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Abstract. This paper reports the coefficients BAC ,  for the k-linear term in dispersion 

relation E(k) for holes of the upper valence bands 6  and 7  in p-CuInSe2 crystals. We 

also obtained the tensor components for the carrier effective masses CBAm ,,
||,  in all three 

valence sub-bands of the model semiconductor. It was shown that the energy spectrum 
parameters for holes in CuInSe2 allow successful explanation for the anisotropy of tensor 
components describing the interband light absorption coefficient and the published data 
for the temperature variation of the Hall coefficient, total Hall mobility and thermal 
voltage within the temperature range 100 K ≤ T ≤ 350 K.
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1. Introduction

Direct-band chalcopyrite compound СuInSe2 belongs to 
AIBIICVI

2 semiconductors that are considered as analogs 
to AIIBVI binary systems. Due to their high absorption 
coefficient [1] (about (3…6)∙107m–1) these materials are 
very promising for the efficient photovoltaic device 
applications [2]. In general, СuInSe2 crystals are studied 
in deeper detail comparing with the other AIBIICVI

2

compounds (e.g., [3-5]). However, the exact nature of 
some of their properties is not clearly revealed yet. In 
particular, it concerns the fundamental parameters 
characterizing the valence band structure. According to 
the results of the theoretical calculations [6, 7], the band 
structure of the bulk AIBIICVI

2 semiconductors in the 
center of the Brillouin zone obeys anisotropic non-
parabolic dispersion relation E(k) including a k-linear 
term. To the best of the authors’ knowledge, the 
numerical values of the coefficients С describing the 
aforementioned term are not determined yet for p-
CuInSe2 crystals, while they are known for the AIIBVI

materials p-CdS, p-CdSe and p-ZnO. Moreover, only 
three out of six components of the hole effective masses 

for p-CuInSe2 were determined so far from the optical 
studies [8]: those for spin-split band holes 
(msh /m0 ≈ 0.085), heavy (mhh /m0 ≈ 0.71) and light holes 
(mhl /m0 ≈ 0.092). 

Our previous research [9] considered non-
parabolicity of the dispersion relation E(k) for the holes 
in chalcopyrite-structure crystals under non-degenerate 
statistics of the electron gas, deriving the analytical 
expressions allowing to calculate the temperature and 
concentration dependences of tensor components for the 
thermal voltage, Hall coefficient and carrier mobility. 
Carrier scattering by crystalline lattice defects was 
considered in the approximation of time relaxation. For 

the upper valence sub-bands 6 and 7  of p-CuInSe2, 

we estimated the coefficients   76 ,
С  characterizing the 

contribution of k-linear term into E(k). The results of 
further calculations agreed well with the experimental 
temperature dependences of the Hall coefficient and 
total Hall carrier mobility. 

To improve the approach used in [9], we suggest 
also to account for the symmetry relations binding the 
tensor components of the inverse effective masses for 
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the holes 1
,,

)(
776


 m  in chalcopyrite (wurtzite) 

crystals [10-12]. This methodological improvement 
would change the values of   76 ,

С  obtained in [9], 

leading to more exact results concerning the influence of 
k-linear term of E(k) on the values and temperature 
behavior of the kinetic coefficients in p-CuInSe2. 
Moreover, proper accounting of the symmetry for the 

components 1
,,

)(
776


 m  allows to get an accurate 

magnitude estimation for all the inverse effective mass 
components describing the holes in three valence sub-
bands of the material studied. Fitting the theoretical 
calculations to the experimental data on temperature 
dependences for the Hall coefficient, Hall mobility and 
thermal voltage in p-CuInSe2 crystals allowed to 
improve precision in determining   76 ,

С  coefficients. 

We have also shown that non-parabolicity contribution 
to E(k) in the total Hall mobility decreased from about 
50 % (T = 100 K) to 17 % (T = 300 K), enhancing the 
previously reported data of ≈20 % and ≈10 %, 
respectively [9]. 

2. Theory

Schematic depiction of the valence band diagram [4, 13] 
for p-CuInSe2 around the center of the Brillouin zone is 
shown in Fig. 1.

The dispersion relation for the carriers populating 

the valence bands 6 , 7  and 7  (taking into account 

spin-orbital interaction) can be written in the following 
form [7]:
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Fig. 1. Band diagram for р-CuInSe2; the designations are 
explained in the text.
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with transversal k = (kx
2+ky

2)1/2 and longitudinal k|| = kz

components of the wave vector k for CBAm ,,
  and CBAm ,,

||

effective mass tensors describing the holes in the sub-

bands 6 (index А), 7  (index В) and 7  (index С) 

regarding the high-symmetry axis of the crystal. The
coefficients BAC ,  characterize the deviation from 

parabolicity in the dispersion relation E(k) for the 

corresponding valence sub-bands. CBAE ,,
0  in (1) and (2) 

describe the position of their extrema. 
As the dispersion relation (1) is characteristic for 

the semiconductors with chalcopyrite or wurtzite 
structure of [14-17], it is natural to assume that the 
components of the effective mass tensors for p-CuInSe2

would also satisfy the relations obtained for wurtzite 
crystals [11, 12]: 
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Here g, r, s, t denote m2/2 -normalized (ħ is 
Planck’s constant and m is the free electron mass) matrix 
elements for the interband interaction operators [12], 
with adjustment parameters 

gs

rt
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rg

ts
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)1()1( 11
2

3 CqC  . (4)

The coefficient 

)1/( 22
1 qqС 

 (5)
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x
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q  (6)

depends on the energy split 3/1/  socrx  caused 

by the crystalline field cr  and spin-orbital interaction 

so  [10]. It is important that the mc-normalized (m is 

the electron mass and c is the speed of light) matrix 
elements for the optical transitions from В/С valence 
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sub-bands to the conduction band [10] also depends 
on q2

2
|| 2 qMM CB   ,  2

|| 12 qMM BC   , (7)

while for the A-band 0|| AM , 5.0
AM .

The experimental values eV006.0cr  and 

eV233.0 so  [18] lead to C1 ≈ 1.9 > 1, proving that 

for p-CuInSe2 (and also CdSe, ZnSe) the components of 
the effective mass tensor for holes in the valence sub-
bands would satisfy the condition [12]: 

Bm|| < Сm|| < Am|| ,  Am < Сm < Bm .  (8)

It is important that for С1 < 1 (which is valid for 
CdS, ZnS, ZnO and GaN), the components of symmetry 
for the effective mass tensor are [10-12]
Сm|| < Bm|| < Am|| , Am < Bm < Сm .  (9)

Comparison of (8) and (9) shows that changing 
C1 > 1 for С1 < 1 will result in swapping of the valence 
sub-bands В and С. 

Formulas (5) and (7) yield a proportion 
CB MMC ||||1 / BC MM  /  saying that the coefficient 

C1 depends on the ratio of matrix elements for the 
optical transitions (with the same polarization) from the 
bands В/С into conduction band. Therefore, one can 
assume that C1 should contribute somehow to the 
anisotropy of the light absorption coefficient  /||

(with parallel and perpendicular subscripts denoting light 
polarization regarding the main optical axis of the 
crystal).

3. Results and discussion

Using the symmetry relations (3) one can show that for 
the present experimental effective mass values 
describing the holes of p-CuInSe2 [8] the inequalities (8) 
would be valid for these two particular cases (within 
parameters with the precision of experimental 
measurements): 

Case D1:   ,091.0
|| 

m
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|| 

m
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m
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m
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m
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m

mС

(10)

Case D2:   ,71.0|| 
m

m A

,165.0|| 
m

mB

,260.0|| 
m

mС
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m

mA

,092.0

m
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m
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(11)

Table 1 presents the anisotropy coefficients for 

effective masses of holes 
CBA

CBA
CBA

m
m

m
K

,,

,,
||,,

||,


  . We 

calculated the data both for p-CuInSe2 crystals and their 
AIIBVI analogs using the experimental mass values for 
CdSe, CdS [10] and ZnO [14]. 

Table 1. Anisotropy coefficients for hole effective masses in 
p-СuInSe2 and AIIBVI analogs.

Material A
mK B

mK C
mK Eg, eV С1

Case C1 1.05 0.10 0.50
p-CIS Case C2 9.10 1.79 3.06 1.010[22] 1.90

p-CdSe 2.66 0.53 0.91 1.756[23] 1.65
p-CdS 4.70 0.76 0.48 2.485[23] 0.73
p-ZnO 5.07 3.76 0.24 3.370[23] 0.035

As one can see, for the case C1 (10) with increasing 
band gap Eg (parameter С1 decreases) the anisotropy 
coefficient for effective masses of the holes populating 
А and В valence bands also increases. At the same time, 
the coefficient for the С-band decreases for all the 
studied materials except for CdSe. Effective mass 
components calculated for the case D2 (11) for CuInSe2 

violate this regularity for А and В-bands, to the contrary 
restoring it for the С-band. 

To define which of the cases D1 or D2 is correct for 
р-CuInSe2, we used analytical expressions from [9] to 
calculate temperature behavior of the tensors describing 
the specific conductivity, Hall mobility and thermal 

voltage. To define the fixed CBAm ,,
||, , the coefficients 

BAC ,  in the dispersion relation (1) were considered as 

parameters and adjusted to achieve the best fitting of the 
calculated data to the experimental temperature curves 
for the kinetic coefficients. The numerical values of 

BAC ,  for р-CuInSe2 and AIIBVI are given in Table 2. 

It is noteworthy that for all the studied compounds 
we achieved an essentially linear dependence 

)15.4(1065.4 2
gB EC   eV·Å (Fig. 2, line 2), 

allowing to assume the linearity of )( gA EC   as well.

To obtain the latter (Fig. 2, line 1) the values of AC  for 

CdSe and CdS should be used in the place of those from 
[15], which will allow to get the refined coefficients 
(Table 2). Validity of )( 0,, gBABA EEkC 

dependence for various wurtzite and chalcopyrite 
crystals makes it possible to estimate the limit values of 

BAC ,  coefficients for the case 0gE , yielding 

263.0max AC eV·Å and 193.0max BC eV·Å, 

respectively. On the other hand, for semiconductor with 
the considered crystalline structure and a bandgap of 

eV15.4gE , the contribution of k-linear term into 

E(k) should be negligibly small. Due to this fact, for 
example, the bandgap of BeO is not determined yet 
exactly, so that the publication [19] usually mentions the 
data in a wide range of 7.8-10.6 eV. The fact that the 
linear dependence )( 0,, gBABA EEkC   holds for p-

СuInSe2 crystals and their AIIBVI analogs suggests that 
the obtained BAC ,  coefficients are determined correctly 

and reliably.
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Fig. 3. Temperature dependence of the total Hall mobility 
for holes in р-CuInSe2. The curve numbering is discussed in 
the text. Error bars illustrate precision of the experiment.

Fig. 2. Dependence of CA (line 1) and CB (line 2) coefficients 
from (1) on the bandgap of p-СuInSe2 crystals and their AIIBVI

analogs. The arrows mark the refined CA for CdSe and CdS, 
which fits the linear dependence CA = 6.3410-2(4.15 – Eg) eV∙Å.

Table 2. Coefficients CA,B for p-СuInSe2 and their AIIBVI 

analogs (eV∙Å units).
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CA 0.200 0.230/0.150 0.082/0.105 0.051
CB 0.144 0.114 0.070 0.035

Concerning the temperature behavior of kinetic 
coefficients in р-CuInSe2, our calculations show that the 

carrier contribution to the valence band 7 is negligibly 

small in comparison with that of the holes populating 
6  and 7  bands. Let us consider the system with a 

single acceptor level formed by interstitial selenium 
atoms [20] with the concentration Na ≈ 4.0×1018 cm-3 and 
depth EV + 0.019±0.002 eV correlating with the data 
from [21]. We performed calculations for this system by 
using carrier effective masses calculated for either of C1

and C2 cases (10), (11). The results revealed good 
agreement between theoretical and experimental [9] 
results concerning the temperature dependence of the 
Hall coefficient R = f(1/T). The calculated thermal 
voltage degenerates into a scalar value, fitting the 
experimental data [9] within the precision limits of the 
experimental measurements.

Solid and dashed curves in Figure 3 present 
calculation results for the cases D1 and D2, respectively. 
The curves designated numbers with primes 1', 2' were 
obtained for 0, BAC . The temperature dependence of 

the total Hall mobility for holes uH(T) in р-CuInSe2 

crystals for the different experimental results are shown 
with circles (data [24]) and triangles (data [25]). 
Comparing the results presented by curves 1 and 1' with 
2 and 2', one can see that for the case when non-
parabolicity of E(k) is neglected, one obtains the excess 

mobility and markedly different shape of the curve 
uH(T). For 0, BAC , the calculated and experimental 

curves for uH(T) fit each other well for the temperatures 
170 K ≤ T ≤ 350 K. The existing mismatch between 
theory and experiment for uH(T) in р-CuInSe2 crystals 
under Т < 150 K may stem from neglecting the hopping 
scattering, which becomes quite significant at these 
temperatures [20]. Under the temperature increase from 
100 to 300 K the contribution of non-parabolicity into 
the hole mobility was calculated using the masses (10), 
(11) and the experimental data [24, 25]. We observed a 
decrease of aforementioned contribution for 
approximately 33 percents (from ≈50 % at 100 K to 
≈ 17 % at 300 K), which is illustrated at the inset to 
Fig. 2 for the parameter /)0((/ ,H  BACuuu

%100)1)0( ,H BACu . The resulting difference 

between the values of the total mobility calculated using 
D1 and D2 effective hole masses for р-CuInSe2 (the 
corresponding solid and dashed curves in Fig. 2) are 
within the experimental precision. Due to this, it is hard 

to say which set of CBAm ,,
||,  (D1 or D2) is preferable for 

the description of temperature variation of the kinetic 
coefficients in р-CuInSe2.

To solve this problem, we used the experimental 
spectrum [26] for imaginary part ki of the refraction 
coefficient n of CuInSe2, measured for different 
polarizations ||,i  regarding the main crystalline axis 

and the incident light wave with a wavelength . The 
knowledge of the latter allowed us to apply the formula 
[26]

 /4 ii k (12)

to determine the components of absorption coefficient 
i. On the other hand [20], the expression for i at the 
fundamental absorption edge in semiconductor material 
can be written as: 

gii EAn   , (13)
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where 
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Here n is the carrier concentration,   is the 

photon energy, 
n
i

e
i

n
ir mmm

111
  describes the і-th 

component of the reduced mass of electron-hole pair 

( e
im  is the і-th component of effective mass tensor for 

conduction band electrons), n
iM  are matrix elements for 

optical transitions (6), V is the volume of the crystal, е is 
the elementary charge, and 0  is the absolute dielectric 

permittivity. 
Calculating D1 and D2 effective masses for the 

holes (Table 1) and using electron effective masses (for 
CuInSe2 – ,10.0/  mm 11.0/|| mm  [24], for CdSe 

– ,13.0/  mm 14.0/|| mm  [15], for CdS –

,21.0/  mm 22.0/|| mm  [15] and for ZnO –

,30.0/  mm 31.0/|| mm  [27]), we calculated 

dimensionless variable ||,

2

2/3
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
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
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

A
e
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V
A


 as a 

function of semiconductor bandgap Eg (Fig. 4). 
As it can be seen from the figure, the dependence 

)(*
||, gEfA   can be quite well described within 

experimental precision for CBAm ,,
||, , cr  and so as 

)/( ||,
2

||,
*

||,   gg EEA . (15)

Fig. 4. *
||A  (1) and *

A  (2) coefficients as the function of Eg

for р-CuInSe2 and its AIIBVI analogs (solid and dashed curves 
correspond to D1 and D2 hole masses, respectively). The inset 

shows the ratio 
AA /*

||  with variation of the parameter С1: 

line 1 – for the masses (11) and line 2 – for the masses (10). 
The error bars illustrate dispersion of the theoretical values 
obtained for the different experimental data. The asterisk 
denotes the experimental result for р-CuInSe2 [22].

For further calculations, one should use the 
following values for ||, (in eV-1) and ||, (in eV): 

for the case D1 (10) –
;28.4,83.9,03.8,65.11 ||||   (16)

for the case D2 (11) –
32.2,22.7,47.10,20.14 ||||   . (17)

As it follows from the latter formulas, the 
components of absorption coefficient are bounded with 

the proportion **
|||||| ///   AAkk . According to 

[26], the experimental ratio kk /||  for the case of the 

fundamental absorption in CuInSe2 crystals varies within 
the range 1.05 – 1.10. The same ratio, calculated 
according from (15) using (16) and (17), would yield the 
values 1.44 and 1.75 for the cases D1 and D2, 
respectively. Therefore, the best fit of theoretical curves 
to the experimental data regarding  /||  ratio can be 

attained by using the hole effective masses according to 
the case D1 (formula (10)).

It was experimentally proven [28, 29] that in quasi-
cubic model approximation for the crystals with 
chalcopyrite structure [30] illuminated by light wave 
with the polarization vector perpendicular to the main 
optical axis of the crystal, the ratio of intensity peak in 
electro-reflection spectra ( ||I  and I ) obeys the 

following expressions: 

2

,

|||| )/3/2(9,0 so
CBA

E
I

I

I

I



 (18)
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
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 crsocrsocrsoE

3

8
)(5.0 2 . (19)

The discussed peaks correspond to electron 
transitions from the valence to conduction band in the 
crystals AIIBIVCV

2. It is worth noting that for the limit 
case 0so  the ratio soE  /  tends to 2/3. Taking 

into account (5), (6), one can show that for the crystals 
with С1 > 1

1
||

1
|| /2,2 C

I

I
C

I

I

BC




. (20)

For the case С1 < 1, the subscripts “В” and “С” 
should be swapped in (20).

In this way, one can treat the ratio  /|| = AA /||

as a function of the parameter С1 for the crystals with 
chalcopyrite or wurtzite structure. The inset to Fig. 4 
proves that the dependence 

  %100)0(/)0(/ *
||

*
||  



 AAAA  is linear and equal to 

(81)С1 or (212)С1 for the hole masses calculated for 
the cases D1 and D2. Experimental data on this ratio for р-
CuInSe2 (shown as the asterisk in the inset to Fig. 4) fits 
better to the case when the effective mass estimations are 
done with the formula (10). The obtained correlations 
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between ||,A  and their ratio for the different wurtzite and 

chalcopyrite crystals (e.g., CuInSe2, CdSe, CdS and ZnO, 
see Fig. 4) suggests that the most accurate description of 
the effective mass tensor for р-CuInSe2 is that provided 
with the formulas (10). 

4. Conclusions

We show that p-CuInSe2 crystals with the components of 
hole effective mass tensor obeying the symmetry 

relations (3) is characterized with two sets of CBAm ,,
||, , 

describing temperature dependence of the total 
conductivity, Hall coefficient and thermal voltage within 
experimental precision. For the upper valence sub-bands 

6  and 7 , we have estimated the coefficients BAC ,

characterizing deviation of the dispersion relation E(k) 
from its parabolic form, which yielded an acceptable 
agreement of the calculated and experimental 
temperature dependences for the kinetic coefficients in 
this material. It was found that )( 0,, gBABA EEkC   for 

p-СuInSe2 and their AIIBVI analogs, allowing to refine 
the values of AC  for CdSe and CdS. We also obtained a 

phenomenological expression (15) for the coefficients 

||,A  in formula (13) describing the spectral dependence 

of light absorption tensor close to the fundamental 
absorption edge as a function of Eg. Moreover, the 

dependence   %100)0(/)0(/ *
||

*
||  



 AAAA  =  1Cf

proved to be linear in the first approximation for CdSe, 
CdS, ZnO and CuInSe2 with wurtzite and chalcopyrite 
structure; the experimental data known for р-CuInSe2 fits 
reasonably our theoretical calculations performed for the 
components of the effective masses given by the 
formula (10).

The obtained effective mass values make it 
possible to properly explain the component anisotropy 
for the interband light absorption tensor, as well as the 
experimental data on temperature dependence of the 
kinetic coefficients within p-CuInSe2 in the temperature 
range 100 – 350 K.
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