивченню проблеми згортання протеїну в рамках комбiнацiї узагальненого ан-
самблю Монте-Карло та теорiї базисної моделi силових центрiв. Алгоритми узагальненого ансам-
блю можуть ефективно вибирати конфiгурацiйний простiр в комп’ютерних моделюваннях. Теорiя ба-
зисних взаємодiючих силових центрiв може враховувати ефекти розчинника в залежностi вiд форми
молекул, визначаючи енергiю сольватацiї протеїнiв. Ми розробили комп’ютернi алгоритми, що ком-
бiнують алгоритми узагальненого ансамблю i одновимiрну базисну модель взаємодiючих силових
центрiв. Цей пiдхiд може бути також поєднаний з тривимiрною моделлю взаємодiючих силових цен-
трiв. В даному оглядi описуються методи i представлено результати для пептиду.

Ключовi слова: алгоритм узагальненого ансамблю, багатоканонiчний алгоритм, метод реплiчного

обмiну, RISM, Монте Карло, згортання протеїну

PACS: 31.15.Qg, 61.25.Em, 87.15.Aa
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