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Abstract. Electron scattering on the short-range potential caused by interaction with 
polar and nonpolar optical phonons, piezoelectric and acoustic phonons, static strain, 
ionized impurities in CdxHg1-xSe (0 x  0.547) samples annealled in selenium vapour or 
in dynamic vacuum are considered. Within the framework of the precise solution of the 
stationary Boltzmann equation on the base of short-range principle, temperature 
dependences of the electron mobility within the range 4.2 – 300 K are calculated. A good 
coordination of the theory to experiment in the investigated temperature range is 
established.
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1. Introduction

The electron scattering in the solid solution CdxHg1-xSe 
was considered in [1-4] in relaxation time 
approximation. The models of electron scattering by 
lattice defects used in these works have an essential 
shortcoming – they are long-range. In these models, it is 
supposed that either charge carrier interacts with all the 
crystal (electron-phonon interaction) or it interacts with 
the defect potential of the impurity, the action radius of 
which is approximately equal to 50–100а0 (а0 – lattice 
parameter). However, such an assumption contradicts 
the special relativity according to which the charge 
carrier should interact only with the neighbouring crystal 
region. Besides, for defects with the interaction energy 
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takes the magnitude of the second order, while all the 
theories mentioned above are considered in the first 
(Born) approximation. On the other hand, in [5] the 
short-range models of electron scattering in CdxHg1-xTe
were proposed, in which the above mentioned 
shortcomings were absent. There, it has been supposed 
that the carrier interacts with the defect potential only 
within the limits of one elementary cell. The purpose of 
this work is to use this approach for description of the 
electron scattering processes by various types of crystal 
defects in CdHgSe solid solution.

2. Theory

The electron transition probability from a state k  to a 
state k caused by the interaction with polar optical 
(PO), nonpolar optical (NPO), piezooptic (POP) and 
piezoacoustic (PAC), acoustic (AC) phonons, ionized 
impurity (II) was chosen from [5]:
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where ,,  ,)1( SeCdHgHgCd MMMMxMxM x   are 

atom masses; G – number of unit cells in the crystal 
bulk; NLO, NTO – number of longitudinal (LO) and 
transverse (TO) phonons with frequencies LO and TO, 
respectively; e14 – non-vanishing component of the 
piezoelectric tensor; cLO, cTO – respective sound 
velocities; V – crystal volume; NII – concentration of 
ionized impurities; Zi – the impurity charge in electron-
charge units; EAC, ENPO – acoustic and optical 
deformation potentials (EAC = 2.04 eV, ENPO = 29.8 eV), 
respectively; γPO, γPZ, γII – adjustable parameters 
determining the action radius of the short-range potential 
(R = γ a0, 0 ≤ γPO, γPZ ≤ 0.86, 0 ≤ γII ≤ 1); 0 – dielectric 
constant; e – elementary charge; Bk – Boltzmann 

constant; ħ – Planck constant; (ε) – Dirac delta-
function;  – carrier energy.

It should be noted that the strong power 
dependence of parameters γPO, γPZ, γII sharply limits 
opportunities to choose their numerical values.

To describe the electron-disorder (DIS) scattering, 
the respective transition probability defined in [6] was 
used.

Besides, the above mentioned scattering 
mechanisms of the so-called static strain (SS) scattering 
on the short-range potential was considered. According 
to Fedders [7], the potential caused by the strain field 
takes the following form:
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where b0 has the length units and is related to the size of 
defect.

In (7) we neglected the angular dependence of 
U(r). Following the short-range principle, we put 
b0 = a0. To calculate the transition matrix element, we 
shall use the electron plain wave function normalized 
over the crystal volume:
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where kk q , )(xSi  is the sine integral.

Our calculations show that the electron wave vector 
(and q together with it) varies within the limits from 0 up 
to 109 m-1 when the energy changes from 0 up to 10 kВТ
within the temperature range 4.2-300 K. For R  10-10 m, 
this gives the estimation of 1.0)( CxSi . Then the 

transition probability looks like: 
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where NSS is the concentration of strain centers.
Using the formalism of a precise solution for the 

stationary Boltzmann equation [8], one can obtain the 
logarithmic divergence of the integral over angular 
variable . To eliminate this divergence, let’s specialize 
the lower limit of the integral in a manner providing 
coordination of the theory and experiment for using this 
integral as an adjustable parameter:
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where θ0 is the angle that corresponds to an adjustable 
parameter γSS. 

Let’s note that the similar way to choose the lower 
limit of the integral is used in the Conwell-Weisskopf 
method [9], when considering the electron-ionized 
impurity scattering. However, the values received using 
this method are too large (for the impurity concentration 
1015 cm-3 the action radius of the potential is 
approximately 160а0).

After that, the values n mK   from a precise solution 

of the stationary Boltzmann equation for this scattering 
mechanism can be now obtained:
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where )(0 pf  is the Fermi-Dirac function for electrons; 

 – Kronecker delta symbol and zero of the energy is 

at the bottom of the conduction band.
It should be noted that in (11) the product NSS γSS is 

used as an adjustable parameter.
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Fig. 1. Temperature dependences of the electron mobility in 
CdxHg1-xSe crystal for different x values. Solid line – mixed 
scattering mode; 1, 2, 3, 4, 5, 6, 7, 8 – AC, II, NPO, PAC, PO, 
POP, DIS, SS scattering modes, respectively. Experimental 
data were taken from [2-4].
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3. Comparison of the theory and experiment

The theoretical temperature dependences of the electron
mobility μ(T) were compared to the experimental data 
presented in [2-4] for CdxHg1-xSe crystals with 
compositions x = 0; 0.05 (sample A1); 0.1 (sample B1); 
0.2 (sample C1); 0.268 (sample 26BB2); 0.353 (sample 
24AA1-1); 0.547 (sample 40EB2). All the samples were 
obtained by the annealing in selenium vapour or in 
dynamic vacuum. The Fermi level was obtained from 
the electroneutrality equation:

AD NNp n   , (12)

where NA, ND are the ionized acceptor and donor 
concentrations taken from [2-4].

The material parameters used for calculation were 
the same as in [2, 3, 10]. The theoretical μ(T) curves are 
presented in Figs 1a-g. The solid lines represent the 
curves calculated on the basis of the short-range models 
within the framework of the precise solution of the 
Boltzmann equation. The obtained scattering parameters 
for different scattering modes are listed in Table. It is 
seen that the theoretical curves well agree with 
experimental data in all the investigated temperature 
range. To estimate the role of different scattering 
mechanisms in Figs. 1a-1g, the dotted lines represent the
appropriate dependences. It is seen that at low 
temperatures (T < 60 K) the main scattering mechanism 
is static strain scattering and disorder scattering (for 
x > 0). At high temperatures, the contribution of the 
polar optical phonon scattering becomes dominant. 
Other scattering mechanisms, such as acoustic and 
piezoacoustic scattering, piezooptic and nonpolar optical 
phonon one, ionized impurity one, give negligibly small 
contributions.

Table.

x γ PO γ PZ γ II NSSγSS×10-14 cm-3

0 0.61 0.32 0.26 1.9
0.05 0.64 0.32 0.26 2.8
0.10 0.7 0.32 0.26 4.5
0.2 0.70 0.32 0.26 2.2

0.268 0.68 0.32 0.26 2.9
0.353 0.64 0.32 0.26 2.3
0.547 0.59 0.32 0.26 7.5

4. Conclusion

On the base of the short-range principle, the electron 
scattering processes with participation of various lattice 
defects in the solid solution CdxHg1-xSe were considered. 
A good agreement between the theory and experimental 
data within the investigated temperature range was 
established.
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