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We review and analyze a series of works, both experimental and numerical and theoretical, dealing with the 

decay of quantum turbulence at zero temperature. Free decay of the vortex tangle is a key argument in favor of 

the idea that a chaotic set of quantum vortices can mimic classical turbulence, or at least reproduce many of the 

basic features. The corresponding topic is referred as the quasiclassical turbulence. Appreciating significance of 

the challenging problem of classical turbulence it can be expressed that the idea to study it in terms of quantized 

line is indeed very important and may be regarded as a breakthrough. For this reason, the whole theory, together 

with the supporting experimental results and numerical simulations should be carefully scrutinized. One of the 

main arguments, supporting the idea of quasiclassical turbulence is the fact that vortex tangle decays at zero 

temperature, when the mutual friction is absent. Since all other possible mechanisms of dissipation of the vortex 

energy, discussed in literature, are related to the small scales, it is natural to suggest that the Kolmogorov cas-

cade takes place with the flow of the energy in space of scales, just like as in the classical turbulence. In the 

present work we discuss an alternative mechanism of decay of the vortex tangle, which is not associated with 

dissipation at small scales. This mechanism is a diffusive-like spreading of the vortex tangle due to evaporation 

of small vortex loops. We discuss a number of experiments and numerical simulations, considering them from 

the point of view of alternative mechanism. 

PACS: 67.25.dk Vortices and turbulence; 

47.37.+q Hydrodynamic aspects of superfluidity; quantum fluids; 

05.20.–y Classical statistical mechanics. 
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1. Introduction and scientific background 

Decay of quantum turbulence at zero temperature is one 

of the puzzling and fascinating phenomenon of the quan-

tized vortices dynamics. Indeed, in this case, the mutual 

friction is absent, and there is no apparent mechanism of 

dissipation of the vortex tangle. Nevertheless, the authors 

of both experimental works (see, e.g., [1–4]) and of numer-

ical simulations (see, e.g., [5,6]) report on attenuation of 

the vortex line density at a very low temperature. The low 

temperature decay of the vortex tangle is closely related to 

the hypothetical connection between the classical (Kolmo-

gorov) and quantum turbulence. The idea that the chaotic 

set of quantum vortices can mimic classical turbulence, or 

at least reproduce many of the basic features, is currently 

actively being developed. The exhaustive material can be 

found in a series of reviews that has recently appeared; we 

would like to draw the reader's attention to papers [7–12], 

and to papers included into special issue of JLTP [13] and 

into book [14]. In principle, this idea had been discussed 

early (see, e.g., famous textbook by Frisch [15]), as an al-

ternative version of the problem of classical turbulence. 

But only now, when the new powerful experimental me-

thods in quantum fluids appeared, this idea can be checked 

experimentally and it seems to be very attractive. Appre-

ciating significance of the challenging problem of the clas-

sical turbulence it can be expressed that the idea to study it 

in terms of quantized line is indeed very important and 

may be regarded as a breakthrough. For this reason, this 

theory should be carefully scrutinized. 

One of the basic arguments supporting the idea of Kol-

mogorov turbulence in quantum fluids is the fact that vor-

tex tangle decays at zero temperature, when the apparent 

mechanism of dissipation (mutual friction) is absent. The 

physical mechanisms of the dissipation can be various, 
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some approaches and ideas such as a cascade-like break-

down of the loops, Kelvin waves cascade, acoustic radia-

tion, reconnection loss, etc., have been discussed in detail 

in recent reviews [11,12,16]. It is remarkable that all of 

these mechanisms are realized only on a very small scale. 

Therefore, it is natural to suggest that the Kolmogorov 

cascade occurs with the flow of energy, just as in the clas-

sical turbulence. The mentioned experimental works on the 

decay of the vortex tangle were interpreted on the basis of 

the decay of the classical turbulence. In works by Skrbek 

[17] it was developed approach, which relates the attenua-

tion of the energy in classical turbulence to the decay of 

the vortex line density and predicts the temporal depen-

dence of this attenuation. 

In the present work we review and analyze the both ex-

perimental works and numerical simulations, dealing with 

the decay of the quantum turbulence at zero temperature. 

The discussion is grounded on the alternative mechanism 

of decay of the vortex tangle, which is not related to dissi-

pation at small scales. This mechanism is the diffusive-like 

spreading of the vortex tangle, connected to evaporation of 

small vortex loops. We applied the diffusion equation ob-

tained early ([18]) to describe the decay of superfluid tur-

bulence in the listed above experiment. Our calculations 

enable us to conclude that mechanism of diffusion can de-

scribe correctly the attenuation of the vortex line density. 

Besides, we discuss these experiments from position of 

theory Kolmogorov turbulence. 

2. Diffusion equation 

In this section we very briefly describe main ideas lead-

ing to the diffusion theory of the vortex loops, details can 

be found in paper [18]. Vortex loops composing the vortex 

tangle can move as a whole with some drift velocity lV  

depending on their structure and their length. The flux of 

the line length, energy, momentum etc., executed by the 

moving vortex loops takes place. In the case of inhomoge-

neous vortex tangle the net flux J  of the vortex length due 

to the gradient of concentration of the vortex line density 

( , )x t  appears. The situation here is exactly the same as 

in classical kinetic theory with the difference being that the 

―carriers‖ are not the point particles but the extended ob-

jects (vortex loops), which possess an infinite number of 

degrees of freedom with very involved dynamics. We offer 

to fulfill investigation basing on the supposition that vortex 

loops have the Brownian or random walking structure with 

the generalized Wiener distribution (see [19–21]). 

 To develop the theory of the transport processes ful-

filled by vortex loops (in spirit of classical kinetic theory) 

we need to calculate the drift velocity lV  and the free path 

( )l  for the loop of size l . Referring to the paper [18] we 

write down here the following result. The drift velocity lV  

for the loop of size l  is 

 0= / .lV C lv  (1) 

Quantity  is 1/2
0( /4 )ln( / )a , where  is the quan-

tum of circulation and 0a  is the core radius, Cv  is numer-

ical factor of the order of unity. The 0  is the parameter of 

the generalized Wiener distribution, it is of order of the 

interline space 1/2 .  The free path ( )l  for loop of 

length l  is 

 ( ) = 1/2 .ml lb  (2) 

Here, mb  is the numerical factor, approximately equal to 

0.2.mb It is seen that free path ( )l  is very small, it 

implies only very small loops give a significant contribu-

tion to transport processes. Knowing the averaged veloci-

ty lV  of loops, and the probability ( )P x  (both quantities 

are l-dependent), we can evaluate the spatial flux of the 

vortex line density ,  executed by the loops. The proce-

dure is very close to the one in the classical kinetic 

theory, with the difference being that the carriers have 

different sizes, requiring additional integration over the 

loop lengths. Referring again to paper [18] we write the 

flux J  of vortex line is proportional to  and, corres-

pondingly, the spatial-temporal evolution of quantity  

obeys the diffusion type equation 

 2= D
t

v . (3) 

Our approach is a fairly crude to claim a good quantitative 

description. However, if we are to adopt the data grounded 

on the exact solution to the Boltzmann type ―kinetic‖ equa-

tion for vortex loops distribution ([21]), we conclude that 

2.2.dC  Further we use the (3) to describe the decay of 

superfluid turbulence in various experiments including 

numerical simulations. 

3. Revision of the experimental data and numerical 

simulations 

In this section we discuss several experiments and nu-

merical simulation on the decay of the vortex, which are 

usually considered as the ground for the Kolmogorov de-

cay of the superfluid turbulence. They are the so called 

Lancaster experiment [3], the Manchester experiment [4], 

the Osaka numerical simulation [5] and the Novosibirsk 

numerical simulation [6]. 

3.1. Lancaster experiment 

Let us now discuss the recent experiment on decay of 

the vortex tangle at very low temperatures [3]. The authors 

of this work reported the attenuation of vortex line density 

in superfluid turbulent helium, 
3
He-B. In the upper picture 

of Fig. 1, we displayed Fig. 2 of work [3], showing results 

of measurements on the temporal behavior of the average 

vortex line density ( ),t  (solid curves, see [3] for details). 

Authors compare their data with the theory by Skrbek [17] 

and conclude that decay of the vortex tangle occurs in ac-

cordance with theory of classical (Kolmogorov) turbu-
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lence. The main argument is that the long time attenuation 

of the vortex length is described by the same line A (―li-

miting behavior‖) with the 3/2t  dependence (almost in-

dependently on initial level). The according kinematic vis-

cosity is 0.2 .  

It is necessary to note the following circumstance. The one 

of the standard vision how the set of the vortex filament 

can imitate the classical turbulence is that the lines are uni-

fied into the bundles (containing many lines). The set of 

many bundles of various sizes randomly move, imitating 

the dynamics of eddies in classical turbulence. Other view 

is that in the dense vortex tangle there is polarization ―in-

distinguishable by glance‖ and these polarized vortices 

also reproduce the eddy dynamics. It is necessary to note 

the following circumstance. The one of the standard vision 

how the set of the vortex filament can imitate the classical 

turbulence is that the lines are unified into the bundles 

(containing many lines). The set of many bundles of vari-

ous sizes randomly move, imitating the dynamics of eddies 

in the classical turbulence. Other view is that in the dense 

vortex tangle there is an averaged partial polarization of 

lines ―indistinguishable by glance‖ and these polarized 

vortices also reproduce the eddy dynamics. Let us consider 

the situation in the Lancaster experiment more attentively. 

Let us take some ―intermediate‖ value of the vortex line 

density 3 2( ) = 0.5 10  cm ,t  where all lines are collapsed 

into the ―limiting‖, universal behavior (line ―A‖ in the up-

per picture of Fig. 1). For this value the interline space is 

equal to 1/2 24.5 10 cm.  The latter implies that in the 

volume with size =1.5 mmd  (offered by authors as the 

region, where the vortex tangle evolves) we have approx-

imately 1/2/ 3d L  lines. Of course, this amount is not 

enough to form many bundles with very ―dense array of 

vortex lines‖, which are necessary to ―mimic classical tur-

bulence‖. On the same ground one can assert that it is 

hardly possible to say about the partial polarization of lines 

in the dense tangle ―indistinguishable by glance‖. 

Another fact is that about one third of the ―limiting 

line A‖ is occupied by the developed fluctuations, which 

can blur the true dependence. 

Consequently supposing that the decay is realized by 

the escaping of the vortex loops we had estimated the con-

tribution into attenuation of the vortex line density, due to 

the pure diffusion mechanism. We use the classical solu-

tion (see for details [18]). Results (with comments) are 

depicted in Fig. 1. We again can conclude that the diffu-

sion spreading describes satisfactorily the evolution of the 

vortex tangle, without any additional mechanism. 

Concluding this subsection we again can state that (i) 

interpretation of experiment is not fully consistent and 

cannot serve as convincing evidence in favor of existence 

of cascade-like transfer of the vortex length (and energy)in 

direction of small scales, and (ii) decay of the superfluid 

turbulence is quite well described by the diffusion type 

mechanism. 

3.2. Manchester experiment 

The next experiment which we would like to discuss 

and which is also frequently referred as the evidence of the 

Kolmogorov turbulence imitated by quantized vortex lines 

is the work [4]. In this work the decay of vortex tangle in 

He II was observed in the closed cube with solid walls. 

Results are collected in the upper picture of Fig. 2, where 

the temporal behavior of the average vortex line density 

av ( )t  is depicted. Authors compare their data with the 

Fig. 1. Comparison with experiment [3]. In the upper picture we 

displayed Fig. 2 of work [3], showing results of measurements on 

the temporal behavior of the average vortex line density (t), 

(solid curves, see [3] for details). We calculated the same quantity 

resolving the diffusion Eq. (3), with the use the boundary condi-

tion, which corresponds to the smearing of the vortex tangle into 

ambient space. It is known that for this condition the solution of 

three-dimensional problem is just production of three one-

dimensional solutions. The straight line in the lower picture ex-

actly corresponds to line A, in the upper picture (this line was 

named by the authors of paper [3] as a ―limiting behavior‖). 
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theory by Skrbek [17] and conclude that decay of the vor-

tex tangle occurs in accordance with theory of classical 

(Kolmogorov) turbulence. The according kinematic viscos-

ity is 0.003 ,  which about two orders smaller, than 

obtained in the Lancaster experiment. Authors of [4] as-

sumed that the source of this discrepancy is that the turbu-

lence observed in [3] is not homogeneous, and the size of 

the energy-containing eddies may differ from the spatial 

extent of the turbulence, so that the value of  obtained in 

[3] was ambiguous. 

Coming to the previous subsection we can say that situa-

tion with the number of vortices is better than in the Lancas-

ter experiment. It is should be noted however that it is mere-

ly due to larger size of the experimental cell. If to take parts 

of experimental cell with sizes of the order 3 mm we again 

meet the of very dilute vortex tangle. Another remark is re-

lated to the Volovik observation [22]. At the low tempera-

ture in 
3
He-B and almost at any temperature in 

4
He, there 

should the so called Vinen (not Kolmogorov) turbulence, 

and, the whole ideology grounded on the Skrbek theory is 

not applicable in the case of Manchester experiment. In our 

opinion the large difference in the value of kinematic viscos-

ity is  in works [3] and [4] (in fact it is just difference in 

the total time of the decay) is related to (i) the different sizes 

of the cells, where the superfluid turbulence is activated, and 

(ii) to the different boundary conditions (solid walls in [4], 

and absence of boundaries in [3]). These two facts definitely 

point out that the decay has the diffusive nature. We calcu-

lated the decay of the vortex tangle on the basis of the diffu-

sion Eq. (3). The fully three-dimensional problem was re-

solved numerically (see for details [18]), the result shown in 

the lower picture of Fig. 2. It can be seen that the decay of 

the vortex tangle, due to diffusion, describes both quantita-

tively and qualitatively the features observed in the experi-

ment. First of all, the whole qualitative behavior of lines 

agrees with diffusive-like attenuation. In particular, there is a 

plateau, which is changed with the fast decay of the tangle. 

Full decay of the superfluid turbulence occurs in times, 

which are in a very good agreement, predicted on the basis 

of the diffusion approach elaborated here. The slope of the 

curve in the interval of the most intensive decrease, shows 

the dependence close to 
3/2 ,t  which is also typical for 

diffusion. 

Resuming this subsection we again claim that (i) expe-

riment is not fully self-consistent and (ii) the diffusion me-

chanism describes well the attenuation of the vortex line 

density. 

3.3. Osaka numerical simulation 

Results of numerical simulation on the dynamics of the 

vortex tangle at zero temperature made in Osaka [2], are 

frequently considered as a base for conclusion that for zero 

temperature decay of the vortex tangle occurs via various 

mechanisms realizing at small scales. Attenuation of the 

vortex line density obtained in numerical simulation [5] is 

depicted in the upper picture of the Fig. 3. 

Let us briefly analyze the situation presented in paper 

[2], and demonstrate that none of the currently discussed 

mechanisms of the ―homogeneous‖ decay of the vortex 

tangle at zero temperature, can be applied to this work. 

Thus the Kelvin waves cascade could not be a reason for 

the vortex tangle decay in numerical simulation [5], simply 

because the space resolution 2= 2 10 cm  was too 

large to monitor the region of large wave numbers, re-

quired for observation of a generation of higher harmonics. 

Similarly, the acoustic radiation could not be a reason for 

the vortex tangle decay, because the compressibility had 

not been included in the governing equations, and corres-

pondingly was absent in the numerical scheme. As for the 

loss of the line length during reconnection, the real effect 

of the length loss can be obtained only on the basis of more 

rigorous theory, e.g., with the use of the Gross–Pitaevskii 

equation. It is known, however, that an artificial loss of 

length is possible, due to realization of the reconnection 

procedure. This effect, however, should depend on the 

space resolution, whereas it was proven that the rate of 

Fig. 2. Comparison with experiment [4]. The temporal behavior of 

the average vortex line density av(t) obtained in [4] is depicted. 

We calculated the same dependence on the basis of the diffusion 

Eq. (3), with the boundary accounting back radiation of loops from 

the solid walls. The full three-dimensional problem had been re-

solved numerically the result shown in the low picture. 
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decay did not depend on it. Feynman cascade of conse-

quent breaking down of vortex loops was imitated in [5] 

with elimination of very small loops (with sizes of few 

).  But the total amount of these events was is too small 

to describe the decay of vortex line density, observed in the 

numerical experiment. 

To resume, one concludes that none of the discussed 

mechanisms could be the reason of the ―homogeneous de-

cay‖ of the vortex tangle in numerical simulation [5]. Thus, 

the nature of attenuation of the vortex line density in [5] 

remained unclear. The only mechanism capable of explain 

the decrease of the vortex line density ( )t  is just spread-

ing of the tangle and escaping of the vortex loops from the 

bulk of helium. To check our supposition, we calculated 

the evolution of the vortex line density under conditions 

taking in work [5] resolving Eq. (3). The problem had been 

resolved numerically, the result is depicted in the lower 

picture of Fig. 3. Comparison of the upper and lower pic-

tures of Fig. 3 enabled us to conclude that the diffusion 

spreading describes satisfactorily the evolution of the vor-

tex tangle, without any additional mechanism. 

Resuming this subsection we can state that (i) there is 

no convincing evidence in favor of existence of cascade-

like transfer of the vortex length (and energy) in direction 

of small scales and (ii) decay of the superfluid turbulence 

is quite well described by a diffusion mechanism. 

3.4. Novosibirsk numerical simulation 

The direct numerical simulations of the evolution of 

the nonuniform vortex tangle, originally concentrated in 

restricted domain, at zero temperature was fulfilled in 

work [6]. The numerical simulation is performed both 

with the use of local induction approximation (LIA) and 

on the base of the Full Biot–Savart law. The purpose of 

this study was to ascertain the role of various factors aris-

ing in the numerical procedure. It is important to stress 

that the widely accepted mechanism — the cascade-like 

transferring of the energy by nonlinear Kelvin waves (and 

radiation of sound) — was not considered. One of the 

reasons is that the space resolution along the lines did not 

allow to detect generation of high harmonics, moreover, 

to get harmonics, which really radiate sound. In addition, 

the use of the method assumes that the fluid is incom-

pressible. 

Numerical simulations have been performed for the cu-

bic domain with transparent walls embedded in an un-

bounded space, and for the cube with the solid smooth 

walls. The calculations showed that in the case of unli-

mited space of the decay of quantum turbulence caused by 

the evaporation of vortex loops. Result of the numerical 

simulations is depicted in Fig. 4, it is clearly seen how the 

vortex loops escape from the volume and vortex line densi-

ty diminishes inside the bulk. The authors were carefully 

monitoring all mechanisms leading to the loss of the 

Fig. 3. Comparison with the numerical simulation by Tsubota 

et al. [2]. In the upper picture it is depicted the attenuation of 

vortex line density obtained in numerical experiment [2]. In the 

lower picture it is depicted the same quantity calculated with the 

use of Eq. (3) without the auxiliary term, the diffusion constant 

was equal to Dv  2.2·10
–3

 cm
2
/s. We calculated the two-

dimensional evolution of the vortex line density in the 1 cm 

square resolving numerically Eq. (3) with the boundary condi-

tions accounting the back radiation from the solid walls (see for 

details [18]). 
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length, such as the change of length owing to reconnection 

processes, the eliminations of very small loops below the 

space resolution, the change of length due insertion and 

removing of points to supply numerical algorithm stability 

and etc. Results of this monitoring are depicted in Fig. 5. 

From this figure it can be concluded, that the master me-

chanism of decrease of the vortex length inside initial vo-

lume is related to the escaping of vortex loops 

A comparison of the results of the numerical simula-

tions with the theory of diffusion of the vortex tangle de-

scribed in the Sec. 2 had been made. It was obtained,that 

the evolution of the length in initial domain is satisfactory 

described with the diffusion Eq. (3). Result of comparison 

is depicted in Fig 6. The good agreement with the experi-

mental data and numerical simulation enables us to con-

clude that the diffusion process plays a dominant role in 

the free decay of the vortex tangle in the absence of the 

normal component. 

4. Conclusion 

Our main conclusion would be formulated as follows. 

The both experimental and numerical data on decay of the 

superfluid turbulence discussed in the literature cannot be 

regarded as the firm evidence for the classical turbulence 

mechanism, accompanied by the Kolmogorov cascade of 

the energy to region of very small scales. As we demon-

strated, they are not fully self-consistent even in the frame 

of the accepted approach. At the time we had shown that 

all experimental data on decay of the vortex tangle agree 

well with the diffusion mechanism without any additional 

assumptions. Numerical results confirm this point of view, 

demonstrating that all possible mechanisms of the loss of 

the vortex length (and, correspondingly, the vortex energy) 

are considerably less than the loss of energy due to escap-

ing of the loops from the volume. 
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