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We study theoretically the propagation of a wave packet that is a superposition of three s-polarized guided 
waves with different frequencies in a planar waveguide consisting of a dielectric medium with a graded index of 
refraction, sandwiched between perfectly conducting walls. The electric field at each point within the waveguide 
is calculated, and it is shown that each of the constituent modes ceases to propagate at a specific distance along 
the waveguide that depends on its frequency and on the geometrical and material parameters defining the wave-
guide. This simple model displays the phenomenon of rainbow trapping of guided waves in an explicit fashion, 
without the use of a negative index metamaterial. 

PACS: 42.79.Gn Optical waveguides and couplers; 
73.20Mf Collective excitations; 
78.68.+m Optical properties of surfaces. 
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There is currently a great deal of interest in slow light 

[1]. Experiments carried out involving ultracold atomic 
gases showed that light could be slowed down in traversing 
them [2] and even stopped [3]. The ability to slow light is 
of fundamental interest, but it also has practical uses in 
classical and quantum optical communication [4]. 

It is therefore perhaps not surprising that with an in-
crease in the use of surface plasmon polaritons in nanos-
cale devices attention has also begun to be directed at the 
possibility of slowing down these surface electromagnetic 
waves with the expectation that this will increase the scope 
of photonic devices based on them. 

It has been known for some time [5] that the dispersion 
curve of a surface plasmon polariton propagating normal to 
the grooves and ridges of a classical metallic grating ap-
proaches the boundary of the one-dimensional first Bril-
louin zone defined by the period of the grating with zero 
slope, due to periodicity and time reversal symmetry. Thus 
the group velocity of the surface plasmon polariton slows 
down as the zone boundary is approached, and vanishes at 
the boundary itself. The slowing down of a surface plas-
mon polariton wave packet by this mechanism was recent-
ly observed experimentally [6]. 

This work was followed by several papers in which the 
slowing down of surface plasmon polaritons and guided 
waves was studied on the basis of a different approach. In 

a planar waveguide consisting of a dielectric layer sand-
wiched between two metals the number of modes than can 
be supported by this structure depends on the dielectric 
constant of the layer and its thickness. As the thickness of 
the dielectric layer decreases the number of modes sup-
ported by the waveguide decreases. Thus, if the waveguide 
does not have parallel walls, but instead has a thickness 
that decreases with increasing distance along it, at critical 
distances along the waveguide the number of modes de-
creases successively by one. These critical distances de-
pend on the wavelengths of the modes. The group velocity 
of the mode that stops propagating at each of these dis-
tances is zero. When the thickness of the dielectric layer 
reaches the value where the waveguide no longer supports 
a mode, the group velocity of the only remaining wave-
guide mode at the corresponding distance along the wave-
guide is zero. If the waveguide is illuminated by polyc-
hromatic light consisting of several discrete wavelengths (a 
light rainbow), different light colors stop propagating at 
different positions along the waveguide. Thus, the light 
rainbow has been stopped and trapped. 

This concept was used as the basis of an investigation 
by Tsakmakidis et al. [7] of the trapping of a guided wave 
packet in which a semi-infinite portion of the dielectric 
layer had a positive refractive index and parallel walls, 
while the remaining semi-infinite portion of the layer had a 
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negative refractive index and a slowly decreasing thick-
ness. The substrate and superstrate consisted of positive 
index dielectric materials. Trapping of the different fre-
quency components of the guided wave packet at different 
points of the wave-guide was predicted by these authors. 
This effect was observed experimentally by Zhao et al. [8]. 

A trapped rainbow was predicted and observed experi-
mentally by Smolyaninova et al. [9] in a system of which a 
spherical metal structure was placed on a metal substrate. 
The air between the two metallic surfaces had a circularly 
symmetric structure whose thickness increased with in-
creasing distance along the substrate from the point of its 
contact with the sphere. When illuminated from the side by 
polychromatic light, this structure displayed the trapping of 
its different wavelength components at specified distances 
along the substrate from the point of contact. 

A variant of the tapered waveguide approach was used 
by Gan et al. [10] in a theoretical study of the trapping of 
surface plasmon polaritons. We have noted above that the 
dispersion curve of the lowest frequency branch of the dis-
persion relation for surface plasmon polaritons propagating 
normally to the grooves and ridges of a classical grating 
approaches the boundary of the first Brillouin zone defined 
by the period of the grating with a zero slope and a value 
(the cutoff frequency) that depends on the depth of the 
grooves. The deeper the grooves, the lower the cutoff fre-
quency. Gan et al. considered a metallic lamellar grating 
the depth of whose grooves increased linearly and slowly 
along the grating. When a surface plasmon polariton of a 
given frequency propagates along such a grating, it can 
reach a point along it at which the groove depth has a value 
such that an infinite grating with that groove depth would 
have a cut off frequency below that of the surface plasmon 
polariton. At that point the surface wave ceases to propa-
gate: its frequency falls in the region of the gap in the dis-
persion relation of an infinite grating with that groove 
depth. The surface plasmon is trapped at this point. If the 
incident surface plasmon polariton is a superposition of 
surface waves with different wavelengths, the different 
wavelength components will be trapped at different points 
along the grating. 

What characterizes these studies of rainbow trapping is 
the absence of a quantitative theory underlying them. They 
are all based on the result that the narrower the thickness of 
a waveguide the fewer propagating modes it can support. 
While this result may be sufficient to estimate the points 
along the waveguide where these modes disappear one by 
one, it tells us nothing about the amplitudes of the propa-
gating modes, it neglects the backscattering of the waves at 
the points where the group velocity vanishes, and it does 
not show how sharp the trapping phenomenon is, in view 
of the finite lengths of the structures studied. 

In this paper we study the propagation of electromag-
netic waves through a waveguide with a linearly graded 

dielectric constant, with a view to addressing the points 
raised in the preceding paragraph. 

Taking the point of view that the use of a structure in-
corporating a negative index metamaterial is an unneces-
sary complication, the structure we study consists of a di-
electric medium that occupies the region 3< <d x d− , and 
has a graded dielectric constant given by 
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For simplicity we assume that the region 3 >x d  and 
3 <x d−  are filled with a perfect conductor. The electro-

magnetic field incident in this graded index waveguide 
from the region 1 =x −∞  is a superposition of N s-pola-
rized modes, each with a different frequency, supported by 
an infinitely long waveguide of constant thickness 2d  and 
filled with a uniform dielectric medium whose dielectric 
constant is .∞ε  The intensity of the electric field in this 
graded index waveguide will be calculated as a function of 

1x  and 3,x  from which the trapping of the incident rain-
bow can be observed. 

The single nonzero component of the electric field in 
the waveguide, 2 1 3( , | ),E x x ω  satisfies the Helmholtz equ-
ation  

 
2 2 2

1 2 1 32 2 2
1 3

( ) ( , | ) = 0x E x x
x x c

⎛ ⎞∂ ∂ ω
+ + ε ω⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

 (2) 

in the domain 1< < ,x−∞ ∞  3< < ,d x d−  subject to va-
nishing boundary conditions on the planes 3 = ,x d±  and 
the continuity of 2 1 3( , | )E x x ω  and 2 1 3 1( , | ) /E x x x∂ ω ∂  at 

1 = .x L±  
We solve Eq. (2) by the method of the separation of va-

riables. If we express 2 1 3( , | )E x x ω  in the form  

 2 1 3 1 3( , | ) = ( ) ( ) ,E x x f x g xω  (3) 

we find that 1( )f x  and 3( )g x  satisfy the equations 
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dx
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where 2α  is the separation constant. 
The solution of Eq. (4b) that vanishes at 3 =x d−  is 

 3 3( ) = sin ( ).g x A x dα +  (5) 

The requirement that ( ) = 0g d  yields the result that  

 = , = 1,2,3,
2
n n
d
π

α …  (6) 
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Consequently we can write the solution of Eq. (4b) in 
the form 

 3 3( ) = sin ( ) , = 1,2,3,
2n n
ng x A x d n
d
π

+ …  (7) 

When Eq. (6) is substituted into Eq. (4a), we can write 
the resulting equation as 
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We seek the solution of this equation in each of the three 
regions ( , ),L−∞ −  ( , ),L L−  and ( , ).L ∞  

1 < :x L−  In this region Eq. (8) becomes 
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The solution of this equation is 
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The first term can be regarded as an incident field, while 
the second term can be regarded as a reflected wave. 

1< < :L x L−  In this region 1( )nf x  satisfies the equation 
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The solution of this equation is 
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where 
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with 

 1 1= ( 1), = ( 1) .
2 2

a b
L ∞ ∞ε − ε +  (14) 

In Eq. (12) ( )Ai z  and ( )Bi z  are two linearly independent 
Airy functions [11]. 

1 > :x L  In this region the equation satisfied by 1( )nf x  is 
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The solution of this equation is 
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which corresponds to a transmitted wave in this region. 
There is no wave incident from 1 = .x ∞  

The boundary conditions satisfied by 1( )nf x  are the 
continuity of 1( )nf x  and of 1 1( )) /ndf x dx  at 1 =x L−  and 
at 1 =x L . At 1 =x L−  we obtain the pair of equations 
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where the prime denotes differentiation with respect to 
argument. At 1 =x L  we obtain a second pair of equations: 
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Equations (17) and (18) allow us to obtain the coeffi-
cients (2) (1), ,n na b  (2) ,nb  and nc  in terms of (1) .na  Thus, we 
rewrite Eqs. (17) and (18) in the matrix form 
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0
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n n n
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b
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where the nonzero elements of the matrix ( )nM  are pre-
sented in the Appendix. We can then write 
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where ( )nN  is the matrix inverse to ( ).nM  Therefore we 
have the results 

 ( )( ) ( )(2) (1)
11 12= n n

n na N N a+ ; (21a) 

 ( )( ) ( )(1) (1)
21 22= n n

n nb N N a+ ; (21b) 

 ( )( ) ( )(2) (1)
31 32= n n

n nb N N a+ ; (21c) 

 ( )( ) ( ) (1)
41 42= .n n

n nc N N a+  (21d) 

We now assume that the portion of the waveguide in 
the region 1 <x L  is a single mode waveguide, i.e. we as-
sume that =1.n  From Eq. (10) we see that we must have 

 >
2c d∞

ω π
ε  (22) 

and 

 < , 2.
2
n n

c d∞
ω π

ε ≥  (23) 

These inequalities restrict / cω  to the interval 

 1 2< < .
2 2d c d∞ ∞

π ω π
ε ε

 (24) 

At the same time we wish to have no propagating mod-
es in the region 1 > .x L  From Eq. (16) we see that for this 
to be the case we must satisfy the inequality 

 < .
2c d

ω π
 (25) 

We will assume that ∞ε  is sufficiently greater than unity 
that 2 / ∞ε  is smaller than unity. Therefore the right-hand 
inequality in (24) is more restrictive than the inequality (25). 
If we introduce the dimensionless frequency Ω  by 

 = ,
2c d

ω π
Ω  (26) 

the inequalities (24) become 

 1 2< < .
∞ ∞

Ω
ε ε

 (27) 

We will choose for ∞ε  the value that corresponds to sili-
con, namely = 12∞ε . With this value of ,∞ε  the inequali-
ties (27) become 

 0.2887 < < 0.5774.Ω  (28) 

With these results in hand we will assume that the inci-
dent electric field is a wave packet formed by the superpo-
sition of = 3N  modes whose frequencies ( = 1,2,3)j jΩ  
satisfy the inequalities (28), namely 

 1 2 3= 0.35, = 0.45, = 0.55.Ω Ω Ω  (29) 

It now remains to determine the half-width d  of the wave-
guide and the length 2L  of the portion filled with the 
graded index dielectric medium. We do this by first noting 
that the wavelength λ  of the mode of the frequency ω  in 
the region 1 <x L−  is obtained from the relation 

 
2= ,

c∞
ω π

ε
λ

 (30) 

so that 

 4= .d

∞
λ

ε Ω
 (31) 

where we have used the relation (26). The wavelengths 
corresponding to the frequencies 1,Ω  2 ,Ω  3Ω  are there-
fore given by  
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 1 = 3.2991dλ ; (32a) 

 2 = 2.5660dλ ; (32b) 

 3 = 2.0995 .dλ  (32c) 

We will choose for 1λ  the value 1 = 0.6328λ  μm. It fol-
lows from Eqs. (32) that 2 = 0.4922λ  μm, and 3 =λ

0.4027= μm. From the same equations we find that 
= 0.1918d  μm. 
In choosing a value for L  we wish to make the ratio 

/d L  sufficiently small that the dielectric constant within 
the region 1< <L x L−  of the waveguide is changing 
slowly with 1.x  We have chosen the value = 6L  μm, 
which yields the ratio / = 0.032.d L  

The incident electric field in the region 1 <x L−  can be 
written in the form 

 
3

(1 )
2 1 3 inc 31

=1
( , ) = sin ( )

2
j

j
E x x a x d

d
π

+ ×∑   

 2 1/2
1exp [ 1] ,

2 ji x
d ∞
π⎧ ⎫× ε Ω −⎨ ⎬

⎩ ⎭
 (33) 

where / = ( / 2 ).j jc dω Ω π  Since the scattering problem is 
a linear one, the reflected field in the region 1 <x L−  is 
given by 

 ( )
3

(1 ) (1 ) (1 )
2 1 3 ref 11 12 1

=1
( , ) = j j j

j
E x x N N a+ ×∑   

 2 1/2
3 1sin ( ) exp [ 1] .

2 2 jx d i x
d d ∞
π π⎧ ⎫× + − ε Ω −⎨ ⎬

⎩ ⎭
 (34) 

Similarly, the transmitted field in the region 1 >x L  is 

 ( )
3

(1 ) (1 ) (1 )
2 1 3 tr 41 42 1

=1
( , ) = j j j

j
E x x N N a+ ×∑   

 
1/22

3 1sin ( ) exp 1 .
2 2 jx d i x

d d
π π⎧ ⎫⎡ ⎤× + Ω −⎨ ⎬⎣ ⎦⎩ ⎭

 (35) 

The field inside the region 1< <L x L−  containing the 
graded index material is 
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=1
( , ) = sin ( )

2
j

j
E x x a x d

d
π

+ ×∑   

 ( )
1/32

(1 ) (1 ) ( )
121 22 12 ( )jj j jN N Ai a x

c

⎧ ⎡ ⎤⎛ ⎞ω⎪ ⎢ ⎥⎜ ⎟× + −β +⎨ ⎢ ⎥⎜ ⎟⎪ ⎝ ⎠⎢ ⎥⎣ ⎦⎩

  

 ( )
1/32

(1 ) (1 ) ( )
131 32 12 ( ) .jj j jN N Bi a x

c

⎫⎡ ⎤⎛ ⎞ω ⎪⎢ ⎥⎜ ⎟+ + −β ⎬⎢ ⎥⎜ ⎟ ⎪⎝ ⎠⎢ ⎥⎣ ⎦⎭

 (36) 

The matrix elements (1 )j
mnN  are the elements of the ma-

trix inverse to the matrix ( )nM  whose elements are given 
in the Appendix, when =1n  and ω  is replaced by 

= ( / 2 ).j j c dω Ω π  

The Airy functions ( )Ai z  and ( )Bi z  are both oscillato-
ry functions of z  for negative values of ,z  and have a 
descending or ascending exponential behavior, respective-
ly, for positive values of .z  Therefore, we can expect that 
the mode whose frequency is jω  in the incident field will 
stop propagating at the position ( )

1
jx  given by 

 
2

( ) ( )
1 1 2

1 1 1= = = .
2

j j

j j

cx b b
a d a

⎡ ⎤ ⎛ ⎞⎛ ⎞π⎢ ⎥ ⎜ ⎟β − −⎜ ⎟⎜ ⎟⎢ ⎥ ⎜ ⎟ω Ω⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 (37) 

With our assumption that = 12,∞ε  we find from Eqs. (14) 
that 

 5.5= , = 6.5.a b
L

 (38) 

With these values of a  and b , and the values of jΩ  given 
by Eqs. (29), we find that the stopping points ( )

1
jx  are 

 (1)
1 = 0.3024 = 1.8144 mx L− − μ ; (39a) 

 (2)
1 = 0.2480 = 1.7037 mx L μ ; (39b) 

 (3)
1 = 0.5805 = 3.4845 m ,x L μ  (39c) 

where the second equality in each case follows from our 
assumption that = 6 m.L μ  

We illustrate the preceding results by numerical calcu-
lations of the electric field and its intensity in each of the 
regions 1 < ,x L−  1< < ,L x L−  and 1 > .x L  In these calcu-
lations, to simplify the resulting figures, we have set 

3 = 0x  and have assumed that each amplitude 
(1 )
1 ( = 1, 2,3)ja j  is equal to unity. 

In Fig. 1 we plot 2 1 inc| ( ,0) |E x  (a), 2 1 ref| ( ,0) |E x  (b), 
and the magnitude of the total field 2 1 inc| ( ,0)E x +  

2 ref( ,0) |E x+ (c) in the region 1 < .x L−  The shorter pe-
riod oscillations observed in (c) compared with those in (a) 
and (b) arise from the interference of the incident and re-
flected waves in this region of the waveguide. It is seen 
from these results that the intensity of the reflected field is 
comparable to the intensity of the incident field. 

More interesting is the behavior of the electric field in 
the region 1< <L x L−  of the waveguide occupied by the 
graded refractive index medium. In Figs. 2,a–c we plot the 
real and imaginary parts of (1)

1 gr2 ( ,0) ,E x  (2)
1 gr2 ( ,0) ,E x  

and (3)
1 gr2 ( ,0) ,E x  respectively, as functions of 1x  It is 

seen that each of these fields decreases rapidly to zero ex-
ponentially as 1x  increases past the distances (1) (2)

1 1, ,x x  
and (3)

1 ,x  respectively. This is the rainbow trapping effect. 
However, a stepwise decrease in the real and imaginary 
parts of the total electric field at each of these distances is 
less clearly present in Fig. 2,d, although a trend to smaller 
values of 2 1 grRe ( ,0)E x  as 1x  crosses ( )

1
jx  ( = 1,2,3)j  is 

seen. The same can be said of the plot of 2 1 gr| ( ,0) |E x  
presented in Fig. 2,e. 
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Propagation of the electric field stops at (3)
1 1 ,x x≈  and 

the magnitude of the field decreases exponentially for 1x  
greater than (3)

1 .x  
The magnitude of the electric field in the region 1 > ,x L  
2 1 tr| ( ,0) |,E x  also decreases exponentially with increasing 

1x , as can be seen from the result plotted in Fig. 3. 
We have studied the propagation of a wave packet con-

sisting of a superposition of three s-polarized guided waves 
with different frequencies in a planar waveguide consisting 
of a dielectric medium with a graded index of refraction 
sandwiched between perfectly conducting walls. This sim-

ple model system displays features observed in earlier stu-
dies of the rainbow trapping of guided waves, in particular 
that each frequency component of the incident wave packet 
stops propagating at a specific distance along the wave-
guide that depends on its frequency (its color) and on the 
material and geometrical parameters defining the wave-
guide. It also shows some features not discussed in these 
earlier studies. These include the strong reflection of the 
incident field from the waveguide, which appears to be due 
to the cessation of transmission of the waves comprising 
that field at specific distances along the waveguide, and the 
fact that the trapping phenomenon is not sharp but displays 
an exponential decay of the electric field strength on the 
transmission side at each of these distances. An attractive 
feature of the model system studied is that its properties 
can be studied analytically rather than purely studied nu-
merically. 

Appendix 

The nonzero elements of the matrix ( )nM  entering 
Eq. (19) are: 

 
1/222

( )
11 2= exp 2

2
n nM i L

dc
∞

⎧ ⎫⎡ ⎤ω π⎪ ⎪⎛ ⎞− ⎢ε − ⎥⎨ ⎬⎜ ⎟
⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

; (A.1) 

 
1/222

( )
12 2= exp

2
n nM i L

dc
∞

⎧ ⎫⎡ ⎤ω π⎪ ⎪⎛ ⎞⎢ε − ⎥ ×⎨ ⎬⎜ ⎟
⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

  

 
1/32

2 ( )nAi a L
c

⎡ ⎤⎛ ⎞ω⎢ ⎥× − −β⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

; (A.2) 

 
1/222

( )
13 2= exp

2
n nM i L

dc
∞

⎧ ⎫⎡ ⎤ω π⎪ ⎪⎛ ⎞⎢ε − ⎥ ×⎨ ⎬⎜ ⎟
⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

  

 
1/32

2 ( )nBi a L
c

⎡ ⎤⎛ ⎞ω⎢ ⎥× − −β⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

; (A.3) 

 
1/222

( )
21 2= exp 2 .

2
n nM i L

dc
∞

⎧ ⎫⎡ ⎤ω π⎪ ⎪⎛ ⎞⎢ε − ⎥⎨ ⎬⎜ ⎟
⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 (A.4) 

 
1/222

( )
22 2= exp

2
n nM i L

dc
∞

⎧ ⎫⎡ ⎤ω π⎪ ⎪⎛ ⎞⎢ε − ⎥ ×⎨ ⎬⎜ ⎟
⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

  

 

1/32
1/32 2

1/2 222

2

( )

2

n

a
c

Ai a L
cni

dc
∞

⎛ ⎞ω
⎜ ⎟ ⎡ ⎤⎜ ⎟ ⎛ ⎞ω⎝ ⎠ ⎢ ⎥′× − −β⎜ ⎟⎜ ⎟⎢ ⎥⎡ ⎤ ⎝ ⎠ω π⎛ ⎞ ⎣ ⎦ε −⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦

;  

  (A.5) 

Fig. 1. (color online) Plots of 2 1 inc| ( ,0) |E x  (a), 2 1 ref| ( ,0) |E x
(b), and 2 1 inc 2 1 ref| ( ,0) ( ,0) |E x E x+  (c) in the region 1 <x L−  of 
the waveguide. 
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1/32
1/2 1/32 22 2

( )
23 2 1/2 222

2

= exp ( )
2

2

n
n

a
cnM i L Bi a L

dc cni
dc

∞

∞

⎛ ⎞ω
⎜ ⎟⎧ ⎫ ⎡ ⎤⎜ ⎟⎡ ⎤ ⎛ ⎞ω π ω⎪ ⎪⎛ ⎞ ⎝ ⎠ ⎢ ⎥′⎢ε − ⎥ − −β⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥⎪ ⎪ ⎡ ⎤ ⎝ ⎠⎣ ⎦ ω π⎛ ⎞ ⎣ ⎦⎩ ⎭ ε −⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦

; (A.6) 

Fig. 2. (Color online) (a)–(c) Plots of the real and imaginary parts of (1)
1 gr2 ( ,0) ,E x  (2)

1 gr2 ( ,0) ,E x  and (3)
1 gr2 ( ,0) ,E x  respectively. (d)

Plots of the real and imaginary parts of 2 1 gr[ ( ,0) ].E x  (e) A plot of 2 1 gr| ( ,0) | .E x  The dashed vertical lines indicate the values of
( )
1 ( = 1,2,3).jx j  
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1/22

( )
32 2= ( )n

nM Ai a L
c

⎡ ⎤⎛ ⎞ω⎢ ⎥−β⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

; (A.7) 

 
1/32

( )
33 2= ( )n

nM Bi a L
c

⎡ ⎤⎛ ⎞ω⎢ ⎥−β⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

; (A.8) 

 
1/222

( )
34 2= exp

2
n nM i L

dc

⎧ ⎫⎡ ⎤ω π⎪ ⎪⎛ ⎞− ⎢ − ⎥⎨ ⎬⎜ ⎟
⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

; (A.9) 

 

1/32
1/32 2

( )
42 1/2 222

2

= ( ) ;

2

n
n

a
c

M Ai a L
cni

dc

⎛ ⎞ω
⎜ ⎟ ⎡ ⎤⎜ ⎟ ⎛ ⎞ω⎝ ⎠ ⎢ ⎥′ −β⎜ ⎟⎜ ⎟⎢ ⎥⎡ ⎤ ⎝ ⎠ω π⎛ ⎞ ⎣ ⎦−⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦

  

  (A.10) 

1/32
1/32 2

( )
43 1/2 222

2

= ( )

2

n
n

a
c

M Bi a L
cni

dc

⎛ ⎞ω
⎜ ⎟ ⎡ ⎤⎜ ⎟ ⎛ ⎞ω⎝ ⎠ ⎢ ⎥′ −β⎜ ⎟⎜ ⎟⎢ ⎥⎡ ⎤ ⎝ ⎠ω π⎛ ⎞ ⎣ ⎦−⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦

;  

  (A.11) 

 
1/222

( )
44 2= exp

2
n nM i L

dc

⎧ ⎫⎡ ⎤ω π⎪ ⎪⎛ ⎞− ⎢ − ⎥⎨ ⎬⎜ ⎟
⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

. (A.12) 

We dedicate this paper to the memory of E.A. Kaner on 
the occasion of his 80th birthday. Gone, but not forgotten. 
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Fig. 3. (Color online) A plot of 2 1| ( ,0) |trE x  in the region 1 >x L
of the waveguide. 


