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Abstract. Considered in this paper are optical spectra of crystal lattice vibrations in 
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conditioned by polarization of this lattice, which is not taken into account by the 
traditional theory for the optical spectrum of lattice vibrations.
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1. Introduction

The experimental research of optical vibration spectra in 
the crystal lattice of semiconductor solid solutions

x-1xPGaAs  and SbGaIn x-1x  indicates the presence of 

two vibration bands depending on solution composition
[1]. They are interpreted within the framework of two-
oscillation model as oscillations of sublattices of the 
following two types [1], namely: vibrations of the GaAs 
sublattice and those of the GaP sublattice in the solid 
solution x-1xPGaAs . Besides, Ga vibrations take place in 

the InSb sublattice and vibrations of In in the sublattice 
of GaSb in the solid solution SbGaIn x-1x . Experiments

reveal the change in frequency of oscillator vibrations 
providing the oscillation mode of sublattice within the 
range of the low-frequency side of spectrum when 
increasing the concentration of oscillators related to this 
mode [1].

The same reconstruction of the vibration spectrum 
for crystal lattice of semiconductor solid solutions was 
observed in Zn1-xCdxSe [2, 3] and in CuxAg1-xGaS2 [4] 
when changing compositions of solutions.

The physical cause of the above spectral
reconstruction is not clear enough up to date. It has been 
shown in this work that this reconstruction is 
conditioned by polarization of the lattice, which is not 
taken into account by the traditional theory for optical 
spectra of lattice vibrations. 

In the second section of the work, it has been 
shown that the traditional model of semiconductor

crystal lattice, which is used to examine its optical 
spectra, does not take into account the influence of 
polarization of this lattice on its vibrations.

In the third section of the work, it has been shown 
that the electrical conductivity that is used by this model 
is the external electrical conductivity. The internal 
electrical conductivity of the system of identical 
harmonic oscillators is derived in the third section of the 
work, too. This internal electrical conductivity can 
considerably differ from the external conductivity 
depending on the frequency of light. The indicated 
difference is conditioned by polarization of the system of 
harmonic oscillators, which is not taken into account by 
the traditional model of crystal lattice.

More exactly, the internal conductivity is included 
into the permittivity of matter and determines its optical 
properties [5, 6]. That difference appears when
comparing the calculated optical properties of solids
with experimental results [5, 6].

2. The traditional model of semiconductor
crystal lattice

Let us consider the harmonic oscillator having the
eigenfrequency 0, the damping constant γ and the
coordinate )(tx  (where t is time). Let the variable 

electric field, which has the electric field strength
)exp()( tit  AE , influences on it. Here, A  is the 

amplitude of this field, and  is its frequency. The 
equation of motion for the oscillator in this field is [7, 8]
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Here, m1 is the effective mass of oscillator, e1 is its
effective charge. The solution of the equation (1) is
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Let us consider the model of semiconductor crystal 
lattice as a system of these harmonic oscillators. Let a
unit of matter bulk has n oscillators, and the electric field 

)(tE  acts on them in this matter. Then, the formula (2) 

gives the electric dipole moment of bulk unit for this
matter )(tP  (i.e. this matter polarization) in the 

following form:
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Let 0  is the frequency-independent component

(background) of the semiconductor permittivity in the 
examined area of frequencies . If the external electric 
field that has the electric field induction )(tD  acts on 

this matter, to ignore this matter polarization the electric 
field )(tE  is expressed by the following formula:
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In accordance with the formula (3), the electric 
current density )(tj  in this matter, which is conditioned 

by oscillators and electric field )(tE  (4), is given in this

approximation by the following formula:
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The physical quantity )(s  is the electric

conductivity of the considered system of harmonic 
oscillators.

The physical quantity )(S  expressed by the 

following formula is traditionally used for consideration 
of optical properties inherent to crystal lattice of 
semiconductor as this lattice permittivity [1, 7]:
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The quantity )(s is given by the formula (6) here. 

The formula (7) does not take into account the 
polarization of semiconductor crystal lattice, and so it is 
approximate.

The substitution of the formula (6) in the 
expression (7) gives the following correlation:
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The following dimensionless oscillator strength is 
often used for the discussion of oscillator [1]:
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3. Inserting the matter polarization to the
permittivity

Optical properties of matter at the frequency of light 
are determined by its permittivity )( . Applicability of 

the expression (7) for the permittivity of matter is based 
on the correlation (4) and does not take into account the 
shielding of the external field by charges of this matter 
(which are optically active at the examined frequency of 
light ). These charges are under the action not of the 
external (in relation to them) field 0D (4), but under 

the action of the internal field 0 DE . The difference

of the field E from 0D is given by the vector of matter

polarization [8-14]:

    40EDP . (10)

This difference is not taken into account at the 
derivation of the expressions (7), (8) for the permittivity

)(S .

Indeed, the electric current density j can be 
expressed both through the internal electric field E and 
through the field 0D  [9, 10, 12-14]

0)()()()()(  tstt DEj . (11)

The electric conductivity )(s gives the response 

of electric current on the external field 0D (in relation 

to charges of matter, which are optically active for the 
examined frequency of light ), but the conductivity 

)(  gives the response of electric current on the 

internal field E. Therefore, )(s is named as the 

external electrical conductivity, while )( is named

the internal one [12-14]. The difference between )(
and )(s  in the expression (11) is given by the 

difference of the polarization P (10) from zero.
The charges of matter that do not take part in 

optical transitions within the studied interval of 
frequencies make the frequency-independent 
background contribution 0  to the permittivity of this 

matter [8, 11, 15]. Therefore, the expression for 
permittivity of this matter )( can be presented in the 

following form:
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The expression (12) follows from the correlation
)()()(  ED , (13)

which is the definition of matter permittivity )( , and 

follows from the interrelation (10) for the vector of 
matter polarization P [8-14]. The relationship 

)()( t
dt
dt Pj 

is utilized in this case. This relationship arises from 
definition of the polarization vector P as the density of 
dipole moments of charges of this matter [8, 11, 16]:
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Here V is the matter volume, N is the total number 
of charges of this matter, qi is the charge of i-th charge 
carrier, xi(t) is its coordinate.

The definition of matter permittivity requires 
being in it, but not s [9-14]. Further, for simplicity, let us 
suppose the quantities  and s as the scalar ones, but not 
as the tensor ones. The formulas (11), (13) give the 
interrelation 
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Furthermore, the formulas (12), (15) give the 
following

)(
)(

4
1

1
)(

0








 s

s
i

. (16)

Having substituted the expression (16) into the
formula (12), we have
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The expression for the permittivity )(  (17) that

takes into account polarization of matter substantially 
differs from the approximate expression for the 
permittivity )(S  (7), in which matter polarization is 

not taken into account. Expansion of the right side of the 
expression (17) in series by powers of )(s gives that 

the permittivity )( coincides with )(S only when 

)(s  is sufficiently small. The formula (10) allows 

using the electrical conductivity s that is obtained 
without regard for polarization, under consideration of 
matter optical behavior.

4. Account of polarization in optical behavior of
matter crystal lattice

The knowledge of the internal conductivity for a system 
of harmonic oscillators )( is necessary to investigate

optical behavior of this system. It can be derived by 
substitution of the external conductivity of this system

)(s  given by the formula (6) into the formula (17). The 

result of this substitution is expressed by the following 
expression:
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The substitution of internal conductivity (18) into
the formula (12) gives the permittivity of system of 
harmonic oscillators in the form of:
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5. Discussion 

The formula (20) for the permittivity )(  of the 

system of harmonic oscillators, which takes into account 
the polarization of this system, differs from the

approximate formula (8) for the permittivity )(S , 

which does not take into account this polarization, by the 
replacement of the frequency 0 by another frequency Ω
in the denominator. This frequency is given by the
formula (19) and diminishes with the growing 
concentration of harmonic oscillators n. This theoretical 
result coincides with the experimental ones for optical 
spectra of crystal lattice [1-4].

The formula (20) gives the change of frequency of 
a harmonic oscillator under the action of polarization of 
matter where it is. This polarization is created by all the 
oscillators in this matter. Thus, taking into consideration
polarization of the system of non-interacting harmonic 
oscillators reduces to the interaction between these 
oscillators and changes their frequencies. It can be 
explained by the following simple microscopic 
consideration.

In compliance with the formula (10), the field E in 
matter is given by the following expression:
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Light and vibrations of the crystal lattice are
examined by the method used above under the longwave
approximation. Therefore, the vector of polarization for
the system of identical oscillators in crystal lattice P (14) 
can be examined approximately in the following form:
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Here, )(tx  is the coordinate of one oscillator.
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In compliance with the formulas (21), (22), the 
field in matter E that acts on an oscillator has the form of
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Therefore, the equation of motion of one oscillator 
in the field )(tE  (23), where the polarization is taken 

into account, has the following form: 
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The solution of equation (24) for the field 
)exp()( tit D is 
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where the frequency 0  and is given by the

formula (19).
The similar results of the influence of internal field 

on vibrations of crystal lattice are known from vast 
literature of the end of the 19th and the beginning of the 
20th centuries [17]. However, vibrations of ions were
here examined near lattice sites of crystal lattice. 
Moreover, these ions were examined being in the cavity 
of dielectric. The local electric field in such cavity E
differs from the external electric field D on Lorentz-
Lorenz correction [17] and depends on the form of this 
cavity. The following correlation takes place for the 
spherical form of cavity [17]:







 


 PDE 4

3

11

0

. (26)

However, the distinction between formulas (21) 
and (26) is, which depends on the form of cavity. In 
addition, because of the transmission symmetry of 
crystal lattice, vibrations of ions near its lattice sites 
create the collective oscillation, which covers all the
lattice [18]. Exactly, light interacts with such vibrations 
(phonons) under the longwave approximation that is 
valid for the infrared spectral range. Therefore, the 
approach expounded in this work seems to be more 
preferable.

The force of oscillator (9) is not utilized when 
deriving the formulas in this work, because the 
eigenfrequency of oscillator 0 is included in it. 
However, the frequency of harmonic oscillator changes 
under the action of polarization of matter, in which it is, 
and takes on the value 0 . Therefore, for 

simplicity, the force of oscillator is not utilized.
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